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ABSTRACT
Many multiregional input–output (MRIO) databases are used to cal-
culate consumption-based accounts. Results feature in climate pol-
icy discussion on emissions reduction responsibilities; yet studies
show that outcomes produced by each database differ. This paper
compares the emissions associated with value chains from Eora,
EXIOBASE, GTAP and WIOD. Structural path analysis identifies the
largest paths in each database and the differences in common paths
are calculated. For the top 100 value chain paths that contain the
largest difference, structural path decomposition is used to identify
the contribution each part of the value chain makes towards the dif-
ference. The results identify and quantify key flows that are the cause
of difference in the databases. From these, we can conclude that key
MRIO database construction decisions, such as using the residence
or territorial principle for emissions allocation and whether energy
spends are reallocated based on physical data, are the major causes
of differences.
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1. Introduction

Understanding how to develop policy to mitigate greenhouse gas (GHG) emissions has
become difficult in an increasingly globalised world. To appreciate the role of trade in
terms of emissions, calculations involving multiregional input–output (MRIO) databases
have become the dominant and most progressive method. These databases centre on the
evaluation and manipulation of trade flows between regions and industrial sectors, using
a flowmatrix approach. For example, the flow of steel from steel production into car man-
ufacturing is associated with the CO2 consequent upon that use, allowing the full supply
chain emissions of cars to be calculated. The number and types of policy applications of
MRIO suggested by both academics and policy makers is growing exponentially. There
are a number of leading databases available and each database produces a different set
of consumption-based accounts (CBA). Each country’s difference from the multi-model
mean CBA is shown in Figure 1. However, there has been little appreciation as to why they
produce different results. Owen et al. (2014) used structural decomposition techniques to
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244 A. OWEN ET AL.

Figure 1. (Colour online) Deviation of CBA for 40 common countries in Eora, EXIOBASE, GTAP andWIOD
from the multidatabase mean.

attribute the difference in CBA calculated by the Eora (Lenzen et al., 2013), GTAP (Peters
et al., 2011) and WIOD (Dietzenbacher et al., 2013) MRIO databases to the component
parts of the environmentally extended Leontief equation. This paper delves deeper into
the investigation into the causes of model difference and the resulting effect on output, by
considering differences within individual value chains. For this study, we also include the
EXIOBASE MRIO database (Tukker et al., 2013; Wood et al., 2014).

If policy is to be developed for tackling consumption-based emissions, and this policy
addresses the goods and services consumed, then clearly understanding the reliability of
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ECONOMIC SYSTEMS RESEARCH 245

the emission estimates of groups of goods and services is paramount. One way to under-
stand the reliability is to focus on the consistency of supply chain impacts across themodels.
Hence the first aim of this paper is to use structural path analysis (SPA) to find, for each
database pairing, the paired value chains that exhibit the largest differences. For example,
the value chain that describes the emissions associated with the electricity used to make
steel that ends up in cars bought by German consumers might not be the largest path in
calculating the CBA for Germany using Eora or WIOD. However, when the size of this
particular path is compared between the two database calculations, it might have a large
difference. Once the one hundred largest path differences (PD) are calculated for every
common country, for each database pairing, the second aim is to use decomposition tech-
niques to determine which part of the value chain is responsible for the highest portion of
the difference. This technique has become known as structural path decomposition (SPD)
(Wood and Lenzen, 2009).

1.1. Structural path analysis

SPA is a technique that decomposes a consumption-based account to the sum of an infi-
nite number of production chains – sometimes called paths. Wood and Lenzen, (2003,
p. 371) describe this process ‘unravelling the Leontief inverse using its series expansion’.
The SPA technique was first described by Defourny and Thorbeck (1984) and Crama et al.
(1984). SPA can be used to find those production chains that contribute most to a particu-
lar CBA. Paths are categorised according to their length. For example, a zero-th order path
represents an industry’s direct on-site emissions arising from final demand of the product
produced by that particular industry. This could be the emissions from transport in pro-
viding a transport service. A first order path has one further step in the chain: for example
the emissions from steel production that are used to make cars for final demand. Most SPA
studies rank these chains in order of their importance. Because there are an infinite number
of paths of decreasing importance that sum to the total CBA, most authors will display the
top 20 or so chains. Writing in 2006, Peters and Hertwich state that there are very few I–O
studies that apply SPA and that hybrid LifeCycleAssessment techniques are amore popular
method employed to consider production chains. By 2016, this is still the case – SPAmeth-
ods remain relatively underexposed, particularly amongst research usingMRIO databases.

Wood and Lenzen (2003) use SPA and a 1995 I–O database for Australia to compare the
CBAof twoAustralian research institutions. Their analysis reveals a large proportion of the
two institutions’ ecological footprint impacts occurring upstream in first or second order
paths. Using the same database, Lenzen (2003) furthers this work to analyse the Australian
economy as a whole and considers CBAs calculated using energy, land, water, GHG, NOx
and SO2 emissions. Lenzen (2003) demonstrates that when considering energy and emis-
sions rather than land use, the zero-th order paths dominate the rankings. The reason for
this is that direct land use only applies to a few industrial sectors. A production chain has to
start with one of these sectors to show as having significant impact. This means that chains
will often have to be least first order to link to the land using sectors. There is significant
direct emissions use for awider proportion of industrial sectorsmeaning thatmany zero-th
order paths will be significant. The advantage of a emissions-based study is that the largest
paths will be relatively short and quick to find during the SPA procedure. Both Lenzen’s
(2003) and Peters and Hertwich’s (2006) analyses, of Australia and Norway, respectively,
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246 A. OWEN ET AL.

find that zero-th order paths involving electricity, metals, chemicals and transport services
are significant.

SPA can also be used to consider ‘sustainable chain management’. Foran et al. (2006)
explain that by identifying the all processes in the production of a product, it is possible to
decide whether to focus on improving direct onsite production processes or the indirect
contributions further along the supply chain. Foran et al.’s (2006) study was based on a
request by the Australian government to look at the Triple-Bottom-Line performance of
industry sectors.

Treloar (1997) uses SPA to investigate the embodied energy paths of the Australian res-
idential buildings sector. Based on his investigation, Treloar (1997) concludes that SPA
techniques can improve the completeness of process-based analysis of product impacts and
suggests such a hybrid technique. However, taking process-based life-cycle and combining
this with I–Odata to account for themissing informationwill result in the double-counting
of certain paths. The identification and correction of double-counted paths has been the
subject of much debate between Strømman et al. (2009), Lenzen and Crawford (2009) and
Strømman (2009). Acquaye et al. (2011) use this hybrid methodology, specifically com-
bining a UK focused two-region MRIO database with process LCA data, to consider the
upstream paths that contribute to the production of biofuels. The authors discuss how SPA
has been used in this case to identify carbon ‘hot spots’, or rather the highest carbon intesity
path of the upstream supply chain for biodiesel.

Other methodological enhancements include work by Sonis et al. (1997, p. 278) whose
block SPA technique identifies ‘paths of influence’ and can reveal the ‘finer structure of
economies’ using a macro level approach rather than the micro level of each individual
path. And, beyond the field of CBA, SPA has also been suggested by Suh (2005) and then
implemented by Lenzen (2007) to explore and understand relationships between compo-
nents of an ecosystem. Suh (2005, p. 256), however, warns that applying ideas from the field
of economics to ecology might not always be appropriate but notes that the I–O system is
an ‘efficient way of presenting . . . data for a network structure’.

