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Abstract

As computational models of multicellular populations include ever more de-
tailed descriptions of biophysical and biochemical processes, the computa-
tional cost of simulating such models limits their ability to generate novel
scientific hypotheses and testable predictions. While developments in mi-
crochip technology continue to increase the power of individual processors,
parallel computing offers an immediate increase in available processing power.
To make full use of parallel computing technology, it is necessary to develop
specialised algorithms. To this end, we present a parallel algorithm for a
class of off-lattice individual-based models of multicellular populations. The
algorithm divides the spatial domain between computing processes and com-
prises communication routines that ensure the model is correctly simulated
on multiple processors. The parallel algorithm is shown to accurately repro-
duce the results of a deterministic simulation performed using a pre-existing
serial implementation. We test the scaling of computation time, memory use
and load balancing as more processes are used to simulate a cell population of
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fixed size. We find approximate linear scaling of both speed-up and memory
consumption on up to 32 processor cores. Dynamic load balancing is shown
to provide speed-up for non-regular spatial distributions of cells in the case
of a growing population.

Keywords: computational biology; individual-based models; off-lattice;
parallelisation; scaling analysis

1. Introduction

Individual-based simulation enables the modelling of complex systems,
such as multicellular populations in biology, at increasingly detailed reso-
lution [1]. An advantage of this approach is that the collective behaviour
emerging from the interactions of heterogeneous individuals can be studied
in a way that is not possible using classical methods. Furthermore, it is
often possible to parameterise individual-based models using quantities that
may be more readily measured experimentally, leading to an increasingly
symbiotic relationship between modelling and the experimental sciences.

There are, however, a number of difficulties with the individual-based
approach. One practical limitation is the computational cost of simulating
such models. Simulations typically consist of a large number of interacting
individuals, each of which has an internal state that evolves in response to
interactions with other individuals according to pre-determined rules. The
need to store the state of each of the n individuals in a simulation leads to
a memory requirement that grows as O(n). Worse, for pairwise interactions
between individuals, the processing load grows as O(n2). This is a problem
that is keenly felt in individual-based modelling of multicellular populations,
where each cell is represented as a discrete entity. For large systems, compu-
tational cost can make simulations intractable, either as a result of excessive
memory consumption or excessive processing time.

A common approach in the face of such computational limitations is to
employ a continuum model. While it is possible to derive continuum mod-
els in certain circumstances from their individual-based counterparts under
certain limits using coarse-graining techniques [2, 3, 4], or to combine con-
tinuum and discrete models in a hybrid system [5, 6], such approaches are
largely restricted to simplifications of the original model and many of the ben-
efits of the individual-based approach are consequently lost. By increasing
the computational resources available for simulation, it is possible to signif-
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icantly increase the scale of model that may be practically simulated using
an individual-based approach without placing restrictions on the modelling
methodology.

Parallel computing technology enables multiple single computational units
to execute a program, such as a simulation of an individual-based model.
This affords a significant increase in the available memory and computing
power for a single simulation, potentially increasing the scale of simulation
that is possible. The fact that such an approach has seen limited use in
the field of individual-based modelling of cell populations in biology may be
due to the difficulty in constructing computational algorithms that may be
executed on parallel computing technology. The typical development cycle
of software for such simulations is to begin with a simple serial algorithm,
which is iteratively extended to more detailed modelling until the limits of
computational tractability are hit. At this point it is often too costly to alter
the software so that it may be executed in parallel, as there tend to be many
explicit and implicit assumptions of serial execution within the program.

1.1. Individual cell-based modelling approaches

A variety of different discrete modelling approaches have been developed
to describe how individual cells interact within a population. These range
in complexity from simple cellular automata, where each cell is represented
by a single site on a lattice, with cell state updated by pre-defined rules,
to physical models where individual cells are partitioned into mesoscopic
elements to better capture cell mechanics and deformation.

By imposing that the physical representation of cells is restricted to a
fixed geometric lattice and updating their location in terms of rules or the
minimisation of a heuristic potential function, lattice-based models such as
cellular automata [7, 8] and the cellular Potts model (CPM) [9, 10, 11] offer a
simple description of the dynamics of cells within the population. This typi-
cally makes computation less expensive. However, parameters used to define
such physical models are often difficult to relate to experimentally measur-
able quantities since they typically arise from heuristic rules. Furthermore, it
is more difficult to define a time scale for such models so that simulation pro-
gression may be compared with temporal experimental data. In many cases
these drawbacks are not critical to the biological hypotheses being investi-
gated and lattice-based models provide an ideal framework. However, when
the physical interaction of cells forms a key part of the model (for example,
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in studying contact inhibition of cell growth [12]) an off-lattice approach is
often favoured.

