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Abstract

The lack of effective biomarkers for predicting cancer risk in premalignant disease is a major

clinical problem. There is a near-limitless list of candidate biomarkers and it remains unclear

how best to sample the tissue in space and time. Practical constraints mean that only a few of

these candidate biomarker strategies can be evaluated empirically and there is no framework to

determine which of the plethora of possibilities is the most promising. Here we have sought to

solve this problem by developing a theoretical platform for in silico biomarker development. We

construct a simple computational model of carcinogenesis in premalignant disease and use

the model to evaluate an extensive list of tissue sampling strategies and different molecular

measures of these samples. Our model predicts that: (i) taking more biopsies improves prog-

nostication, but with diminishing returns for each additional biopsy; (ii) longitudinally-collected

biopsies provide slightly more prognostic information than a single biopsy collected at the latest

possible time-point; (iii) measurements of clonal diversity are more prognostic than measure-

ments of the presence or absence of a particular abnormality and are particularly robust to

confounding by tissue sampling; and (iv) the spatial pattern of clonal expansions is a particu-

larly prognostic measure. This study demonstrates how the use of a mechanistic framework

provided by computational modelling can diminish empirical constraints on biomarker develop-

ment.
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Introduction

Each year, tens of thousands of patients in the UK are diagnosed with a premalignant disease,

a benign condition that predisposes to the future develop of cancer. Examples of common pre-

malignant diseases include Barrett’s Oesophagus [1], Ductal Carcinoma in situ (DCIS) of the

breast [2], benign prostatic intraepithelial neoplasia (PIN) [3], and carcinoma in situ in the blad-

der [4]. The clinical management of patients with premalignant disease is a major challenge: in

order to prevent cancer, patients are typically enrolled into longitudinal screening programmes

that aim to detect (and then treat) patients who show early signs of progression to cancer.

However, while having a premalignant disease increases the average risk of developing cancer

compared to the unaffected population, the cancer risk for any individual is highly variable and

generally quite low. For example, patients with Barrett’s Oesophagus have an average 40-fold

increased lifetime risk of developing adenocarcinoma, but the progression rate per patient per

year is less than 0.5% [5] and so many of these patients will not progress to cancer in their

lifetime. As a result, it is arguable that surveying an average (low-risk) patient is unnecessary

as they are unlikely to ever progress to cancer. In addition, the surveillance process is typically

unpleasant for the patient, and is very costly to health-care providers. In view of these facts

together, premalignant disease is often described as both over-diagnosed and over-treated [6],

and consequently there is a pressing clinical need to be able to accurately stratify cancer risk

in these patients.

Prognostic biomarkers are central to current risk-stratification strategies. Here a biomarker

is defined as an analysable property of the diseased tissue that correlates with the risk of pro-

gressing to cancer. In general, it remains unclear which of the plethora of potential biological

features that could be assayed (morphological, gene expression, mutation, or other features)

offers the most potential for prognostic value. Pathological grading and staging remain the

most widespread biomarkers in current use; these biomarkers are descriptions of the mor-

phological features of the disease. The current state-of-the-art biomarkers are molecular in

nature, and typically quantify the aberrant expression of a panel of carefully-chosen genes. For
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example, the Oncotype DX assay analyses the activity of 21 genes to determine a score quan-

tifying risk of recurrent breast cancer and response to chemotherapy [7]. Genetically based

biomarkers include EGFR mutations in non-small cell lung cancer [8] and TP53 abnormalities

in Barrett’s Oesophagus [9]. The limited predictive value of existing biomarkers has prevented

their widespread clinical use [10], and for many diseases such as DCIS [11] and inflammatory

bowel disease [12] no prognostic biomarkers have yet been identified.

All biomarkers require the diseased tissue to be sampled. Needle biopsies are the predomi-

nant sampling method, although other tissue collection methods such as endoscopic brushings

or cell washings are sometimes used. However, typically the prognostic optimality of differ-

ent sampling schemes, including whether samples should be collected longitudinally, has not

been evaluated. Furthermore, given the fact that taking a biopsy is an invasive procedure, an

empirical evaluation of different tissue sampling schemes is largely unfeasible.

Cancer development is fundamentally an evolutionary process: the acquisition of random

somatic mutations can cause a cell to develop an evolutionary advantage over its neighbours,

and so drive the clonal expansion of the mutant. Repeated rounds of mutation and clonal se-

lection can lead to the development of a malignant tumour. When viewed from this evolutionary

perspective, a biomarker may be thought of as a predictor of the evolutionary trajectory of the

disease; a successful biomarker is one that sensitively and specifically detects which premalig-

nant lesions are (rapidly) evolving towards cancer. However, existing biomarker development

efforts do not explicitly consider the evolutionary process they seek to assay, instead relying on

the identification of a small set of genes that are aberrantly expressed in high-risk cases [10].

The recent appreciation that carcinogenesis is a highly stochastic process [13], in which many

different combinations of genetic alterations and gene expression changes contribute to the

same malignant phenotypes, has led to doubts about the utility of such “candidate gene” ap-

proaches [14]. Alternative biomarker development strategies attempt to assay the underlying

evolutionary process itself. Quantification of within-tumour diversity, as a proxy measure of the

probability that the tumour has evolved a well-adapted “dangerous” clone, is one such measure
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that has shown efficacy in a variety of cancer types [15–17]. Whilst most studies have focused

on the quantification of within-tumour genetic diversity, it is noteworthy that quantification of

phenotypic heterogeneity also shows prognostic value [18,19].