1.2. Structural path decomposition

SPD was developed byWood and Lenzen (2009) as a combination of decomposition anal-
yses and SPA. Wood and Lenzen (2009) use SPD to understand changes in a production
chain between two points in time. Where decomposition analyses assign proportions of
the difference in CBA to elements in the environmentally extended Leontief input–output
equation, SPD assigns difference proportions to elements in a product’s supply chain. For
example, the largest difference in a chain between times t0 and t1 could occur in a zero-
th order path such as the onsite electricity emissions making an electricity final demand
product or a first order path, such as the emissions from livestock that are used to make
food products for final demand. In addition to identifying the chains that contribute most
to the difference, SPD identifies which part of the chain has the highest difference asso-
ciated with it. For example, in the second order path representing the livestock emissions
associated with final demand for food, the difference between this path in t0 and t1can be
shared between the three parts of the chain: the emissions intensity of livestock production;
the amount of livestock needed to make a food product; and the amount of food product
bought by final demand consumers.
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Wood and Lenzen (2009) use the logarithmic mean divisia index (LMDI) decompo-
sition technique for the SPD methodology and apply it to Australian I–O tables for 1995
and 2005.Wood and Lenzen (2009) find that between 1995 and 2005, the largest changes in
emissions production paths involved livestock and electricity. The element most responsi-
ble for difference tends to be either a change in level of domestic final demand or a change
in level of demand for export.

Since Wood and Lenzen’s (2009) initial paper, there have been very few applications of
the technique in the literature. Oshita (2012) uses SPD to look at changes in CO2 emissions
in Japanese supply chains between 1990 and 2000 and Gui et al. (2014) consider changes in
CO2 emissions in Chinese supply chains between 1992 and 2007. Both examples use SPD
to explain a change in emissions over time but rather than use the LMDI technique, both
Oshita (2012) and Gui et al. (2014) opt for polar decompositions.

Clearly, there is an opportunity for SPD techniques to be applied to different MRIO
systems rather than different time frames. The work presented in this paper may present
the first application of SPD for this use. In addition there is also an option to explore using
the Dietzenbacher and Los (D&L) (Dietzenbacher and Los, 1998) or Shapely–Sun (S–S)
(Sun, 1998) decomposition technique within the SPD calculations, which are considered
more suitable than polar decompositions (de Boer, 2009).

2. Data andmethods

As explained in the paper by Owen et al. (2014), in order to compare Eora, EXIOBASE,
GTAP and WIOD, the databases need to be the same size and have the same structure.
These means that each of the databases must be mapped on to a common classification
(CC) containing a common set of regions and sectors, presented in the same order, format
and currency. This paper adopts the same CC system, of 41 regions and 17 sectors, used in
Owen et al. (2014) and Steen-Olsen et al. (2014) and the reader is directed to these papers
for more information as to how the aggregation system was generated. This study uses
a CC that is slightly different to those described in Owen et al. (2014) and Steen-Olsen
et al. (2014) in that a symmetric input–output table (SIOT) structure is preferred to the
supply and use table (SUT) format. Finding structural paths withMRIO databases in SUTs
formats adds additional complexity to the purpose of uncovering database differences so it
was decided to convert the aggregated databases into an industry-by-industry SIOT format,
using the fixed product sales structure assumption for use in this paper. This paper chooses
to use data from the year 2007 since this is the one year common to all four databases. In
their comparison of MRIO databases, Moran and Wood (2014) use a harmonised CO2
emissions vector. For this study we take the CO2 emissions data provided by each database
supplier to allow for investigation into whether the emissions or economic data is more
responsible for difference in value chains. We calculate the largest paths in the following
databases:

• Eora CC – Eora mapped to the common classification
• EXIOBASE CC – EXIOBASE mapped to the common classification
• GTAP CC – GTAP mapped to the common classification
• WIOD CC –WIOD mapped to the common classification
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248 A. OWEN ET AL.

We then compare the same paths in the corresponding databases (based on the same
aggregations) to find the top 100 paths for each country with the largest path difference.

2.1. SPD equations used

A series expansion is used to calculate the largest paths in each database:

q =
n∑

i=1
eiyi +

n∑

i=1
ei

n∑

j=1
aijyj +

n∑

i=1
ei

n∑

k=1

aik
n∑

j=1
akjyj

+
n∑

i=1
ei

n∑

l=1

ail
n∑

k=1

alk
n∑

j=1
akjyj + . . . (1)

adapted from Wood and Lenzen (2003). q is the total consumption-based emissions, e
is the emissions intensity vector, A is the direct requirements matrix and y is the vector of
total final demand for the specific country. i, j, k and l are component sectors. A first order
path from sector i into sector j is calculated by eiaijyj. A second order path from sector i
via sector k into sector j is calculated by eiaikakjyj and so on (Peters and Hertwich, 2006).

For the SPD, rather than find the path difference associatedwith the elements from e and
A, it was thought more useful to consider that e is constructed from the emissions vector
f divided by total output x and that each element of A, aij, is the corresponding element of
the transactions element Z, zij divided by the corresponding column sum, or rather total
output element xj.

This means that zero-th, first, second and third value chains can be characterised thus:

q0th = fi · x−1
i · yi, (2)

q1st = fi · x−1
i · zij · x−1

j · yj, (3)

q2nd = fi · x−1
i · zij · x−1

j · zjk · x−1
k · yk, (4)

q3rd = fi · x−1
i · zij · x−1

j · zjk · x−1
k · zkl · x−1

l · yl. (5)

The difference can now be interpreted to consider the effect that the emissions vector
has on its own rather than being combined with the effect of total output. However, we
must be aware that decompositionswill sometimes show very large positive effects for f and
negative effects for x−1 which, in effect, cancel each other. In these cases, wemust ensure to
consider the effect of the other factors, even though their net effects are smaller. In addition
it is also easier to interpret the difference between individual elements in Z rather than in
Awhere they intrinsically linked to the remainder of the items in the column because each
item shows the proportion of the column sum.

Dietzenbacher and Los (2000) warn that decomposition analyses need to be treated
with care due to the dependency problem. A decomposition equation assumes that each
term is independent of each other term. However, the authors point out in their example
that ‘changes in intermediate input coefficient and in value added coefficient affect each
other’ (Dietzenbacher and Los, 2000, p. 4). Decomposition of consumption-based emis-
sions often requires the calculation of the emissions per unit of output. It is not appropriate
to assume that a change in emissions efficiency can occur independently of the technology
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ECONOMIC SYSTEMS RESEARCH 249

matrix used to calculate the Leontief inverse. A solution to the dependency problem is sug-
gested by Dietzenbacher and Los (2000) but most decomposition studies do not address
it. In fact, few, with the exception of Hoekstra and van der Bergh (2002) and Minx et al.
(2011), mention the issue. The equation presented above splits emissions efficiency into
the component parts f and x−1, this removes the efficiency vector from the equation This
amendment does not follow the proposed form suggested byDietzenbacher and Los (2000)
for cases with dependent determinants. And by introducing Z and x−1 as a substitute for
A, the dependency issue remains since x is directly dependent onZ. There is no simple way
of amending the terms to create independency and we highlight that the dependency issue
is problematic for all decompositions that assess changes in emissions and energy (Minx
et al., 2011).

Splitting e into the separate elements f and x−1, and splitting A into Z and x−1 means
that paths of zero-th order now contain three elements rather than two. Fourth order
paths, which can still give large emissions values, now contain eleven elements rather than
six. The D&L (Dietzenbacher and Los, 1998) structural decomposition approach, used in
Owen et al. (2014) is too complex for an eleven element comparison. The S–S (Sun, 1998)
approach, is instead used to decompose the difference in paths to each element in the value
chain equation. S–S is equivalent to the mean effect calculated by D&L but it does not pro-
vide the full range of equivalent decompositions. This means that we cannot comment on
the variation associated with the contributional effect to the difference for each term. The
general format for PD for paths of zero-th to third order value chains is shown in Equations
6–9, respectively.

PD0th = feffect + x−1
effect + yeffect, (6)

PD1st = feffect + x−1
effect + Zeffect + x−1

effect + yeffect, (7)

PD2nd = feffect + x−1
effect + Zeffect + x−1

effect + Zeffect + x−1
effect + yeffect, (8)

PD3rd = feffect + x−1
effect + Zeffect + x−1

effect + Zeffect + x−1
effect + Zeffect + x−1

effect + yeffect. (9)

For the general case x = y1y2 . . . yn, the general format for the S–S decomposition
equation is:

yieffect = x0
y0i

�yi +
∑

j �=i

x0
2y0,iy0,j

�yi�yj +
∑

j �=i�=k

x0
3y0,iy0,jy0,k

�yi�yj�yk

+ . . . + 1
n
�y1�y2 . . . �yn. (10)

3. Results

3.1. Structural path analysis

To illustrate the results produced by a SPA we first use the example of the UK value chains
from the GTAP CC and WIOD CC databases. Table 1 shows the top 20 value chains from
GTAP.