Common off-lattice approaches include cell-centre models, where each cell
is represented by a single point in space with an associated volume (defined,
for example, through a Voronoi tessellation), and vertex models, where each
cell is represented by a polygon (or polyhedron), whose vertices are shared
with neighbouring cells [13, 14]. Here we focus on developing an algorithm
for cell-centre models, which have been used to study biological processes
such as solid tumour development [12, 15], intestinal homoeostasis and car-
cinogenesis [16, 17, 18] and ductal carcinoma in situ [19].

1.2. Parallel approaches

Efforts to develop parallel algorithms for individual-based models of cell
populations have largely been focused on the CPM. A parallel algorithm
has been reported for the CPM that allows O(106) cells to be simulated on
approximately 25 processors [20]. The authors decompose the lattice into
spatial regions divided between the processors and employ a lock-based al-
gorithm where neighbouring sites are locked (not updated) while a lattice
site is being updated to ensure the model is correctly simulated in parallel.
Although one might expect that imposing a wait on each processor using the
locking algorithm during each update step would lead to large inefficiencies
of the algorithm, efficiencies of between 80% and 90% are reported for sim-
ulations of O(106) cells. Similar approaches, based on decomposing space
between processors, have been used to parallelise the algorithms of related
lattice-based models [21, 22].

Another notable example, from the wider field of agent-based modelling of
multicellular populations, is the parallel functionality provided by the Flex-
ible Large-scale Agent-based Modelling Environment (FLAME) [23]. Using
the Message Passing Interface (MPI), FLAME has demonstrated 80% par-
allel efficiency on over 400 processes for a benchmark simulation, although
the authors note that decomposing agents based on their state variables (for
example, a space decomposition) gives rise to load balancing problems, where
different processes may be responsible for a disproportionate amount of com-
putation [24].

Some recent developments in parallel cell population simulations have fo-
cused on the use of General Purpose Graphics Processing Units (GPGPUs),
which require modest capital outlay and achieve significant performance im-
provements over serial CPU algorithms. For example, a GPGPU approach
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has been shown to substantially improve the performance of the subcellular
element model [25], a class of off-lattice model that includes a fine-grained
description of cell mechanics [26]. By moving computationally costly tasks,
such as neighbour identification, to the GPGPU the authors were able to
achieve an 18-fold increase in performance. Nevertheless, they were only
able to report on simulations where the total number of cells grew to ap-
proximately 5,000, and such simulations took almost 10 hours to compute.
In other work a simulation of a cell population has been implemented in
FLAME using a GPGPU combined with a spatial decomposition approach,
obtaining speed-ups of 10,000 [27]. While such large speed-ups are available
from GPGPU technology, they are limited in their memory capacity, and for
detailed models of individual agents, may still pose a high communication
overhead when transferring agents from the CPU to the GPGPU.

The greatest progress in the use of high-performance computing technol-
ogy in cell-based modelling has come in the lattice-based paradigm. It has
been suggested that simulating individual-based models with a high degree
of connectivity between the individuals on distributed HPCs is ineffective
due to communication latency and bandwidth restrictions, and that shared-
memory approaches such as GPGPUs are of greater benefit [22]. However,
GPGPU technology, while providing valuable speed-up for relatively small
simulations, lacks the memory and processing power to tackle new scales
of problem. On the other hand it has been shown that distributed HPC
methods can be a viable option for large-scale simulation of cell population
models [20].

To address the lack of suitable parallel methodologies for off-lattice, individual-
based models of cell populations, in this paper we describe a novel parallel
algorithm for a class of such models. Our algorithm combines techniques
for domain decomposition from computational physics with a novel load bal-
ancing algorithm that improves efficiency of simulations where the spatial
domain is not known ahead of runtime. In contrast to GPGPU or shared
memory approaches, which are tied to a specific computational system de-
sign, we choose to use the architecture-independent Message Passing Inter-
face (MPI) to allow for an implementation that is portable between multi-
threaded and multi-core shared-memory and grid-based distributed memory
parallel computing systems. By implementing inter-process communication
in a model-agnostic manner, our implementation is able to support paral-
lel simulations of unbounded variety by modification of the individual-cell
model, and of the cell-cell interaction rules. Our parallel algorithm only
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places the restriction of spatial locality on cell-cell interaction laws.
The remainder of this work is structured as follows. In Section 2 we de-