Mathematical models are tools that have the potential to diminish the inherent constraints

of empirical biomarker development. Due to the relative ease with which a mathematical model

of cancer evolution can be analysed, potentially exhaustive searches of candidate biomarkers

can be performed in silico. This is the idea that we develop in this study.

Mathematical modelling has a rich history in cancer research, and is increasingly used as

a tool to investigate and test hypothesized mechanisms underlying tumour evolution [20]. A

common approach is to consider spatially homogeneous well-mixed populations [21], using

multi-type Moran models of constant or exponentially growing size [22] or multi-type branching

processes [23]. Other work has highlighted the impact of spatial dynamics on the evolutionary

process [24]. More complex models have coupled a discrete representation of the movement

and proliferation of individual cells to a continuum description of microenvironment factors such

as oxygen concentration and extracellular matrix composition. Such models, in particular the

pioneering work of Anderson and colleagues [25,26], demonstrate the significant selective force

imposed by microenvironmental conditions such as hypoxia. A recent discussion of the use of

ecological and evolutionary approaches to study cancer is provided by Korolev et al. [27]. The

majority of models of tumour evolution have focused on the rates of invasion and accumulation

of mutations, and how these depend on factors such as modes of cell division and spatial

heterogeneity in cell proliferation and death. Defining statistics that correlate with prognosis in

these kinds of models is an unaddressed problem.

Here we use mathematical modelling as a novel platform for in silico biomarker development.

We develop a simple mathematical model of tumour evolution, and use the model to evaluate

the prognostic value of a range of different potential biomarker measures and different tissue

sampling schemes.
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Materials and methods

Computational model of within-tumour evolution and biopsy sampling

To simulate the growth and dynamics of a pre-cancerous lesion, we consider a continuous-time

spatial Moran process model of clonal evolution [28] on a two-dimensional square lattice, which

may be thought of as a mathematical representation of an epithelial tissue. This description is

similar to a model of field cancerization proposed by Foo et al. [29], although our model differs in

several respects, which we describe below. We assume that in the transition from pre-malignant

to malignant lesions, cells in a spatially well-structured population such as an epithelium are

killed and/or extruded by an environmental stressor at a rate that is proportional to the inverse

of their fitness, and replaced within the tissue via the division of a neighbouring cell. This

assumption is represented in our chosen update rule. We suppose that it is this increased rate

of cell turnover that leads to the accumulation of mutations, and eventually cancer. We refer

to mutations as advantageous, deleterious or neutral, if they increase, decrease, or leave cell

fitness unchanged.

The state of the system changes over time as a result of ‘death-birth’ events. At each point

in time, each lattice site is defined by the presence of a cell with a specified ‘genotype’, given

by the numbers of advantageous, neutral and deleterious mutations that it has accumulated.

To implement the next death-birth event, we first choose a cell to die, at random, with a prob-

ability weighted by the inverse of each cell’s fitness. We define the fitness of a cell with np

advantageous, nn neutral, and nd deleterious mutations by

f = (1 + sp)
np(1− sd)

nd , (1)

where the advantageous parameters sp and sd denote the relative fitness increase/decrease

due to a advantageous/deleterious mutation. The chosen cell is removed from the lattice and

one of the dead cell’s neighbours is chosen uniformly at random to divide into the vacated

lattice site. The time at which this death-birth event occurs is given by a waiting time, chosen
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according to an exponential distribution with mean equal to the sum of all cell inverse fitnesses

present on the lattice, as stipulated by the Gillespie algorithm [30].

Immediately following division, each daughter cell can independently accrue a mutation,

with probability µ. If a mutation is accrued, it is labelled as advantageous, deleterious or neutral

with equal probability 1/3. We note that neutral and deleterious mutations are not typically

included in spatial Moran models of tumour evolution, as such mutations are unlikely to persist.

However, over shorter timescales, their presence may have an effect on the dynamics of the

system and hence the predictive power of any biomarkers considered. We emphasize that a

cell that has accumulated mutations behaves the same as a wild-type cell in terms of mode of

division and accumulation of mutations; the only difference between cells lies in their relative

fitness, and hence the probability that they are chosen for removal as specified by the death-

birth process.

We define the time of clinical detection of cancer to be the earliest time at which the pro-

portion of cells with at least Nm advantageous mutations exceeds a specified threshold δ. This

reflects the time taken to reach a small, but clinically detectable, proportion of cancer cells that

are capable of initiating and driving further tumour growth. In all simulations, we take δ = 0.05.

We evaluate the correlation of a measurement of some property of the state of the lesion sam-

pled at some time Tb with the subsequent time of clinically detectable cancer.

Measurements of the state of the lesion are performed by (i) taking a ‘biopsy’ from the

lesion, and (ii) evaluating a putative ‘biomarker assay’ on the biopsy. Three different biopsy

strategies are considered. First, we consider the whole lesion, in order to establish an upper

bound on the prognostic power of each biomarker when using maximal information about the

state of the system at a given time. Second, we sample a biopsy comprising a circular region of

cells of radius Nb lattice sites, whose centre is chosen uniformly at random such that the entire

biopsy lies on the lattice; this represents the clinical procedure of core needle sampling. Third,

we sample Ns cells uniformly at random from the lattice; this represents washing or mechanical

scraping of the lesion. In each case, we suppose that the biopsy constitutes a ‘snapshot’, and
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do not remove the sampled cells from the tissue. This simplifying assumption avoids the need

to explicitly model the tissue response to wounding. The various biomarker assays evaluated

are detailed below.