The largest path in the aggregated GTAP databases for the UK is the path represent-
ing the emissions from GBR electricity, gas and water supply that go directly to the final
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Table 1. Top 20 largest paths from the GTAP CC for the UK.

Rank MtCO2 Order Sector 1 Sector 2 %

1 69.9 0 GBR Elec, Gas and Water 11.1
2 36.1 0 GBR transport 5.7
3 18.9 1 GBR Elec, Gas and Water GBR PDEHa 3.1
4 12.5 1 GBR Elec, Gas and Water GBR Transport 2.0
5 6.4 1 GBR Transport GBR PDEH 1.0
6 5.8 1 GBR Transport GBR Transport 0.9
7 5.4 1 GBR Elec, Gas and Water GBR Food and Drink 0.9
8 5.3 1 GBR Elec, Gas and Water GBR Elec, Gas and Water 0.8
9 5.2 0 GBR Food and Drink 0.8
10 5.1 0 GBR PDEH 0.8
11 4.8 0 GBR Coke and Petrol 0.8
12 4.4 1 GBR Elec, Gas and Water GBR Business Services 0.7
13 3.9 0 ROW Transport 0.6
14 3.7 0 GBR Business Services 0.6
15 3.6 1 GBR Transport GBR Business Services 0.6
16 3.3 1 GBR Transport GBR Food and Drink 0.5
17 3.2 1 GBR Elec, Gas and Water GBR Trade 0.5
18 3.0 1 GBR Elec, Gas and Water GBR Coke and Petrol 0.5
19 2.5 0 USA Transport 0.4
20 2.4 0 ROW Coke and Petrol 0.4
Rest 369.5 58.2
aPublic Administration, Defence, Education and Health.

demand for that product. This path represents 11.1% of the total CBA for the UK. All of
the paths in the top 20 are either zero-th or first order paths. This fits with the findings
of Lenzen (2003) who suggests that for SPA using energy and emissions data, most of the
large paths are zero-th and first order. The top 20 represents 42% of the overall footprint.
Paths originating from the electricity, gas and water supply industry contribute to signifi-
cant portion of the largest paths. These sectors also featured highly in Peters andHertwich’s
(2006) SPA of Norway.

For the correspondingWIOD data, shown in Table 2, the two largest paths are the same
but the path in third place is the eighth largest in the GTAP system. Similarly the third
largest path in the GTAP data is eighth largest for WIOD. The next stage is to find the
largest differences between corresponding paths. For example, the difference between the
zero-th order path from the GBR electricity, gas and water supply in the GTAP andWIOD
systems is 2.4 MtCO2. This path is the largest in both tables, but the difference may not
be the largest. To find the largest differences, we need to look beyond the top 20 paths.
To identify the top 100 PD the top 1000 zero-th, first, second, third and fourth order paths
were found usingGTAP andWIOD.Matching path descriptions were found for each order
and the difference calculated. PD were then ranked and any outside the top 100 discarded.

The CBA for the UK as calculated by the GTAP and WIOD databases using the CC
system differs by 27.6 MtCO2, with WIOD calculating the footprint to be higher. Table 3
shows the top 20 value chain differences. The largest difference is for the path from the
emissions associated with GBR Transport to the final demand for that same sector. For this
path, GTAP calculates higher than WIOD. The second largest path is that from the emis-
sions associated with the GBR electricity, gas and water supply industry that are used for
intermediate demand for the same sector and final demand for the same sector. This path
is 14.3 MtCO2 larger in WIOD than in GTAP (hence negative in the �MtCO2 column).
Because this path is a first order path, it contains an interaction with a cell in the Zmatrix.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
L

ee
ds

] 
at

 0
6:

15
 2

0 
Ju

ne
 2

01
6 



ECONOMIC SYSTEMS RESEARCH 251

Table 2. Top 20 largest paths from the WIOD CC for the UK.

Rank MtCO2 Order Sector 1 Sector 2 Sector 3 %

1 72.3 0 GBR Elec, Gas, Water 10.9
2 20.9 0 GBR Transport 3.2
3 19.7 1 GBR Elec, Gas, Water GBR Elec, Gas, Water 3.0
4 15.5 0 GBR PDEH 2.3
5 13.0 0 ROW Coke & Petrol 2.0
6 11.2 1 GBR Transport GBR Trade 1.7
7 9.7 0 GBR Trade 1.5
8 9.5 1 GBR Elec, Gas, Water GBR PDEH 1.4
9 6.6 0 GBR Coke & Petrol 1.0
10 6.4 0 ROW Construction 1.0
11 5.7 0 GBR Metals 0.9
12 5.4 2 GBR Elec, Gas, Water GBR Elec, Gas, Water GBR Elec, Gas,

Water
0.8

13 4.7 1 GBR Coke & Petrol GBR PDEH 0.7
14 4.5 1 GBR Transport GBR PDEH 0.7
15 4.4 1 GBR Elec, Gas, Water GBR Trade 0.7
16 3.9 0 ROWManufacturing 0.6
17 3.5 1 GBR Transport GBR Transport 0.5
18 3.4 0 GBR Food & Drink 0.5
19 2.6 2 GBR Elec, Gas, Water GBR Elec, Gas, Water GBR PDEH 0.4
20 2.5 0 GBR Agriculture 0.4
Rest 375.9 56.7

Table 3. Top 20 PD for the UK from GTAP CC and WIOD CC.

Rank �MtCO2 Order Sector 1 Sector 2 Sector 3

1 15.3 0 GBR Transport
2 −14.3 1 GBR Elec, Gas, Water GBR Elec, Gas, Water
3 −10.6 0 ROW Coke & Petrol
4 −10.3 0 GBR PDEH
5 10.1 1 GBR Elec, Gas, Water GBR PDEH
6 −8.3 0 GBR Trade
7 −4.9 2 GBR Elec, Gas, Water GBR Elec, Gas, Water GBR Elec, Gas, Water
8 −4.7 0 GBR Construction
9 −4.4 0 GBR Metals
10 4.0 1 GBR Elec, Gas, Water GBR Food and Drink
11 −4.0 1 ROW Coke and Petrol GBR PDEH
12 3.6 0 ROW Transport
13 −3.4 0 ROWManufacturing
14 2.7 1 GBR Transport GBR Food and Drink
15 2.4 1 GBR Elec, Gas, Water GBR Business
16 −2.4 0 GBR Elec, Gas, Water
17 2.3 1 GBR Transport GBR Transport
18 −2.3 0 GBR Agriculture
19 −2.3 1 GBR Mining GBR Elec, Gas, Water
20 2.0 1 GBR Elec, Gas, Water GBR Coke and Petrol

In addition, since this path difference is larger than the path difference associated with
the zero-th order path from GBR electricity, gas and water supply (ranked number 16 in
Table 3), one would assume that it is data from the transactions matrix causing difference.
The total 27.6MtCO2 difference betweenGTAP andWIOD is the sum of thousands of PD,
both positive and negative.