velop a parallel algorithm and implementation for a class of individual cell-
based model that is available as part of the open-source Chaste project [28].
The implementation of the algorithm is sufficiently flexible and extensible
that it may be applied to a wide range of problems in biological modelling,
by changing the rules governing the behaviour and interactions between in-
dividual cells in the model. In Section 3 we present results concerning the
validation of our algorithm and its performance. In Section 4 we conclude
with a summary of our findings and suggestions for further work.

2. Methods

2.1. Individual-based model

The model for which we have developed our algorithm treats each cell
as an individual agent that contains data defining its present state. In its
simplest form, these data are each cell’s location (which is not restricted
to a lattice, and may be modelled in either 1, 2 or 3 spatial dimensions).
However, other state information relating to the cell may also be stored,
such as the cell’s progress through its cell cycle, or its intracellular levels of
specific metabolites or signalling factors. Physical interactions between cells
are assumed to be governed by a pairwise force law that is short-ranged in
nature (that is, only acting between cells that are separated by less than some
fixed distance), while cells may also interact with neighbouring cells through
other mechanisms, such as lateral signalling, where a cell’s behaviour may
be influenced by the concentration of a signalling factor in nearby cells.

The dynamics of the cell population are governed by a system of Langevin
equations of motions for the cells, based on a force-balance approach [29].
Assuming that a cell i located at ri experiences a force Fij from each neigh-
bouring cell j, the motion of cell i is governed by

mi

d2ri
dt2

= −ηi
dri
dt

+

Ni−1
∑

j=0

Fij, (1)

where ηi is a viscous drag constant describing the bulk viscosity of the sur-
rounding media (neighbouring cells and extra-cellular matter), mi is the mass
of cell i, and the sum is taken over all Ni neighbouring cells, defined as those
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cells for which ‖ri − rk‖2 < rc for some fixed constant rc, the maximum in-
teraction radius. This is often termed an ‘overlapping spheres approach’ to
modelling cell neighbours. We assume that the Reynolds number for the mo-
tion of each cell is small, so that viscous forces may be assumed to dominate
inertial forces [30]. We thus approximate (1) by the first-order equation

dri
dt

=
1

ηi

Ni−1
∑

j=0

Fij. (2)

From the perspective of our parallel algorithm, models at the subcellular scale
are restricted in that they must only depend on the data from neighbouring
cells. The algorithm may be applied to simple rule-based subcellular models,
or to more complex systems of differential equations describing the state
of subcellular gene networks. The subcellular model may interact with the
physical model either through the modification of the cell-specific parameters
defining the interaction force between cells or by introducing a new cell into
the population as the result of a cell division, or by removing cells from the
population through cell death.

2.2. Model simulation

We evolve the simulation in discrete time steps of constant size ∆t. Here
we describe the approach to updating the location of each cell in space, since
this is key to the development of the parallel algorithm for simulation due
to its dependence on the data from neighbouring cells. Updating the state
of subcellular models (such as the cell-cycle or internal gene networks) that
depend on data from neighbouring cells is analogous to the physical model.

Each cell i is assigned an initial location ri(t0). Using a forward Euler
scheme to approximate the solution of equation (2), we update the location
of each cell i at time tn+1 = tn +∆t from ri(tn) to

ri(tn+1) = ri(tn) +
∆t

ηi

Ni−1
∑

j=0

Fij(tn). (3)

The solution of this equation depends on computing the force components
Fij for each neighbouring cell j. These forces typically depend on the states
of cells i and j (for example, their locations, size, or subcellular states). It is
this dependence of the motion of each cell on its neighbours that motivates
our division of computational tasks in a parallel environment.
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2.3. Parallel decomposition

An optimal decomposition of a serial algorithm into parallel tasks will
split the algorithm so that each component may be carried out indepen-
dently of the others. Such a decomposition leads to an optimal increase
in performance of the computation of the algorithm. Dependence of sepa-
rate parallel tasks can create both a communication overhead between the
separate processes executing each task (which may be located on separate
processors), as well as inefficient execution when one task must wait for an-
other to complete. Due to the dependence of the model of each cell on its
neighbours, it is not in general possible to provide an independent decom-
position for our cell population model and simulation. We therefore aim to
minimise the dependence between separate tasks.