The definitions and values of all model parameters are summarized in Table 1. A MATLAB

implementation of our model and simulated biopsy analysis is provided (see Text S1).

Classical biomarkers

Proportion of cells with at least two advantageous mutations. A commonly used class

of biomarkers measure the proportion of cells in a biopsy staining positive for a given receptor.

Examples include the estrogen receptor (ER), progesterone receptor (PR) and HER2/neu am-

plification staining commonly performed for malignancies of the breast [31–33]. Such assays

are cost-effective and relatively simple to implement.

Here, we use the cutoff of a cell having acquired at least Np advantageous mutations to be

representative of a cellular change that is observable in this manner. The measure is calculated

simply by the number of cells having at least Np advantageous mutations, divided by the total

number of cells sampled. We present results based on Np = 2 throughout the text, thus using

the shorthand Np > 1 to refer to this biomarker. We discuss the robustness of these results to

the chosen value of Np = 2 in the Results section.

Mitotic proportion. Proliferative cells are usually identified in tissue sections or cytology

specimens using immunohistochemistry for cell-cycle associated proteins, foremost Ki-67 [34].

These proteins have a natural half-life over which a proliferative cell can be identified. To rep-

resent this measure in our computational model, we defined a time window tw over which a

proliferative marker can be detected by staining. The mitotic proportion at a given time t is then

defined as the number of cells that have undergone mitosis at least once in the time interval

(t− tw, t], divided by the number of cells in the lattice, N .
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Measures of heterogeneity

Shannon index. The Shannon index H measures diversity among a population comprising

different types [35]. For a population of K distinct types, each comprising a proportion pk of the

population, the Shannon index is defined as

H = −
K
∑

k=1

pk log pk. (2)

To calculate H we define pk such that each distinct triplet of advantageous, neutral and dele-

terious mutations is associated with a distinct clone within the model, and pk represents the

proportion of cells in this clone.

Gini-Simpson index. Another established measure of diversity is the Simpson index [36]. To

ensure that a higher value corresponds to greater diversity, we choose to use a transformation

of this index called the Gini-Simpson index, S, which is defined as follows [37]. For a population

of K distinct types, each comprising proportion pk of the population, we have

S = 1−

K
∑

k=1

p2k. (3)

This index may be thought of as the probability that two randomly chosen members from the

population are of different types. As the index decreases towards the minimum of 0, the even-

ness of the distribution of the population over the various types becomes increasingly skewed

toward one type.

Moran’s I. Moran’s I is a measure of global spatial autocorrelation which computes a weighted

statistical average of the deviation between data points in a set, weighted by their spatial dis-

tance [38]. Moran’s I takes values in [−1, 1]. For a given set of values {X1 . . . XN}, with mean
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X, and spatial weight matrix (wij) ∈ R
N×N
+ , Moran’s I is defined as

I =

(

N
∑N

i=1

∑N
j=1

wij

)(

∑N
i=1

∑N
j=1

wij(Xi −X)(Xj −X)
∑N

i=1
(Xi −X)2

)

. (4)

We take Xi to be the sum of the numbers of advantageous, neutral and deleterious mutations

accumulated by the cell at lattice site i. The spatial weight matrix (wij) can be specified in

several ways; here, we define

wij =
1

1 + dij
, (5)

where dij is the Euclidean distance between the lattice sites indexed by i, j ∈ {1, . . . , N}. With

this functional form, neighbouring points that are closer together are weighted more heavily,

thus contributing more to the measure.

Geary’s C. Geary’s C, like Moran’s I, is a global measure of spatial autocorrelation. Geary’s

C takes values in [0, 2], with higher values indicating less spatial autocorrelation, and lower

values indicating a greater degree of spatial autocorrelation [39]. While Moran’s I is a more

global measurement and sensitive to extreme observations, Geary’s C is more sensitive to

differences in local neighbourhoods. For a given set of values {X1 . . . XN}, with mean X, and

a given spatial weight matrix (wij) ∈ R
N×N
+ , Geary’s C is defined as

C =

(

N − 1

2
∑N

i=1

∑N
j=1

wij

)(

∑N
i=1

∑N
j=1

wij(Xi −Xj)
2

∑N
i=1

(Xi −X)2

)

. (6)

Here, our definitions of Xi and (wij) follow those given for Moran’s I.

Index of positive proliferation (IPP). We next define a novel measure, termed the index of

positive proliferation (IPP), that is a spatially weighted average of the location of mitotic cells

and the number of advantageous mutations accrued by nearby cells. The biological motivation
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for this measure is to detect the recent clonal expansions of advantageous mutants, in order

to quantify evidence of recent progression towards cancer: we might expect the concentration

of proliferation in regions of high numbers of advantageous mutations to correlate with a poor

prognosis.