The next stage is to find out which element in the series expansion equation, used to
calculate the size of a value chain, is responsible for the majority of the difference in paths
and to calculate the percentage contribution each element makes to the overall difference.
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3.2. Structural path decomposition

Table 4 shows the elements in the emissions vector f, the inverse output vector x−1, the
transactions matrix Z and the final demand vector y from GTAP and WIOD that make
up the paths shown in Table 3. As Table 3 shows, the path with the largest difference
between GTAP and WIOD is the value chain of emissions for transport that go to make
a final demand of the same product. Table 4 shows that the industrial emissions associ-
ated with the UK transport sector are 131.4 MtCO2 in GTAP and 91.9 MtCO2 in WIOD.
The inverse output values are 3.35× 10−6 and 4.27× 10−6. Final demand of UK trans-
port by UK consumers is 82,228 million US dollars (USD) in GTAP and 53,326 USD in
WIOD. Each of the f, x−1 and y elements differ between the two databases, but which
element contributes the most to the path difference of 15.3 MtCO2? From Table 3, we
suspected that the second largest path difference might have something to do with the
differences in the Zmatrix. Table 4 shows that there is a large difference between the value
from GTAP’s Zmatrix (6994) and the value fromWIOD’s (46,163). But again, how much
of the overall difference can be explain by this? SPD is used to calculate the contribu-
tion each element in the path makes towards this difference and the results are shown in
Table 5.

As expected, the second row of Table 5 reveals that the element that contributes most
to the path difference is the element in the transactions matrix Z. Each element can either
contribute positively to the difference – meaning that using the GTAP element rather than
the WIOD element makes the difference positive, or negatively – meaning that using the
GTAP element rather than the WIOD element makes the difference negative. Both Z and
y, in this case, contribute towards the negative difference, whereas the inverse output has a
positive effect. The emissions vector fmakes little difference in this case. The overall differ-
ence of−14.3MtCO2 is the sumof the positive and negative differences and is therefore the
net difference between the paths. The percentage values in each row calculate the influence
each element has on the gross difference. The first row of Table 5 is the path representing
UK transport emissions in transport products and here the difference is positive, meaning
that GTAP’s path is higher than WIOD and the majority of the difference (41%) is due to
the final demand element in GTAP being larger than the element in WIOD.

3.3. Global results

The UK case study was used to explain how results were generated and to give an example
of how to interpret the findings. This study has calculated the structural paths for the 40
common countries from Eora CC, EXIOBASE CC, GTAP CC and WIOD CC.

Table 6 summarises the characteristics of the 100 largest paths from each database. The
sum of the largest 100 paths is largest in Eora and a greater proportion of the total is made
up of very large (>500MtCO2) paths in the Eora database. In each database, zero-th order
paths make up the majority of the total and paths originating from the USA contribute to
just under half of the sum of the largest 100 paths. There is some disagreement in the pro-
portion of paths originating in different industrial sectors. Eora and GTAP show 26% and
22% of paths originating in the transport sector, where as EXIOBASE andWIOD estimate
8% and 7%. Eora reports a lower proportion of paths originating in the electricity, gas and
water sector and a larger proportion in the construction sector.
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Table 4. Elements in the top 20 PD.

GTAP WIOD

Rank f x−1 Z x−1 Z x−1 y f x−1 Z x−1 Z x−1 y

1 131.4 3.35E−6 82,228 91,871 4.27E−6 53,326
2 201.0 1.09E−5 6,994 1.09E−5 31,883 180,881 5.89E−6 46,163 5.89E−6 67,862
3 582.8 8.13E−7 5,075 974,971 1.33E−6 10,028
4 6.4 9.93E−7 810,089 20,297 9.07E−7 840,407
5 201.0 1.09E−5 11,139 9.93E−7 810,089 180,881 5.89E−6 11,716 9.07E−7 840,407
6 1.8 1.94E−6 418,517 15,466 140E−6 447,826
7 201.0 1.09E−6 6.994 1.09E−5 6,994 1.09E−5 31,883 180,881 5.89E−6 46,163 5.89E−6 46,163 5.89E−6 67,862
8 2.8 2.55E−6 244,393 10,438 2.58E−6 239,438
9 9.1 8.26E−6 17,387 28,772 1.11E−5 17,807
10 201.0 1.09E−5 3583 5.35E−6 128,663 180,881 5.89E−6 3,506 7.42E−6 50,191
11 582,8 8.13E−7 1850 9.93E−7 810,089 974,971 1.33E−6 4,745 9.07E−7 840,407
12 949.1 1.07E−6 3877 758,498 1.29E−6 300
13 27.8 7.42E−6 2354 158,643 9.56E−6 2575
14 131.4 3.35E−6 11,003 5.35E−6 128,663 91,871 4.27E−6 4,072 7.42E−6 50,191
15 201.0 1.09E−5 6530 8.47E−7 366,039 180,881 5.89E−6 5,227 7.23E−7 495,003
16 201.0 1.09E−5 31,883 180,881 5.89E−6 67,862
17 131.4 3.35E−6 47,889 3.35E−6 82,228 91,971 4.57E−6 38,755 4.27E−6 53,326
18 1,224 3.10E−5 5802 5,738 2.00E−5 21,718
19 6,897 1.67E−5 2588 1.09E−5 31,883 22,185 1.14E−5 23,273 5.89E−6 67,862
20 201.0 1.09E−5 9279 3.62E−6 10,850 180,881 5.89E−6 7,394 4.65E−6 28,741
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Table 5. SPDA results for UK GTAP and WIOD largest PD.

Rank f effect x−1 effect Z effect x−1 effect Z effect x−1 effect y effect Diff MtCO2

1 10.1 −7.1 12.2 15.3
34% 24% 41%

2 1.7 10.3 −25.3 10.3 −11.3 −14.3
3% 17% 43% 17% 19%

3 −3.3 −3.2 −4.2 −10.6
31% 30% 40%

4 −10.9 0.9 −0.4 −10.3
89% 8% 3%

5 1.5 8.6 −0.7 1.3 −0.5 10.1
12% 68% 6% 10% 4%

6 −9.9 2.0 −0.4 −8.3
80% 16% 3%

7 0.4 2.4 −5.0 2.4 −5.0 2.4 −2.4 −4.9
2% 12% 25% 12% 25% 12% 12%

8 −4.7 −0.0 0.1 −4.7
97% 1% 2%

9 −3.4 −0.9 −0.1 −4.4
77% 22% 2%

10 0.3 1.9 0.1 −1.1 2.8 4.0
6% 31% 1% 18% 45%

11 −1.1 −1.1 −1.9 0.2 −0.1 −4.0
25% 24% 44% 5% 2%

12 0.5 −0.4 3.6 3.6
10% 9% 81%

13 −2.7 −0.5 −0.2 −3.4
80% 15% 5%

14 0.6 −0.5 1.6 −0.6 1.6 2.7
13% 10% 33% 13% 32%

15 0.3 1.9 0.7 0.5 −1.0 2.4
8% 43% 16% 11% 22%

16 8.1 47.5 −58.0 −2.4
7% 42% 51%

17 1.7 −1.2 1.0 −1.2 2.0 2.3
24% 17% 14% 17% 29%

18 −1.5 0.6 −1.3 −2.3
44% 17% 39%

19 −1.1 0.5 −1.7 0.8 −0.8 −2.3
23% 10% 35% 17% 16%

20 0.2 1.1 0.4 −0.5 0.7 2.0
7% 42% 15% 17% 23%

Next we calculate the PD for the six database pairings:

• Eora CC vs. EXIOBASE CC
• Eora CC vs. GTAP CC
• Eora CC vs. WIOD CC
• EXIOBASE CC vs. GTAP CC
• EXIOBASE CC vs. WIOD CC
• GTAP CC vs. WIOD CC

This paper summarises the results by means of a series of questions:

• Is one database consistently calculating the larger of the paths when two databases are
compared?

• What is the frequency distribution by size of path difference?
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Table 6. Characteristics of the 100 largest paths in each MRIO database.