The most natural unit of decomposition within the model is the single
cell: the evolution of the subcellular model over each time step provides an
independent task that may be carried out by separate processes. As outlined
in Section 2.1, the model of each cell depends only on data from other cells
within close spatial proximity, and this motivates us to divide cells between
separate processes based on their spatial location. That is, separate pro-
cesses are each assigned a subset of physical space and are responsible for
simulating the cells that lie in that region of space. Alternative approaches
have been developed in the field of particle simulations, such as molecular dy-
namics. For example, an arbitrary decomposition between processes can be
a successful approach where data dependence is low, and the cost of commu-
nication between the processes is low, with further optimisations possible by
using the symmetry of force between two particles or cells. Although spatial
decomposition algorithms have also been suggested for molecular dynamics,
the relatively small amount of data associated with a single particle makes
the approach less favourable than arbitrary decompositions [31]. As a result
of the level of detail that can potentially be included within a single cell in
our model, a spatial decomposition is likely to offer a more efficient parallel
algorithm as it will only require data communication between a small subset
of the processes being used.

Figure 1 shows the spatial decomposition scheme chosen for our algorithm
in the case of two spatial dimensions. We split the spatial domain into axis-
aligned rectangles with a minimum linear dimension of rc along each axis.
Consequently there are two regions in each spatial domain where a cell may
depend on data from a neighbouring process. For example, in Figure 1,
Cell 1 lies in the shaded region C, which lies within a distance rc of the
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Cell 2

Cell 1
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Process 2

Process 1

Process 0

Figure 1: Decomposition of a two-dimensional physical domain between different processes
in parallel. Each process owns one rectangular region of space, and is responsible for up-
dating cells in that region. Data for cells less than a distance rc (the maximum interaction
radius) from the boundary must be exchanged between neighbouring cells at each time
step.

boundary between Process 1 and Process 2. Before the calculation of each
time iteration, data must be exchanged from Process 1 and Process 2 on all
cells in region C, and likewise for all other neighbouring processes. After
updating the state of each cell and integrating the equations of motion over
the time step to update the location of each cell it is necessary to re-assign
cells between processes so that the data and ownership of each simulated cell
is stored in the memory of the process owning the region of space containing
its centre.

In order to obtain optimal computation speed and scale it is necessary to
make full use of each computing resource when a model is being simulated in
parallel: this requires that an approximately equal proportion of computa-
tional tasks is assigned to each resource at any point during the simulation.
In terms of simulation execution time, the observed wall-clock duration of a
simulation is that of the last resource to complete its tasks. Consequently,
an overloaded process which will take proportionally longer to complete its
tasks will limit execution speed as other processes sit idle waiting for it to
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complete. In our algorithm, computational tasks are assigned based on the
spatial distribution of cells, and it is not therefore guaranteed, or indeed
likely, that an even distribution of computational load will be achieved.

To address this, we implement a simple dynamic load-balancing algo-
rithm with the implementation of our parallel algorithm, that periodically
re-distributes the model domain between processes to maintain an approxi-
mately uniform distribution of cells between processes. Figure 2 depicts how
a region containing a larger number of cells compared to its immediate neigh-
bours, and therefore under higher computational load, has its domain shrunk
with its neighbours being assigned a larger spatial region, and therefore more
cells.

To decide whether, and in which direction, to move each boundary, we
consider the number of cells in each strip of height rc within each domain.
One of these strips is exchanged with a neighbouring process (by moving
the cell data onto that resource) if doing so reduces the imbalance between
the two resources. In particular, assuming each region of space assigned to
a process labelled p is divided into Sp sub-regions of size rc, with each sub-
region i containing wp

i cells, then we quantify the load imbalance σpq between
two processes p and q as the squared difference in cell numbers contained on
each process:

σpq =

(

Sp−1
∑

i=0

wp
i −

Sq−1
∑

i=0

wq
i

)2

. (4)

For each pair of processes we calculate the change in σpq if a single neigh-
bouring strip of size rc is exchanged in each direction (i.e. p sends one strip
to q, q sends one strip to p or no change). The exchange that results in the
greatest decrease in σpq is chosen.

This algorithm is carried out every K integration time steps throughout
the algorithm, where K is a user-defined simulation parameter that may be
tuned for optimal performance. We investigate the appropriate value of K
and the sensitivity of the simulation performance to its value in Section 3.3.