We define the IPP as follows. Consider a population of N cells, with the individual cells

labelled as X1, . . . , XN . Suppose that a subset of these cells, Y1, . . . , YQ, are proliferating at

a given time. We define cellular contributions f1, . . . , fM ∈ R
+ as values such that a higher

contribution corresponds to a cellular state genetically closer to that of cancer. Clinically, these

cellular contributions correspond to cells that are genotypically closer to the end state of cancer,

and represent either cutoff points that may be detected by gene sequencing, or immunohisto-

chemical changes. For each cell i with mi advantageous mutations, we define the cellular

contribution fi as

fi =

⎧

⎪

⎨

⎪

⎩

0 : mi < Nm − 2,

1 : mi ≥ Nm − 2,
(7)

Thus, for a given spatial weight matrix (wij) ∈ R
N×N we define the IPP as

IPP =

∑Q
i=1

∑N
j=1

wijfj
∑Q

i=1

∑N
j=1

wij

. (8)

We define the weights wij as in equation (5), where dij is the Euclidean distance between cell

Xi and proliferating cell Yj , such that Xi �= Yj . In the case that Xi = Yj , we take wij = 0.

Index of non-negative proliferation (INP). To model the case where it may not be feasi-

ble to observe an accumulation of advantageous mutations only, in the sense that mutations

accumulated may be neutral as well, we define an additional measure termed the index of non-

negative proliferation (INP). This measure is defined analogously to the IPP, but with the cellular
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contributions chosen such that

fi =

⎧

⎪

⎨

⎪

⎩

0 : mi + ni <
⌊

Nm

2

⌋

,

1 : mi + ni ≥
⌊

Nm

2

⌋

,
(9)

where ⌊·⌋ denotes the integer part. Here, the sum of the number of advantageous and neutral

mutations is considered to be the observable quantity, simulating a situation in which the ob-

servable information encapsulates and may skew the perception of the true genotypic state of

the system. The cutoff value of Nm/2 was chosen in an ad hoc manner based on preliminary

simulations; we note that refinement of this parameter may be necessary for effective use of

the INP in future studies.

Statistical methods

The statistical association (correlation with the time of clinically detectable cancer) of each

sampling strategy and putative biomarker assay was evaluated using Kaplan-Meier curves and

univariate Cox Proportional Hazards models as implemented in the R statistical computing

language. For all presented p-values, the significance cutoff is taken as 0.05.

Data used for the Cox regression model were all generated by the stochastic simulations

of the computational model. That is, the event times were defined as the simulation times at

which 5% of the cells of the lattice were defined as cancerous, and the predictors of this time

were taken to be the biomarker index values computed at an earlier simulation time. The cohort

size is therefore the number of such simulations which were carried out, which was 103. There

was no censoring required, as all simulations were run to completion of endpoint as defined

previously.
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Results

We consider a spatial model of the evolution of malignancy in a precancerous lesion. In our

model, cells occupy a two-dimensional lattice of size N . Time is treated as a continuous vari-

able in the model, but is simulated as a succession of discrete time steps, where the length of

each time step is a function of the overall fitness of the population and a stochastic factor, as

per the Gillespie Algorithm [30]. At each time step, a cell is chosen at random to die and is

removed from the lattice with a probability that is inversely proportional to its cellular fitness, a

positive real number that is initially equal to 1 for non-mutated cells and may be altered by muta-

tion. When a cell dies, one of its neighbours is then chosen uniformly at random to divide, with

one of the daughter cells occupying the free lattice site and each daughter cell independently

acquiring a new mutation with probability µ. We refer to mutations as advantageous, deleteri-

ous or neutral, according to whether they increase, decrease, or leave fitness unchanged, with

each type of mutation assumed to be equally likely.

Starting from a lattice occupied entirely by non-mutant cells, we consider the outcome of

each simulation to be the time taken for the proportion of cells with at least Nm advantageous

mutations to exceed a threshold δ. This time is defined as the time of clinically detectable

cancer. We choose a value of δ corresponding to a proportion of cancer cells that is sufficiently

large to be clinically detectable, and to initiate subsequent rapid growth.

A representative snapshot of a model simulation is shown in Fig. 1A. To simulate clinical

sampling, at a predetermined time Tb we take a virtual biopsy from the lesion (Fig. 1B), from

which we compute various biomarkers and assess their prognostic value in determining the time

of clinically detectable cancer (see Methods). The model exhibits successive clonal sweeps of

mutations (Fig. 1C).
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Assessment of candidate biomarkers and tissue sampling schemes

Counting driver mutations. We considered the correlation between the proportion of cells

bearing at least Np advantageous mutations (so-called driver mutations) and the time of clin-

ically detectable cancer. The closer the cutoff Np is to the number of mutations required for

cancer, Nm, the more correlated this measure became with the time of clinically detectable

cancer (Table S1). These results confirm the intuition that it is easier to predict the occurrence

of a cancer at a time point close to when the cancer will occur (e.g. at the ‘end’ of the evo-

lutionary process, when only a few additional driver mutations are required) than early in the

cancer’s development, when many additional mutations are required.

Small needle biopsies. We computed the prognostic value of various candidate biomarker

‘assays’ performed on a single biopsy of radius Nb = 20 taken at time Tb post simulation initia-

tion. Neither the proportion of cells with at least one advantageous mutation nor the proliferative

fraction were significant predictors of prognosis (Table 2). In contrast, measures of clonal di-

versity (Shannon and Gini-Simpson index) were both highly significant predictors of prognosis

(p < 10−4 in both cases). Of the spatial autocorrelation measures, Moran’s I (p = 0.02) but not

Geary’s C (p = 0.29) had prognostic value.