Characteristic Eora EXIOBASE GTAP WIOD

Sum of largest 100 paths
(MtCO2)

8803 6462 6313 6107
Sum of largest 100
paths (MtCO2)

8803 6462 6313

Sum of paths by size (MtCO2)
500 < x 3596 (41%) 1104 (17%) 812 (13%) 1115 (18%)
100 < x ≤ 500 1706 (19%) 2256 (35%) 2076 (33%) 1656 (27%)
50 < x ≤ 100 1517 (17%) 903 (14%) 1332 (21%) 1168 (19%)
20 < x ≤ 50 1808 (21%) 2048 (32%) 1799 (28%) 1961 (32%)
x ≤ 20 176 (2%) 150 (2%) 294 (5%) 206 (3%)

Sum of paths by path order (MtCO2)
0 6676 (76%) 4110 (64%) 3856 (61%) 4037 (66%)
1 1932 (22%) 1955 (30%) 1990 (32%) 1722 (28%)
2 155 (2%) 353 (5%) 406 (6%) 282 (5%)
3 40 (0%) 43 (1%) 61 (1%) 67 (1%)

Sum of paths by source region (MtCO2)
USA 4119 (47%) 2984 (46%) 2569 (41%) 2753 (45%)
China 1793 (20%) 1570 (24%) 1583 (25%) 1367 (22%)
Russia 701 (8%) 289 (4%) 382 (6%) 346 (6%)
India 528 (6%) 294 (5%) 396 (6%) 332 (5%)
Other 1663 (19%) 1324 (20%) 1382 (22%) 1308 (21%)

Sum of paths by source industry (MtCO2)
Electricity, gas and water 4084 (46%) 4126 (64%) 4073 (65%) 3623 (59%)
Transport 2280 (26%) 508 (8%) 1393 (22%) 432 (7%)
Construction 1378 (16%) 147 (2%) 57 (1%) 71 (1%)
Petroleum, chemicals

and other non-metallic
minerals

259 (3%) 485 (8%) 318 (5%) 642 (11%)

Other 801 (9%) 1196 (19%) 476 (8%) 1337 (22%)

• What orders of paths contribute to the total of the top 100 PD?
• Are there particular countries that tend to produce large PD?
• Are there particular sectors that tend to produce large PD?
• Are there particular elements within the series expansion equation that tend to be

responsible for most of the difference between paths?
• In what type of paths does the emissions data contribute most to the difference?
• In what type of paths does the monetary data contribute most to the difference?

3.3.1. Is one database consistently calculating the larger of the paths when two
databases are compared?

In general, Eora estimates CBAs to be larger than the estimates from EXIOBASE, GTAP
and WIOD (see Figure 1). This finding is also demonstrated in the SPA where Eora paths
tend to be larger than their counterparts in EXIOBASE, GTAP andWIOD. Figure 2 shows
that from the sum of the top 100 PD, Eora paths contribute 72% of the gross difference
when paired with EXIOBASE, 74% when paired with GTAP and 75% when paired with
WIOD. EXIOBASE paths make up slightly more of the difference when paired with GTAP
and WIOD. GTAP and WIOD paths share the difference almost equally.

In the following questions, the difference assigned to each pairing is disaggregated to
show characteristics of the difference. Figures 3–6 display the findings and Table 3 in the
SI gives the full results
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256 A. OWEN ET AL.

Figure 2. (Colour online) Sum of top 100 PD disaggregated by the database which exhibits the larger of
the paired paths.

3.3.2. What is the frequency distribution by size of path difference?
Each database pairing contains a small number of very large PD and themajority of the PD
are between 10 and 20MtCO2.WhenEora andEXIOBASE are compared, (see Figure 3, top
left), we find two paths that differ bymore than 500MtCO2. This contributes 1,225MtCO2
(26%) to the gross difference. To put this into context, the United Nations (UNFCCC,
2007) reports global CO2 emissions to be 30,113 MtCO2. 1225 MtCO2 represents 4% of
the global total. Paths where Eora reports highest are the only ones where differences of
over 500 MtCO2 are observed. This finding is consistent with the character of the Eora
paths shown in Table 6. This also reinforces the conclusions drawn in Owen et al., 2014)
that GTAP and WIOD are more similar to each other than when either database is paired
with Eora. EXIOBASE andWIOD have the fewest very large PD with just over 50% of the
gross difference from PD of over 20 MtCO2.

3.3.3. What orders of paths contribute to the total of the top 100 PD?
In all six pairings, the majority of gross difference is from zero-th order paths as shown
in Figure 4. These are paths from the source emissions straight to final demand of the
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ECONOMIC SYSTEMS RESEARCH 257

Figure 3. (Colour online) Sum of top 100 PD by size of path difference and disaggregated by the
database which exhibits the larger of the paired paths.

same product, by-passing the interactions matrix Z. This means that the cause of the dif-
ference must lie in the emissions vector f, the output vector x and final demand vector
y. In the Eora and EXIOBASE SPD comparison, 97% of the difference is in zero-th and
first order paths. For Eora and GTAP this figure is 96%, Eora andWIOD 97%, EXIOBASE
and GTAP 91%, EXIOBASE andWIOD 95% and finally for GTAP andWIOD, 93%. Only
pairings involving GTAP have PD that are third order in the top 100. To contain a third
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258 A. OWEN ET AL.

Figure 4. (Colour online) Sum of top 100 PD by path order and disaggregated by the database which
exhibits the larger of the paired Paths.

order path in the top 100 differences means that there is likely to be large differences in the
Zmatrix.

3.3.4. Are there particular countries that tend to produce large PD?
There are no paths in the top 100 PD for any of the six pairings where the path crosses a
country border. All paths with large PD are contained within a single country. This is not
surprising since none of the 100 largest paths identified by the SPA cross borders. Figure 5
shows that for every pairing, the gross difference is made up of paths from the USA, fol-
lowed by China, India and Russia. These four nations make up 87%, 90%, 88%, 80%, 76%
and 80% of the gross difference from the top 100 PD from the Eora and EXIOBASE; Eora
and GTAP; Eora and WIOD; EXIOBASE and GTAP; EXIOBASE and WIOD; and GTAP
andWIOD SPA calculations, respectively. Interestingly, Table 6 shows that paths originat-
ing in India contribute to 5–6% of the sum of the 100 largest paths in each of the databases,
but paths originating in India contribute to 14% of the gross difference when Eora and
EXIOBASE are paired, 11% for Eora and GTAP and 15% for Eora and WIOD. Figure 5
also reveals that it is not the case that one database consistently calculates larger paths for
those originating in India indicating that the difference is unlikely to be caused by one
database simply containing larger values.
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Figure 5. (Colour online) Sum of top 100 PD by country of origin and disaggregated by the database
which exhibits the larger of the paired Paths.

3.3.5. Are there particular sectors that tend to produce large PD?
When comparing Eora and EXIOBASE, Figure 6 shows that 36% of the gross difference
is from paths which originate in the transport sector, with Eora reporting higher paths in
most cases. The electricity, gas and water sector; petroleum, chemicals and non-metallic
mineral sector; and construction sector also feature heavily in the contribution to the over-
all difference. PD involving GTAP feature the electricity, gas and water sector for a larger
proportion of the paths than the Eora and EXIOBASE or Eora and WIOD pairings. Inter-
estingly, Table 6 shows that transport is the origin sector of 7% of the 100 largest paths in
WIOD and 26% in Eora, yet for the paths with the largest difference, we find transport
originating paths contribute to 35% of the gross difference between Eora andWIOD, with
Eora always reporting the larger path. Transport does not feature inmany of the paths with
high differences when comparing EXIOBASE and WIOD. This finding is discussed later.

3.3.6. Are there particular elements within the series expansion that tend to be
responsible for most of the difference between paths?

SPD allows us to identify the contribution towards the difference that each element in the
path makes. To summarise the information we first consider which element contributes
most to the path difference. Figure 7 shows, that for the gross difference from the top 100
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Figure 6. (Colour online) Sum of top 100 PD by sector of origin and disaggregated by the database
which exhibits the larger of the paired Paths.

PD between the Eora and EXIOBASE databases, the element from the emissions vector is
the largest contributor of difference (45%). The final demand figure contributes 30% of the
differences, followed by total output (17%) and the element in the transactionmatrix (8%).
The emissions vector (f) contributes most to the difference in pairings involving Eora and
the transactions matrix (A) contributes most to the difference in pairings involving GTAP.