2.4. Implementation

The Chaste library is implemented in C++, with parallel communica-
tion between processes implemented using the Message Passing Interface
(MPI) [32]. C++ provides a number of benefits over other suitable languages
such as Java or Python. In particular, code optimisations implemented by
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P0

P1

High loadHigh load

P2 Low loadLow load

Figure 2: Load balance is achieved by shifting the boundaries of process domains to
minimise local pairwise imbalances. In this case the boundary is shifted so that P2, a
lower loaded process, takes some of the load from P1.

most modern C++ compilers can lead to extremely efficient runtime perfor-
mance, while explicit memory management allows for effective use of the
processes available.

MPI provides a highly portable parallel communication model that may
be used across both shared- and distributed-memory parallel computers and
is therefore well suited to the general purpose nature of the Chaste library.
In contrast other approaches are typically restricted to one type of parallel
architecture. For example, multithreading models are restricted to shared-
memory machines (where all processes share a single memory block), while
GPGPUs require both an on-board graphics card as well as typically non-
portable hardware-specific code.

To support the extensible implementation of the model of each single cell
provided by Chaste (where any user-defined model may be created) within
the parallel framework, we use the Boost Serialization library [33] to turn
a C++ object that represents a single cell into a binary string that may be
sent between processes using MPI. This implementation means that future
cell models not currently implemented within the Chaste library will be sup-
ported by our parallel implementation without additional modifications to
the communication algorithms. The parallelisation of the individual-based
model forms part of Chaste open source release 3.2 and any additional code
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or data required to reproduce the results in this paper is available from our
website1.

3. Results

3.1. Validation

To confirm that our parallel algorithm, and its implementation in Chaste,
correctly simulates the cell dynamics of the model, we numerically compare
the results of a simulation of simple cell-cell interaction as well as a larger,
deterministic simulation with the result of the same simulation execution in
serial.

We first consider the case of three cells pushing apart due to their cell-cell
interaction force. In parallel, one cell is located on a separate computational
unit from the other two. The cells are initially in close proximity, with cells
located at (0, 0), (0, 0.4) and (0, 0.6), and at each numerical time step we
record the location of each cell to full machine precision. We repeat this
process for a 2D simulation of 256 cells arranged initially in close proximity,
where the population is allowed to relax into physical equilibrium for 100
hours of simulation time. In each case we calculate

σn =
1

Ni

Ni−1
∑

j=0

‖xs
i (tn)− x

p
i (tn)‖, (5)

the mean difference at each time step between a cell’s location in the serial
simulation (xs

i ) and the equivalent cell’s location in the parallel simulation
(xp

i ). The numerical results for the three-cell simulation were identical—that
is σn = 0 for all n, when simulating on a 64-bit Linux desktop. For the larger
simulation, in Figure 3(a) we plot the error after each hour of simulation
time, relative to machine epsilon.

We see that the error grows from zero for the initial condition to O(10−15)
after 100 hours of simulation time or 240,000 numerical time steps. We antic-
ipate that this small discrepancy is due to changes in the order of summation
in equation (3) when cells are located on different processes. When floating
point numbers are summed in a different order, marginally different values
can be obtained. In particular, the näıve method of summation employed by

1https://chaste.cs.ox.ac.uk/trac/wiki/PaperTutorials/Harvey2015
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Figure 3: (a) Mean difference between cell locations from the serial and parallel simulations
relative to machine precision for a deterministic cell population simulation. (b) The mean
difference in cell locations plotted against the equivalent mean difference measure between
two serial simulations where the internal order of cells in the data structures has been
permuted.

Chaste for updating equation (3) is vulnerable to such inaccuracies as the
partial sum grows larger than each individual summand. In order to show
that our error is consistent with summation errors, in Figure 3(b) we plot
a number of error traces for the same simulation in serial when we permute
the order of summation by altering the order in which cells are stored inter-
nally within the data structures of the code. It can be seen that the error
induced by our parallel algorithm is on the same order as that caused by
these summation order errors. Overall, such a small difference represents a
good agreement between the parallel and serial algorithms.

3.2. Performance

The objective of developing a parallel algorithm for cell-centre models is
to increase the scope of simulations that are possible, as well as reducing the
computational runtime of a given simulation. To test our implementation
with respect to these objectives we carry out two benchmarking tests.