Random sampling. Random sampling of cells from the lesion represents a tissue collection

method such as an endoscopic brush or a cellular wash. We took a random sample of 103 cells,

corresponding to 10% of the total lesion. As for small biopsy sampling, the proportion of mitotic

cells within the sample was a poor prognostic marker (p = 0.23; Fig. 2A), but interestingly the

proportion of cells with more than one advantageous mutation became a significant predictor

(p = 0.01). This may be due to the fact that within a sparse sample of the lesion, the number of

mutant cells is a proxy for active on-going evolution: either via the large scale clonal expansion

of a single clone, or multiple foci of independent clones. Increased clonal diversity remained a

highly significant predictor of an early time of clinically detectable cancer (p < 10−4 for both the
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Shannon index (Fig. 2B) and Gini-Simpson index (Fig. 2C).

Whole lesion sampling. In the case of whole-lesion sampling, all information on the current

state of the virtual tumour is available in the biomarker assay, and hence we expected to see

maximum predictive value of our putative biomarkers. In this case, the proportion of cells with

at least one advantageous mutation remained a poor prognosticator (p = 0.29), whereas the

proportion of proliferative cells became a significant predictor (p = 0.02) (see Table 2).

The clonal diversity measures remained highly significant prognosticators (p < 10−4 in both

cases), underlining their robustness as prognostic measures. Higher clonal diversity was as-

sociated with faster progression to cancer (Fig. 3). The prognostic value of the spatial auto-

correlation measure Moran’s I was significantly improved when the whole grid was sampled

(p < 10−4), but Geary’s C remained non-correlated.

Together these data highlight the high prognostic value of diversity measures, and their

robustness to the details of tissue sampling method used.

Novel prognostic measures

We next sought to determine whether novel statistics calculated on the state of the lesion could

provide additional prognostic value. We defined two new statistics, the index of positive pro-

liferation (IPP) and the index of non-negative proliferation (INP), which describe the spatial

autocorrelation between proliferating cells with advantageous mutations, or proliferating cells

with non-deleterious mutations, respectively (see Methods). Since these statistics tie together

measures of both the mutation burden and proliferative index, we consider them to be measures

of the degree of ‘evolutionary activity’.

In both small biopsy samples and whole-lesion analysis, the IPP was a highly prognostic

statistic (Table 2), with larger values of the statistic accurately predicting shorter times to can-

cer (Fig. 3). The INP was prognostic on whole-lesion analysis (Fig. 3), but not on targeted

biopsies (Table 2). The difference in the prognostic value between IPP and INP is suggestive
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of the particular importance of assaying ‘distance’ travelled along the evolutionary trajectory

towards cancer: the IPP is sensitive to this distance as it only measures advantageous mu-

tations, whereas the INP is potentially confounded by non-adaptive mutations. The inherent

issues associated with the identification of advantageous mutations consequently potentially

limit the utility of these novel measures.

To assess the predictability of each putative biomarker [40] we calculated the area under

the receiver operating characteristic (ROC) curves (Fig. 4) as a function of the censoring time

[41]. ROC curves are the curves defined by the sensitivity and specificity of each index value

as it predicts the ‘end time’ (time of clinically detectable cancer), where a positive end time is a

time past a certain pre-defined simulation time, and the cutoff for the index value that defines

whether the index predicts if that end time is early or late, is continuously varied. The area

under these curves is 1 in the case of an index value that is perfectly predictive of an end time,

and 0.5 for random guessing as to whether the index predicts if the end time is early or late.

These curves show the IPP measure has the best predictive value of all measures considered,

and that the Shannon and Gini-Simpson diversity indices also have strong predictive value. The

lack of predictive value derived from the mitotic proportion, Geary’s C and proportion of mutant

cells was also confirmed.

Early versus late biopsy

Effective screening for cancer risk requires predicting cancer risk long before the cancer devel-

ops. We next considered how the timing of a biopsy affects its prognostic value by investigating

how the correlation coefficient between each biomarker and the subsequent time of clinically

detectable cancer varies with the time at which the biopsy is taken.

As expected, we found that biopsies collected later in the lesion’s evolution (e.g. closer to

the time of cancer development) generally had more statistical association than biopsies col-

lected earlier, and this was true irrespective of the tissue sampling method used (Fig. 5A-C).

Sampling early in the lesion’s evolution (e.g. near to the start of the simulations) had poor cor-
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relation irrespective of the putative biomarker assay used, reflecting the fact that very few muta-

tions had accumulated in the lesion at short times. Sampling at intermediate times showed dra-

matic improvements in the prognostic value of the diversity indices and IPP measure, whereas

samples taken at a variety of long times had approximately equal prognostic value or showed

slight declines relative to intermediate times. At intermediate and long times, the IPP was the

best performing prognostic measure. The mitotic proportion and proportion of cells with at least

one advantageous mutation were consistently poor predictors across the entire time course.

The effect of taking a small biopsy, as opposed to sampling the whole lesion, was to both sig-

nificantly reduce the prognostic value of all putative biomarker measures, and introduce ‘noise’

into their prognostic values (Fig. 5B). Importantly, we observed that in spite of this noise, the

correlation coefficients for the clonal heterogeneity and IPP measures were consistently high

compared to the other measures, indicating their robustness as prognostic markers. Biopsy

sampling significantly reduced the prognostic value of Moran’s I compared to whole-lesion sam-

pling, indicating how this measure is particularly confounded by tissue sampling.