3.3.7. What are the characteristics of paths where the emissions or themonetary data
contributemost to the difference?

Finally, we characterise the types of paths where emissions are the causes of difference and
the types of paths where themonetary information is the cause of difference. Table 7 shows
the top 10 pathswhere the element in the emissions vectorwas the largest contributor to the
difference. The effect of each element is shown in the adjacent ‘�MtCO2’ column.We find
that the transport (TRNS), construction (CNST), trade (TRAD) andpublic administration,
education, health and defence sectors (PAEH) are where the emissions vectors disagree.
Surprisingly, the electricity, water and gas (ELGW) sector does not appear high in the list
of paths where the emissions contribution differs substantially.

The three Eora pairings show very large PD where the value chain starts with the emis-
sions from USA TRNS and China CNST. Paths starting with China CNST do not appear
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ECONOMIC SYSTEMS RESEARCH 261

Figure 7. (Colour online) Sum of top 100 PD by equation element responsible for the largest portion of
the differences the disaggregated by the database which exhibits the larger of the paired paths.

in the remaining pairings which suggests that Eora may overestimate the emissions from
this sector.

Table 8 shows the top 10 paths where either total output, the transaction matrix or
the final demand matrix were the highest contributors towards the path difference. Emis-
sions for the ELGW sector seem to align between databases, but the monetary data differs
quite staggeringly and is one of the major contributors towards PD. The three GTAP pair-
ings show very large PD where the value chain involves a transaction with the ELGW
sector. Compared to Eora, EXIOBASE and WIOD, GTAP underestimates the monetary
information for the USA ELGW sector and over estimates for China’s ELGW sector.

4. Discussion

4.1. Domestic value chains

In the top one hundred paths with the largest differences, every path from every database
pairing is entirely contained within one single country. There are no paths with very large
differences that describe imports to final or intermediate demand. Emissions in trade
account for around one quarter of global emissions (Davis and Caldeira, 2010; Peters et al.,
2012). but the ‘off-diagonal’ blocks within MRIO databases which show the imports to
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L.Table 7. Top 10 PD where the emissions element is the largest contributor to the overall difference.

Eora and
EXIOBASE �Mt CO2 Eora and GTAP �Mt CO2 Eora and WIOD �Mt CO2

EXIOBASE and
GTAP �Mt CO2

EXIOBASE and
WIOD �Mt CO2

GTAP and
WIOD �Mt CO2

1 USA TRNS 631 CHN CNST 604 USA TRNS 659 USA PAEH 175 USA PAEH −81 USA PAEH −258
2 CHN CNST 594 USA TRNS 564 CHN CNST 597 CHN METP >

CHN CNST
77 USA BSNS 66 USA TRAD −108

3 USA TRNS >

USA PAEH
301 USA PAEH 134 USA TRNS >

USA PAEH
295 USA TRAD 71 JPN ELGW 62 USA TRNS 95

4 IN CNST > IND
TRNS

116 USA TRNS >

USA PAEH
120 USA PAEH −123 USA TRNS −67 CHN METP >

CHN CNST
46 USA BSNS −56

5 CHN METP >

CHN CNST
−112 INS CNST >

IND TRNS
115 IND CNST >

IND TRNS
115 USA CNST 49 CHN PETC >

CHN CNST
−45 CHN PETC

> CHN CNST
−49

6 MEX TRNS 88 USA TRNS >

USA TRAD
80 USA TRAD −100 JPN ELGW 42 USA POST 24 USA PETC −41

7 USA TRNS >

USA TRAD
86 USA BSNS 62 CHN PETC >

CHN CNST
−98 MEX TRNS −41 CHN METP >

CHN ELGW
24 USA CNST −36

8 USA TRAD −68 IND ELGW >

IND AGRI
−57 MEX TRNS 82 FRA TRNS −38 JPN PAEH −21 DEU TRNS 36

9 IND CNST >

IND BSNS
68 USA TREQ 55 USA TRNS >

USA TRAD
73 USA POST 35 DEU ELGW −21 MEX TRNS 36

10 USA BSNS −60 USA CNST 54 IND CNST >

INS BSNS
68 USA BSNS >

USA PAEH
32 RUS PETC RUS

CNST
−19 FRA TRNS 35

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
L

ee
ds

] 
at

 0
6:

15
 2

0 
Ju

ne
 2

01
6 



EC
O
N
O
M
IC

SYSTEM
S
RESEA

RC
H

263

Table 8. Top 10 PDwhere elements from the total output vector, the transactionmatrix or the final demand vector is the largest contributor to the overall difference.

Eora and
EXIOBASE �Mt CO2 Eora and GTAP �Mt CO2

Eora and
WIOD �Mt CO2

EXIOBASE and
GTAP �Mt CO2

EXIOBASE and
WIOD �MtCO2

GTAP and
WIOD �Mt CO2

1 USA ELGW 393 USA ELGW 685 USA ELGW 382 USA ELGW 292 CHN ELGW 126 USA ELGW −303
2 IND CNST 116 CHN ELGW −180 IND CNST 112 USA TRNS >

USA PAEH
−181 RUS ELGW >

RUS PAEH
47 CHN ELGW 285

3 USA ELGW >

USA TRAD
−75 RUS ELGE −159 CHN ELGW 103 CHN ELGW −158 USA ELGW >

USA PAEH
47 USA TRNS >

USA PAEH
176

4 IND ELGW −58 IND CNST 119 IND ELGW −880 RUS ELGW −137 CHN ELGW >

CHN ELGW
47 USA ELGW >

USA PAEH
154

5 CHNELGW>

CHN ELGW
−46 USA ELGW >

USA PAEH
−166 RUS ELGW >

RUS PAEH
75 USA BSNS 121 USA ELGW >

USA TRAD
45 RUS ELGW 153

6 IND ELGW >

IND CNST
−44 IND ELGW −111 CHN ELGQ >

CHN PAEH
−40 USA ELGW >

USA PAEH
−107 USA TRAD −31 USA ELGW >

USA ELGW
89

7 CHN ELGW >

CHN PAEH
−36 USA ELGW >

USA ELGW
−89 IND ELGW >

IND CNST
−40 USA ELGW >

USA ELGW
−87 USA ELGW >

USA BSNS
29 CHN ELGW >

CHN CNST
−65

8 RoW PETC −29 US ELGW >

RUS PAEH
87 USA ELGW >

USA PAEH
37 RUS ELGW >

RUS PAEH
60 USA TRNS 28 USA ELGW >

USA TRAD
56

9 RUS ELGW >

RUS ELGW
27 USA ELGW >

USA TRAD
−86 USA ELGW >

USA TRAD
−30 USA ELGW >

USA BSNS
60 USA MINQ −24 DEU ELGW −45

10 USA PETC >

USA CNST
−26 USA PETC 64 RoW PETC −29 CHN ELGW >

CHN ELGW
54 KOR ELGW 23 CHN TRNS 43
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intermediate and final demand are often estimated based on proportionality assumptions
(Bouwmeester and Oosterhaven, 2007; Tukker et al., 2009; Erumban et al., 2011; Peters
et al., 2011). Owen et al. (2015) demonstrate that the sections of the transactions matrix
Z that represent imports align less between databases than the domestic transactions but
the authors also find that the effect of the difference in the import blocks on the overall
difference in CBA is not as significant as that of other factors such as total emissions.

Some individual country level results do show paths that contain imports as hav-
ing large differences for nations that rely on traded goods and Table 5, which shows
the largest PD for the UK using GTAP and WIOD, has several such paths. However,
the nations that have the largest emissions CBAs and the largest individual emissions
supply chains tend to be countries like the USA, China and Russia that are not overly
reliant on traded goods for intermediate and final demand. In addition, the largest
paths often involve electricity, water and gas which are more likely to be domestically
sourced.