To assess the scalability of the parallel algorithm in terms of simulation
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Figure 4: Memory use, measured using maximum resident set size over all processes for a
simulation of 1,024,000 cells in a 2D monolayer.

size, we measure the memory usage of a fixed simulation as we introduce
more processes up to the limit of the number of physical processors available.
Whilst establishing the precise memory use of a program at runtime is not
totally accurate or portable between different computer architectures, by
measuring the resident set size (an approximation for total memory use)
after initialising a simulation of 1,024,000 cells evenly distributed through the
spatial domain, using calls to the C function getrusage(), we may obtain
an estimate of the memory use of a simulation. Figure 4 shows the largest
recorded resident set size across all processes for between 1 and 32 processes
on a shared-memory computer, plotted alongside an idealised line showing
the ratio of the resident set size recorded on one process to the number of
processes used. The measured resident set size tracking closely to the ideal
division line shows, for this simulation of evenly distributed cells, that our
algorithm scales efficiently in terms of memory use, and the size of simulation
that is computationally tractable will grow in proportion to the number of
processes used.

Whilst memory consumption limits the number of cells that may be sim-
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ulated, in practice the runtime for a large simulation must be tractable for
it to be a realistic tool for investigating hypotheses. To assess the runtime
performance of our parallel algorithm, we measure the wall-time (that is,
the time experienced by a user) taken to execute a simulation of approxi-
mately 106 cells on a rectangular 2D monolayer as we increase the number
of processes used. For this test we use between 1 and 32 cores of a SGI UV
100 shared-memory machine. To assess the scaling of the wall-time for the
simulation we calculate the speed-up, defined as

Sp =
Tp

T1

, (6)

where T1 is the total wall-time for the simulation to complete in serial (by
one process), and Tp is the total wall-time for the simulation to complete
on p processes. Optimal parallel scaling is achieved when Sp ≈ p. In Fig-
ure 5 we show the results of our wall-time scaling experiment, plotting Sp

for our simulation and, for reference, Sp = p. We see that, using up to 32
processor cores, we achieve a speed-up of 20.91, which reduces the wall-time
for this simulation from approximately 2,000 seconds to around 100 seconds.
Furthermore, we see the scaling is approximately linear over the range of
processes available, with no plateau in the rate of speed-up achieved. How-
ever, the scaling of our simulation falls short of the optimal Sp = p scaling,
due to the necessity of communicating data of neighbouring cells between
processes, which takes processes away from computations directly related to
the simulation of the model.

3.3. Load balancing

To evaluate the performance of our dynamic load-balancing algorithm, we
carry out a similar scaling experiment for a non-uniform, growing 2D mono-
layer of cells. The monolayer grows from approximately 25 cells to around
104 of the course of 100 hours of simulation, with cell growth and division
occurring over a time scale of hours. The monolayer naturally assumes an
approximately circular configuration, and grows in size over the course of the
simulation, meaning that a static decomposition of the spatial domain would
lead to a non-uniform distribution of cell number between processes.

In Figure 6(a) we plot the speed-up Sp for between 1 and 8 processes
with and without the load-balancing procedure applied. When the load-
balancing procedure is applied at a rate of once per hour of simulation time,
the maximum speed-up attained increases from 1.1 to 2.9. Furthermore, it
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can be seen in Figure 6(b), where we plot the final distribution of cell numbers
at the end of the simulation, that the algorithm is successful in re-balancing
the cells between 8 processes. The final distributions of cells from these two
simulations are also shown graphically in Figure 7(a) (for no load-balancing)
and Figure 7(b) (for dynamic load-balancing). In these figures each sphere is
the final position for an individual cell in the growing two-dimensional sheet
and the cells are coloured according to which of the 8 processes they lie on.

The choice of the frequency at which to apply the load-balancing algo-
rithm depends largely on the rate of spatial redistribution of the cells, which
drives movement from an evenly balanced state, to an unevenly balanced
state. This can be seen in Figure 6(c), where we plot the total simulation
time on 8 processes as a function of the rebalancing rate. For this simulation
an optimal frequency is obtained at approximately one load-balance iteration
per hour, which is at approximately the same rate as the growth of the cell
population.