On random samples (analogous to endoscopic brushings or washings), the Shannon and

Gini-Simpson indices showed good correlations with the time of clinically detectable cancer.

These diversity measures were more correlated for random samples than for circular biopsies,

despite each sample constituting similar numbers of cells (10% and 12% of the lesion, respec-

tively). This result may reflect the fact that a biopsy can potentially miss a ‘dangerous’ clone,

whereas a random sampling method is likely to obtain cells from all sizeable clones within the

lesion.

Together, these data indicate that larger samples usually provide more prognostic value

than smaller samples, and that very ‘early’ tissue samples are unlikely to contain significant

prognostic information. They also highlight again that the prognostic value of diversity mea-

sures is particularly robust to the details of tissue sampling.
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Longitudinally collected biopsies

We next examined whether combining information from serial biopsies, taken at two different

time points (t1 and t2; both strictly before cancer occurrence), provided more prognostic infor-

mation than a biopsy from a single time point. To do this, we evaluated the average of the values

of each biomarker at the times t1 and t2, and the correlation between this average and the time

of clinically detectable cancer. We then compared this correlation with that of the biomarker

value at time t2 alone. These results are shown in Fig. 6, where the x and y axes indicate

the time of the first and second biopsies, and the colours indicate the difference between the

correlation coefficient for the average of the individual biomarker values at each time points and

the correlation coefficient for the biomarker value at the second time point alone.

Including information from an early biopsy in this manner provided slight additional prognos-

tic value over-and-above the information available in the later biopsy (Fig. 6; approximately a

0.1 increase in the correlation was observed). In contrast, When information was combined by

taking the difference in biomarker values between the biopsies collected at two different time

points, the value from the later biopsy was generally more prognostic, and importantly was

more prognostic than a measure which combined information both the early and late biopsies.

Interestingly, the prognostic value of the Shannon and Gini-Simpson indices was reduced when

considering the difference in biomarker values between two time points (Fig. S4). When we

instead compared the maximal value of the biomarker across the two time points to its value

at the later time point, we found similar results to the average case, but with smaller increases

in correlation at later times; this was particularly the case for the Shannon, Gini-Simpson, IPP

and INP indices (Fig. S5).

Multiple biopsies at the same time point

A consequence of intra-tumour heterogeneity is that a single biopsy may fail to sample an im-

portant clone [42] and so cause an incorrect prognosis assignment. To address this issue, we

studied how the prognostic value of each putative biomarker was improved by taking additional
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biopsies at the same time (Tb = 50). For simplicity, after each virtual biopsy the sampled tissue

was perfectly replaced in order to avoid the complexities associated with modelling local wound

healing and tissue recovery. Further, while we did not strictly preclude biopsies from overlap-

ping, the degree of overlap between biopsies is typically minimal because of the relatively small

numbers of biopsies and small sizes of biopsy considered.

Assaying from more biopsies generally improved prognostic value, but with diminishing re-

turns for each additional biopsy (Fig. 7). For all but one of the putative biomarkers, the maxi-

mum prognostic value was achieved by taking the average biomarker value across all biopsies,

whereas measures of the spread of values (the variance or range) were generally poor prog-

nosticators. Interestingly, the maximum prognostic value for the proportion of cells with at

least two advantageous mutations was achieved by taking the minimum value across all biop-

sies; this could be because the minimum value is particularly sensitive to biopsies that contain

non-progressed cells. Together these data imply that taking more biopsies and averaging the

biomarker signal across biopsies provides additional prognostic information.

Robustness of results to choice of model

To assess the robustness of results to our model assumptions, we investigated the impact of pa-

rameter values and update rules on the statistical association of each biomarker. We observed

the same qualitative behaviour, such as diversity measures outperforming the proliferative frac-

tion in degree of correlation, irrespective of the choice of parameter values or update rule used

(see Supplementary Figs S1–S3, Supplementary Tables S1–S17 and Supplementary Text S1

for details).

To briefly summarize these results: (i) lower mutation rates decreased the correlation of

each marker with the time of clinically detectable cancer, because of the increased stochasticity

in the model introduced by a lower mutation rate; (ii) smaller biopsies were in general less

prognostic; (iii) the number of mutations required for cancer did not qualitatively change the

predictions of the model; (iv) the fitness advantage and disadvantage caused by new mutations,
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and the relative likelihood of each of the various mutation types, did not qualitatively alter the

prognostic value of the biomarkers, although diversity measures were most prognostic for the

case where there were many strongly advantageous mutations; and (v) the closer the value of

the threshold Np was to the number of mutations required for cancer, the more correlated the

proportion of cells with np ≥ Np became with the time of clinically detectable cancer.

We also analyzed the sensitivity of model results to variations in the update rules of the sys-

tem. We tested the biomarkers in a birth-driven system as opposed to a death-driven system,

and found that again, that the diversity and IPP measures remained the biomarkers most sig-

nificantly associated with the time of clinically detectable cancer. Further, we investigated the

effect of decoupling mutations and cell division. While these changes to the model did alter the

specific predictive values of the various indices (summarized in Table S14), the general pattern

of statistical association was not altered. Moreover, even in this scenario, the IPP performed

well.