4.2. Sources of difference from the emissions vector

Owen et al. (2014) concludes that differences in the emissions vector are a major cause of
difference between Eora and GTAP and Eora and WIOD. Similarly, Moran and Wood,
(2014) find that harmonising the emissions vector causes CBA calculated using Eora,
EXIOBASE, GTAP and WIOD to converge. This study finds that the emissions element
is the greatest cause of difference in 63 out of the top 100 paths with large differences
between Eora and WIOD, contributing to 43% of the sum of the gross difference and 61
of the top 100 paths when Eora and EXIOBASE are compared (45% of the gross difference
sum). Table 9 reveals that the total global emissions differ between databases with Eora
estimating total Global emissions to be slightly larger than EXIOBASE, GTAP andWIOD.
In particular, Eora’s industrial emissions figure is considerably larger than that used in the
other databases and the figure assigned to household direct emissions from home heating
and private transportation is lower.

In this study, the SPD calculations focus on the difference in supply chains between
the four MRIO databases and hence exclusively use the industrial emissions figures. And,
because Eora’s industrial emissions figure is so much larger than the amount used by
the other three databases, it is unsurprising that Eora’s emissions are a large source of
difference.

There are twomain reasons for databases attributing different proportions of total emis-
sions to industries rather than households: (1) due to whether the residence or territorial
principle is used for emissions allocation; and (2) the allocation of the road transport
activity to users. The residence principle is used in a national accounting framework and
states that emissions activity of a resident unit (i.e. a person or company) are allocated to

Table 9. Comparison of total global CO2 emissions in Eora, EXIOBASE, GTAP andWIOD for the year 2007.

Eora EXIOBASE GTAP WIOD

Total global emissions 2007 (MtCO2) 30,431 28,975 26,524 29,218
Industrial 28,237 24,757 22,800 25,261
Household 2194 4218 3724 3957
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the territory of residence (Genty et al., 2012). This means specifically that when calculat-
ing a national account, activities of tourists are removed and reallocated to the country
of residence of the tourist and any domestic residents’ activities abroad are added. This
affects the overall level of the transport component in each country. The territorial prin-
ciple allocates emissions to the country where they take place and are used in national
statistics. The second affect relates to the distribution of road transport (classified as an
own activity in energy balances) is allocated to industries and households undertaking the
activity (as in energy accounts). In energy balances published by each country or inter-
national institutes such as the International Energy Agency (IEA), the road transport is
represented as a single activity. Such a representation is not consistent with the indus-
try/household delineation in National Accounts, where the emission should be recorded
under the establishment/household undertaking the activity (Eurostat, 2014; UNDESA,
2015).

Both WIOD and EXIOBASE use the residence principle, and allocate road transport
to the user (Genty et al., 2012; Tukker et al., 2013) and Figure 6 shows that the transport
industry is not as significant a source of difference between EXIOBASE andWIOD as it is
in any of the other five database pairings. In addition, the EXIOBASE and WIOD column
in Table 7, which shows the top PD where the emissions vector is the most significant
cause of difference, does not a have a single path containing the transport sector. Eora does
not correct for the residence principle or road transport (Lenzen, Kanemoto, et al., 2012),
whichmay explainwhy the allocation to households and industry is different in Table 9 and
why transport appears prominently in both Table 7 and Figure 6 where Eora is compared to
EXIOBASE and WIOD. GTAP also uses a territorial treatment but allocates international
transportation to consumers not producers (Peters et al., 2011). GTAP v6 used a 50/50
(gasoline) and a 75/25 (diesel) split for fuels used in road transport to the road transport
industry and to households respectively, ignoring usage by other industries (McDougall
and Lee, 2006).

4.3. Sources of difference from themonetary data

This study finds that the majority of the difference in paths, where the monetary data is
the largest contributor towards the overall path difference, involves the electricity, gas and
water sector. Either the total output, the element from the transactions matrix (Z) or the
final demand figure for this sector is very different between the databases. In Table 10 we
show the proportion of the electricity, gas and water production mix for each country in
the CC that is supplied by that sector itself (including intermediate imports of electricity,
gas and water from abroad), taking the values from the Zmatrix for each database.

Table 10 shows that there is a large difference in the electricity, gas and water propor-
tion across the databases and this discrepancy was brought to our attention by the SPA.
There are a number of reasons as to why the monetary data could differ for this sector. The
definition of what is included as electricity, gas and water may be different for the different
databases. For example, in some countries gas manufacturing is treated as a margin sector.

In general, Eora, EXIOBASE andWIOD agree on the electricity, gas and water propor-
tions and GTAP is the outlier. However when one reads down Table 10, the proportions
vary significantly between countries. Eora, EXIOBASE and WIOD report values of over
40% for Austria, Brazil, the UK, Portugal, Slovakia and Turkey but less than 1% for Canada.
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Table 10. Proportion of the electricity, gas and water sector that electricity, gas and water supplies.

Eora_CC (%) EXIOBASE_CC (%) GTAP_CC (%) WIOD_CC (%)

1 AUS 11 25 14 18
2 AUT 63 73 31 73
3 BEL 26 24 11 24
4 BLG 20 12 27 12
5 BRA 57 0 38 46
6 CAN 0 1 11 0
7 CHN 24 47 15 43
8 CYP 7 29 9 5
9 CZE 56 30 17 30
10 DEU 22 30 14 30
11 DNK 14 2 11 7
12 ESP 27 34 9 35
13 EST 15 20 14 20
14 FIN 5 8 6 8
15 FRA 24 37 13 37
16 GBR 50 41 19 44
17 GRC 13 30 18 29
18 HUN 17 14 19 15
19 IDN 11 22 19 18
20 IND 22 37 19 32
21 IRL 42 54 8 60
22 ITA 27 24 11 24
23 JPN 13 11 11 10
24 KOR 24 25 13 29
25 LTU 16 20 18 20
26 LUX 2 39 52 29
27 LVA 21 49 14 19
28 MEX 25 25 32 26
29 MLT 7 64 10 15
30 NLD 39 36 33 37
31 POL 12 6 13 7
32 PRT 61 61 9 66
33 ROU 44 29 31 29
34 RUS 25 21 16 9
35 SVK 61 46 21 46
36 SVN 14 32 14 33
37 SWE 13 15 9 16
38 TUR 51 58 12 44
39 TWN 14 17 11 15
40 USA 0 1 21 0
41 ROW 26 28 23 19

These differences can be interpreted a number of ways – in countries such as the USA,
a single entity is likely modelled as the generator and distributor (no sale between enti-
ties), whilst in countries such as Austria, a sale between generator and distributor likely
occurs. Further complicating the issue is countries such as Australia, which are adopting
progressive classification of distribution and transmission as margin commodities in order
to separate the basic good from the delivery. Clearly it would be preferable if a consistent
definitionwas used across all countries inMRIOdatabases. AsWIODandEXIOBASE seek
to fully respect National Statistical office data, this raises the question in the short term of
whether this is the best approach, and in the long term if umbrella statistical agencies such
as Eurostat or efforts by the OECD and UN are able to further harmonise these efforts.
Finally, it can be further be noted, that whilst large intra-sectorial flows show strong differ-
ences at the path level for the reasons above, the final emissions associated with products
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going to final demand is insensitive to the value of the intra-sectorial flow (e.g. see Miller
and Blair 2009, p. 279).

Apart from the intra-sectoral flows, electricity is a sector further fraught with difficultly
when monetary data is used to describe the distribution of electricity use. Different indus-
trial sectors spend different amounts of money to receive the same KWh of electricity
because the price per KWh differs by sector. GTAP does not rely on user submitted values
in the energy rows of the I–O tables. Here physical data on energy use in Joules is taken
from the IEA, converted to monetary values and placed in the I–O tables (Peters et al.,
2011). This removes the problem of electricity prices described.

In Table 11, we calculate, from the Zmatrix, the proportion of domestic electricity, gas
andwater supply that goes to each other domestic sector, including domestic final demand.
Electricity, gas and water own use is zeroed, to highlight the proportional allocation of
impact to consumers, and exports to intermediate and final demand in other countries are
combined in the export column. Table 11 allows us to compare the proportional use by
selected countries for all four MRIO databases. If the proportional use deviates from the
multi-model mean by more than one standard deviation, the value is bold and shaded.
Table 11 shows that for large developed nations, such as Australia, Canada, Germany,
Spain, the UK and the US, GTAP allocates a greater share of electricity, gas and water to
manufacturing (MANU) and a smaller share to domestic final demand (DOM FD). This
implies that the price per unit for manufacturing sectors is lower than average and Eora,
EXIOBASE andWIOD thus underestimate the energy use in these sectors. It is not conclu-
sive whether this pattern holds for China, India and Russia because there are larger overall
differences between the four MRIO databases for these nations. Further investigation into
this re-proportioning construction method is needed before we can conclusively state that
the electricity, gas and water sector is more reliably described in GTAP.