4. Discussion

In this work we have demonstrated an algorithm for the parallel simula-
tion of a class of off-lattice model of multicellular populations. We have pro-
vided an implementation that demonstrates efficient scaling, both in terms
of memory use and wall-clock execution time for a fixed simulation. Our
work takes techniques for decomposing spatial simulations developed in other
fields, such as molecular dynamics, and applies it to biological simulation
where a challenge is presented by the level of detail associated with each
cell in the model. We advance towards the goal of more detailed and larger
simulation that can better capture the key biological processes of interest.

Our algorithm achieves close to perfect scaling of memory use for a spa-
tially evenly distributed cell population. This, combined with our architecture-
independent MPI implementation, creates the opportunity for simulating
models at a scale that would otherwise be intractable. Furthermore, our al-
gorithm not only demonstrates computation-time scaling efficiency of around
65%, which is comparable with parallel implementations of simpler, fixed-size
lattice models [20] but also allows for more realistic cell dynamics that may be
more easily related to experimental data as well as for dynamically growing
populations of cells. While a static decomposition of space is appropriate for
lattice-based models, cells in off-lattice models may rearrange with respect
to their initial spatial configuration, leading to significant load imbalances
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Figure 6: (a) Speed-up achieved using a dynamic load-balancing scheme in a simulation of
a growing monolayer of cells. The dynamic load-balancing algorithm increases maximum
speed-up from 1.3x to 2.9x over 8 processes. (b) The distribution of cell numbers between
processes at the end of an 8-process simulation. The dynamic load-balancing algorithm
leads to a more uniform distribution of cells between computational processes. (c) The
sensitivity of the total computation time of the simulation to the rate of load-balancing.
A greatest computation speed is achieved with a rebalance rate of approximately once per
103 s.
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(a)

(b)

Figure 7: Snapshots of a simulation of a two-dimensional cell population, with cells
coloured according to which process they lie on. (a) The distribution of cells without
the application of the load-balancing algorithm. As the population grows, the extremal
regions become unevenly loaded. (b) The distribution of cells in a simulation using the
dynamic load-balancing algorithm.
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and reduced parallel efficiency. We have mitigated this problem by develop-
ing a novel load-balancing algorithm that rebalances the spatial domain on
approximately the time scale of growth within the population.

The efficiency of our algorithm will depend on a number of factors. As-
suming a fixed underlying computational architecture, the quantity of data
stored within a cell will affect performance. Cells with more detailed descrip-
tions of proliferative behaviour and cell-cycle progression will be more expen-
sive to serialise and communicate between compute resources. However, the
level of complexity of the internal cell-cycle algorithm will not adversely affect
parallel performance, since only cell state must be communicated between
compute resources. Two distinct, but related, biological environmental fac-
tors further affect the parallel efficiency of our algorithm: cell density and
cell motility. Cell density dictates the number of cells which fit into a strip
of given width and therefore the number of positional updates which are ex-
changed between neighbouring processes. Thus increasing the cell density
not only increases the number of cell-cell force calculations (an operation
which is local to a process) but also increases the communication overhead
(which may reduce the parallel efficiency). Cell motility also has potential
to increase the communication overhead of our algorithm. If cells are more
motile then they are more likely to move across process boundaries which is
an operation that requires the cell data to be migrated from one process to
another. At high motility rates the spatial load balancing step must be run
more frequently due to changes in cell distribution.

A natural extension of our work is to further reduce the communication
cost so that we can achieve wall-time speed-up. For specific model appli-
cations we could achieve this by specialising the data transmitted between
processes, rather than sending all cell data. However, such a modification
would need to be specialised for each application, and would not provide a
general-purpose implementation.

A further possible direction of development is to consider the use of other
parallel technologies. While our MPI implementation is highly portable be-
tween different shared and distributed-memory systems, GPGPUs could pro-
vide another approach to speed-up. As noted earlier, we must still copy cell
data between the CPU and the GPGPU, but if such operations are faster
than equivalent transfer of cell data through the network of a distributed
system this approach may enable further speed-up.

Our load-balancing algorithm could be further developed in a number of
ways. First, we could consider iterating the algorithm more than once at each
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time step, with the aim of improving the load distribution. However, this
would require a larger movement of cells between processes at each iteration,
and the results shown in Figure 6(c) suggest that choosing a single iteration
of the algorithm on the time scale of population growth and re-organisation is
sufficient to maintain a broadly balanced load distribution. Second, we could
also take account of communication in the measure of load. For example,
by defining local load to be the sum of the number of local cells and cells
in neighbouring regions that must be communicated, we may achieve an
improved overall balance of computation time.
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