Discussion

In this work we have developed a simple computational model of cancer development within

premalignant disease and used the model to evaluate the prognostic value of a range of dif-

ferent putative biomarker measurements and tissue sampling schemes. Our results show that

simply counting the proportion of cells bearing multiple advantageous mutations (proportion of

cells with ‘driver’ mutations) or the proportion of proliferating cells were universally poor pre-

dictors of the time of clinically detectable cancer, whereas measures of clonal diversity were

highly correlated with the time of clinically detectable cancer and were robust to the choice of

tissue sampling scheme. Further, we evaluated a range of different tissue sampling schemes

(single biopsy, multiple biopsies in space or time, or random sampling of a lesion). We found

that random sampling (such as via an endoscopic brush) provided more consistent prognos-

tic value than a single biopsy, likely because a single (randomly targeted) biopsy is liable to
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miss localised but ‘important’ clones. Prognostication was improved by taking multiple biopsies,

but with diminishing returns for each additional biopsy taken. Together these data provide a

rationale for the empirical evaluation of different tissue sampling schemes.

Averaging biomarker scores from two different time points did improve the predictive value

of our putative biomarkers; however, the difference in each putative biomarker’s values between

time points was less predictive than its value at the later time points. This result was somewhat

counter to our initial intuition that taking longitudinal biopsies would accurately track the ‘evo-

lutionary trajectory’ of the lesion and hence dramatically improve prognostication. This result

illustrates how our in silico approach can challenge intuition and, in so doing, provide novel

insights into biomarker development.

We developed a new statistic, termed the index of positive proliferation (IPP), that proved

to be a highly prognostic measure. The IPP is a measure of the average distance to a pro-

liferating cell that has acquired advantageous mutations. It thus combines both genetic (or

phenotypic) information with spatial (cell position) and dynamic (proliferation) information. This

integration of multiple different sources of information may account for the prognostic value of

the biomarker in our model. Empirical measurement of the IPP would be feasible if, for exam-

ple, the number of driver mutations accumulated by a cell could be quantified concomitantly

with a proliferative marker. Developments in in situ genotyping methods might facilitate such

an approach in the near future. Irrespective of the immediate feasibility of such a measure, our

development and testing of the IPP statistic within our computational model illustrates how in

silico approaches provide a powerful means to rapidly explore new potential biomarker assays.

Our computational model of cancer evolution is clearly a highly simplified description of real-

ity. For example, we modelled a simple two-dimensional sheet of epithelial cells and neglected

the important influence, and indeed co-evolution, of the supporting stroma. We assumed simple

relationships between genotype, phenotype and fitness, and also neglected to model cell-cell

interactions. Critically, we also used an abstract fitness function to define cellular phenotypes,

and in doing so neglected to describe any molecular details of cell behaviour. Adequately de-
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scribing these kinds of important biological complexities within a model is a necessary next

step for the development of in silico biomarker development platform that is of general use.

Increasing the realism of the model would improve confidence that the predicted prognostic

value of any biomarker was not an artefact of the over-simplified model, although we have

shown that our results are somewhat robust to alterations of a number of the key parameters in

our model. Incorporating additional biological realism would also facilitate the in silico testing of

the prognostic value of a full range of specific biological features; for example, the expression

of a protein that fulfils a particular biological function, such as modulating cell adhesion.

Our study demonstrates how a computational model offers a platform for the initial de-

velopment of novel prognostic biomarkers: computational models can be viewed as a high-

throughput and cost-effective screening tool with which to identify the most promising biomark-

ers for subsequent empirical testing. This work provides the rationale for constructing an in

silico biomarker development platform that would lessen the current restrictions imposed by

the sole reliance on empirical testing.
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Tables

Table 1

Parameter values used in the model.

Parameter Description Value(s)

δ Detectable fraction of cancer cells in the tissue 0.05

Nm Min. no. advantageous mutations for cancer {3, 5, 10, 15}
sp Fitness increase from a advantageous mutation {0, 0.002, 0.02, 0.2}
sd Fitness decrease from a deleterious mutation {0, 0.002, 0.02, 0.2}
µ Probability of mutation per cell division {0.01, 0.05, 0.1}
Np Min. no. advantageous mutations for positive stain {2, 3, 5, 7, 9}
tw Time over which a cell stains positive for a recent mitosis 0.01

N Number of cells in lattice 100× 100
Nb Radius of biopsy region {5, 20, 40}
Ns Number of cells taken in scraping 1000

Tb Time at which sample is taken {50, 80}
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Table 2

Summary of Cox proportional hazards models for various putative biomarker schemes,

for different tissue sampling schemes. Hazard ratios (HR75) are computed at time t = 75
for the case Nm = 10, sp = sd = 0.2, and µ = 0.1. Statistically significant values are in bold.

‘Unit change’ denotes the change in the value of each putative biomarker that increases the

associated hazard ratio by the reported factor.