4.4. Future construction ofMRIO databases

4.4.1. Residence or territorial principle?
This study recommends using the residence principle for allocation within the emis-
sions vector. The residence principle is the technique used within the system of national
accounts, thus this should be reflected in the data used to construct consumption accounts.
It is perhaps an indication of the intention of the MRIO database construction commu-
nity that the most recent database, EXIOBASE takes the residence principle (Usubiaga and
Acosta-Fernández, 2015).

4.4.2. Economic data as a proxy for physical flows
An interesting finding is that GTAP’s method of reallocating electricity spends to match
the energy used proportions has significant difference when comparing structural paths.
The investigations in this study have highlighted several classic issues in I–O analy-
sis. If the energy sector covers both the energy producing and distributing functions of
energy supply then this is an example of allocation uncertainty issue identified by Lenzen
(2000).

Lenzen (2000) warns of proportionality assumption uncertainties explaining that when
monetary data is used in I–O tables to represent a physical flow of commodities between
industries one assumes that a dollar spend on energy by the energy sector is the same
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Table 11. Proportion of electricity, water and gas supplied to each sector (excluding electricity, water
and gas own use) by model and for selected countries.

AGRI and MINQ (%) MANU (%) CNST (%) TRNS (%) TRAD (%) SERV (%) DOM FD (%) EXPORT (%)

AUS Eora 6 18 1 4 13 18 38 1
E’BASE 8 17 5 3 8 19 37 2
GTAP 9 32 1 3 7 17 31 1
WIOD 6 13 5 4 7 19 45 0

CAN Eora 5 21 0 1 10 19 40 5
E’BASE 5 19 0 2 7 20 37 9
GTAP 10 28 0 2 7 17 28 7
WIOD 6 20 1 1 7 19 38 8

CHN Eora 10 66 4 2 0 9 10 0
E’BASE 12 57 4 2 4 8 13 0
GTAP 8 64 1 1 3 7 16 1
WIOD 12 61 5 2 4 9 7 0

DEU Eora 2 37 0 2 7 13 34 5
E’BASE 2 24 2 2 5 13 45 9
GTAP 3 39 0 3 2 19 29 5
WIOD 2 25 1 2 5 12 42 11

ESP Eora 4 30 2 3 7 21 27 1
E’BASE 3 28 2 4 5 21 27 1
GTAP 4 33 1 2 2 22 26 3
WIOD 3 28 2 3 5 19 29 1

FRA Eora 2 21 1 1 6 18 45 5
E’BASE 2 21 1 2 6 17 47 3
GTAP 2 23 1 3 6 25 31 8
WIOD 1 21 1 2 6 17 47 4

GBR Eora 2 27 0 1 4 14 50 2
E’BASE 3 20 1 2 5 14 55 0
GTAP 2 31 1 3 2 22 38 1
WIOD 2 19 1 1 5 15 55 1

IND Eora 3 15 0 10 0 3 67 0
E’BASE 3 28 2 4 14 21 27 1
GTAP 4 33 1 2 7 22 26 3
WIOD 3 28 2 3 14 19 29 1

RUS Eora 8 39 3 7 4 27 11 1
E’BASE 2 21 1 2 6 17 47 3
GTAP 2 23 1 3 6 25 31 8
WIOD 2 21 1 2 6 17 47 4

USA Eora 2 11 0 1 4 18 64 1
E’BASE 3 20 1 2 5 14 55 0
GTAP 2 31 1 3 2 22 38 1
WIOD 2 19 1 1 5 15 55 1

amount of energy as a dollar spend by the service sector. In reality, different industries
pay different prices for energy and the treatment of margins is central here – greater har-
monisation on how transmission and distribution costs are modelled so that basic price
values of electricity generation only represent the physical flow of electricity would be
preferable. Lenzen’s suggested pragmatic solution is to replace entries with physical units.
Dietzenbacher and Stage (2006) point out, however, that this hybrid solution, where an I–O
table contains a mix of units, produces a database unsuitable for structural decomposition
analyses. GTAP’s solution of replacing spends with the monetary proportion of the actual
energy used can be shown to inadvertently avoid the allocation uncertainty issue described
above and goes some way to avoiding the proportionality assumption.
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4.5. Future use ofMRIO outcomes in policy

Whilst calculations of national CBA have been shown to be robust (Lenzen et al., 2010),
this study indicates that calculations which involve extracting smaller portions of national
level results table such as finding product footprintmay not be as accurate.Wiedmann et al.
(2011) explain that product footprintsmay become policy relevant if eco-labelling becomes
a requirement of product sustainability standards. MRIO databases are less similar at this
level of detail and the data is subject to higher levels of uncertainty due to the assumptions
made in the database construction starting to have an effect at this scale. In this study,
the most detailed level of data is explored; the value chain. Results show that there are
large variations in the size of supply chains between databases. These differences obviously
reflect the different source data used but choice of source data does not impede the recom-
mendation for usingMRIO database to assess global value chains – alternative source data
can always be supplemented in the database. The effect of different construction techniques
is more of a concern here. There is no set of agreed steps for constructing the emissions
vectors; dealing with missing data; balancing the database; and thus each MRIO database
has its own unique construction method. The findings from this study suggest that the
choice of territorial or residence principle for generating the emissions vector and the tech-
nique used in GTAP for dealing with electricity price variations have large effects on the
outcomes. It is therefore suggested that global value chain data is not yet robust enough
to be used in climate policy. Nevertheless Lenzen, Kanemoto, et al. (2012) and Lenzen,
Moran, et al. (2012) exploration of this approach shows its potential in demonstrating the
interconnectedness of consumers, producers and associated environmental impacts in an
increasingly globalised world.

4.6. Using aggregated data

The conclusions drawn are based on aggregated versions of the original MRIO databases.
Owen et al. (2015) demonstrate that the aggregated versions are reasonable representa-
tions of the original databases using a series of matrix difference statistics. One could argue
that care needs to be taken in interpreting results that are highly aggregated. However, this
study calculated SPD on paths of length 11, which represented fourth order paths. Finding
and identifying the fourth order paths from the original versions of the database would
be a processing heavy calculation due to the sizes of the original matrices. The aggregated
databases are quicker to use. Results using the aggregated versions could be seen as an ini-
tial sifting process. Now that the paths with cause for concern have been identified, the
sectors involved could be studied in more detail at the disaggregated level.

5. Conclusion

This study represents the first time that SPD has been used with a S–S decomposition
and is the first to compare PD between multiregional input–output (MRIO) databases. We
show that SPD is an important technique for highlighting and explaining differences in the
global value chains produced byMRIO databases in the calculation of consumption-based
accounts. The work expands upon the findings from Owen et al. (2014) by including the
EXIOBASE MRIO database and allowing consideration of difference at the sector level.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
L

ee
ds

] 
at

 0
6:

15
 2

0 
Ju

ne
 2

01
6 



270 A. OWEN ET AL.

The findings presented in this paper will be of great interest to constructors of MRIO
databases since they help to explain why MRIO database outcomes differ. The findings
also point to key areas where harmonisation of source data and construction techniques
could bring about convergence of results. For example, we find that sources of difference
can be traced to the different emissions source data used, as well as choice of construction
techniques, such as using the residence principle rather than the territorial for emissions
allocation and redistributing energy spends based on physical data. This work should also
be of interest to the users of MRIO database outcomes since it highlights at which scales
results are most consistent. For example, national level consumption-based accounts are
more robust than global value chain information.

We recommend that this work be extended to include future MRIO systems and to
consider data from different years.
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