Unit change HR75 95% CI p

Whole lesion

np > 1 proportion 0.05 0 (0,∞) 0.29
Mitotic proportion 0.01 0.31 (0.12, 0.81) 0.02

Shannon index 0.1 2 (1.8, 2,2) < 10−4

Gini-Simpson index 0.01 5.5 (4.2, 7.2) < 10−4

Moran’s I 0.05 3.2 (2, 5.3) < 10−4

Geary’s C 0.01 0.98 (0.92, 1) 0.43

IPP 0.01 2 (1.9,2.1) < 10−4

INP 0.01 1.3 (1.2, 1.4) < 10−4

Biopsy

np > 1 proportion 0.05 0.95 (0.86, 1.1) 0.35

Mitotic proportion 0.01 0.81 (0.58, 1.1) 0.22

Shannon index 0.2 1.3 (1.1,1.4) < 10−4

Gini-Simpson index 0.01 2.3 (1.5, 3.5) < 10−4

Moran’s I 0.1 1.4 (1.1, 1.9) 0.02

Geary’s C 0.1 0.95 (0.87,1) 0.29

IPP 0.01 1.1 (1, 1.1) < 10−4

INP 0.1 1 (0.95, 1.1) 0.57

Scraping

np > 1 proportion 0.05 < 10
−6 (0, 0.0001) 0.01

Mitotic proportion 0.01 1.2 (0.88, 1.7) 0.23

Shannon index 0.05 1.3 (1.3, 1.4) < 10−4

Gini-Simpson index 0.01 3.5 (2.8, 4.4) < 10−4

27



Figure legends

Figure 1

Depiction of the spatial simulation, a virtual biopsy, and the successive clonal sweeps.

A: Heat map of the lattice at a given point in time, with different colours representing different

numbers of positive mutations of the cells at those points. B: Depiction of the lattice subset

involved in a virtual biopsy. C: Time evolution of the proportions of cells with different num-

bers of positive mutations, showing successive clonal sweeps. Results are averaged from 200

simulations with parameter values Nm = 10, sp = sd = 0.2 for five such genotypes (for figure

clarity).

Figure 2

Prognostic value of random tissue sampling. A random sample of Ns = 103 (10% of the

lesion) cells was sampled at time Tb = 80 and the prognostic value of the mitotic proportion

(A), Shannon index (B) and Gini-Simpson index (C) on this sample was considered. Kaplan-

Meier curves are plotted for each putative biomarker assessed, and in case, the values across

the simulations were separated into upper (red), upper middle (green), lower middle (blue)

and lower (black) quartiles. Only biomarkers that did not require spatial information could be

computed for this tissue sampling method. P -values are for the generalized log-rank test.

Figure 3

Sampling the whole lesion improves the prognostic value. The prognostic value of sam-

pling the whole lattice at time Tb = 80 was assessed. Kaplan-Meier curves are plotted for the

mitotic proportion (A), Shannon index (B), Gini-Simpson index (C), Moran’s I (D), Geary’s C (E),

IPP (F) and INP (G). In each case, biomarker values across the simulations were separated

into upper (red), upper middle (green), lower middle (blue) and lower (black) quartiles. P -values

are for the generalized log-rank test.

Figure 4

Areas under ROC curves for putative biomarkers. The prognostic value of sampling a cir-

cular biopsy at time Tb = 75 was assessed by considering the area under the curve (AUC) of

receiver-operator characteristic (ROC) curves as a function of censoring time. This analysis

confirmed the time-invariant predictive value of the IPP (red line) and clonal diversity measures

(blue and green lines), and lack of predictive value derived from the mitotic proportion (black

line) and proportion of cells bearing at least one abnormality (brown line). The worse-than-

random performance of the proliferation and Geary’s C measures at short censoring times is

likely to be attributable to the stochasticity inherent in cancer development within the model:

early clonal expansions do not necessarily signify later cancer risk. Results from 1000 simu-

lations for each sampling scheme, with parameter values Nm = 10, sp = sd = 0.2, µ = 0.1,
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Nb = 20 and Ns = 103. For comparison, the black dotted line denotes an AUC = 0.5 (which

would would be achieved by a random predictor).

Figure 5

Prognostic value of early versus late biopsies. For a range of sampling times Tb, the virtual

tissue was biopsied and the correlation between putative biomarker values and the time of

clinically detectable cancer was computed. Results are shown based on sampling the whole

lesion (A), a circular biopsy (B) and random tissue sampling (C). For each sampling scheme,

1000 simulations were run with Nm = 10, sp = sd = 0.2, µ = 0.1, Nb = 20 and Ns = 103.

Figure 6

Serial biopsies provide slightly increased additional prognostic information. Heat maps

depicting the relative value of taking serial biopsies at different time points for the proportion

of cells with at least two positive mutations (A), mitotic proportion (B), Shannon index (C), Gini-

Simpson index (D), Moran’s I (E), Geary’s C (F), IPP (G) and INP (H). Positive values (warm

colours) indicate that prognostic value was improved by taking the average of biomarker value

from both time-points; negative values (cool colours) indicate that more information was avail-

able at the second time point alone than from the averaged time points. Results are shown

from 1000 simulations for each pair of time points, with Nm = 10, sp = sd = 0.2, µ = 0.1 and

Nb = 20.

Figure 7

Additional biopsies at the same time point improves prognostication with diminishing

returns. Graphs show the relationship between the correlation coefficient (between each

biomarker value and time of clinically detectable cancer) and the number of biopsies collected

at time Tb = 50, for the proportion of cells with at least two positive mutations (A), mitotic propor-

tion (B), Shannon index (C), Gini-Simpson index (D), Moran’s I (E), Geary’s C (F), IPP (G) and

INP (H). Lines denote different measures based on the multiple biopsies: average biomarker

value across biopsies (red); maximum value (green); minimum value (blue); difference between

maximum and minimum values (black); and variance in values (cyan). Results are shown from

1000 simulations for each pair of time points, with Nm = 10, sp = sd = 0.2, µ = 0.1 and Nb = 20.

29
















