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T cell and reticular network co-dependence in HIV infection

Graham M. Donovan∗†and Grant Lythe‡

4th February 2016

Abstract

Fibroblastic reticular cells (FRC) are arranged on a network in the T cell zone of lymph nodes,
forming a scaffold for T cell migration, and providing survival factors, especially interleukin-7 (IL-
7). Conversely, CD4+ T cells are the major producers of lymphotoxin-β (LT-β), necessary for the
construction and maintenance of the FRC network. This interdependence creates the possibility
of a vicious cycle, perpetuating loss of both FRC and T cells. Furthermore, evidence that HIV
infection is responsible for collagenation of the network suggests that long term loss of network
function might be responsible for the attenuated recovery in T cell count seen in HIV patients
undergoing antiretroviral therapy (ART). We present computational and mathematical models of
this interaction mechanism and subsequent naive CD4+ T-cell depletion in which (1) collagen
deposition impedes access of naive T cells to IL-7 on the FRC and loss of IL-7 production by
loss of FRC network itself, leading to the depletion of naive T cells through increased apoptosis;
and (2) depletion of naive T cells as the source of LT-β on which the FRC depend for survival,
leads to loss of the network, thereby amplifying and perpetuating the cycle of depletion of both
naive T cells and stromal cells. Our computational model explicitly includes an FRC network and
its cytokine exchange with a heterogeneous T-cell population. We also derive lumped models, in
terms of partial differential equations and reduced to ordinary differential equations, that provide
additional insight into the mechanisms at work. The central conclusions are that 1) damage to
the reticular network, caused by HIV infection, is a plausible mechanism for attenuated recovery
post-ART; 2) within this, the production of T cell survival factors by FRCs may be the key rate-
limiting step; and 3) the methods of model reduction and analysis presented are useful for both
immunological studies and other contexts in which agent-based models are severely limited by
computational cost.

1 Introduction

Our bodies maintain populations of T cells, ready to protect us against invading infections [1]. The
survival of T cells relies on the cytokine interleukin-7 (IL-7), that binds to IL-7 receptors on cell
surfaces [2–8]. The task of recognition of pathogens and activation of the adaptive immune response is
carried out by the T-cell receptor, whose ligands are peptides, associated with major histocompatibility
complex (MHC) molecules, on the surface of antigen-presenting cells. The T-cell zones of lymph nodes
(LN), where the encounters between T cells and antigen-presenting cells that initiate immune responses
occur [9, 10], is also the site where T-cells access the IL-7 resource they need to survive in the absence
of infection. One subset of lymph node stromal cells, the fibroblastic reticular cells in the T-cell
zone, produce IL-7 [11–16]. Within a T-cell population, IL-7 receptor expression varies from cell to
cell; those with higher expression are believed to be more likely to divide [17, 18]. There appear to be
altruistic mechanisms at work in CD4+ and CD8+ T-cell populations: by downregulating IL-7 receptor
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expression in response to IL-7, T cells that have already received survival signals do not outcompete
unsignalled T cells for remaining IL-7 [2, 17].

The reticular network (RN) in the T-cell zones of lymph nodes is a system of collagen fibres and
extra-cellular matrix wrapped by FRCs [19–22] that provides a scaffold for entry and movement of T
cells and for their encounters with dendritic cells [14, 23–25], and a conduit for soluble antigen [26].
The type of random motion exhibited by T-cells [27–31], and two-photon imaging observations when
both T cells and stromal cells are visible, are consistent with the idea that T cells crawl along the
network, changing direction when they arrive an a vertex connecting edges of the network [32]. FRCs
secrete IL-7 and, in return, transiting T cells supply the FRCs of the RN with lymphotoxin-β (LT-β).
HIV infection [33–36] disrupts this homeostasis in two ways: 1) increased death rate of T cells (direct
killing), and 2) damage to the RN via collagenation, which disrupts cytokine exchange.

Loss of the RN in lymphoid tissues during HIV-1 infection has been shown to impair the survival
of naive T cells and limit immune reconstitution after antiretroviral therapy [37, 38]. CD4+ T-cell
depletion resulted in FRC loss in primates, caused by decreased LT-β mainly produced by the CD4+

T cells [39, 40]. These findings led to a hypothesis in which loss of T cell-derived LT-β during HIV-1
infection would lead to loss of RN, which in turn would deplete primarily naive T cells: a vicious cycle
perpetuating loss of both FRCs and T cells. The vicious cycle is “closed” because the loss of naive
CD4+ T cells through collagen-denied access to IL-7 would be the cause of the loss of lymphotoxin
and the FRC network that compounds and perpetuates the loss of primarily naive CD4+ T cells [39].

Here we develop and analyze models of these cell populations and their interaction via cytokine
exchange to explore the plausibility of the experimental hypothesis. Our models are based on the
central hypothesis that T cells and FRCs of the RN are mutually dependent via the exchange of
cytokines. We simplify by only considering the exchange of IL-7 and LT-β, although other molecules
have roles to play, and by considering only one representative lymph node, although there are many.
Our cell-based computational model explicitly includes heterogeneity within cell populations, assigning
an IL-7 level to each cell. When in the lymph node, each T cell moves along the RN that is made up
of FRCs. We use our models to explore the hypothesis that RN collagenation, due to HIV infection, is
responsible for the attenuated recovery of T cell counts in HIV patients given (advanced) antiretroviral
therapy ((A)ART); that is, the observed partial recovery reflects the loss of overall system capacity
due to collagenation or loss of the RN, which is either permanent, or recovers on a longer timescale.

We devise a cell-level representation of T cells, FRCs, and their interactions, based on the ex-
perimental hypotheses laid out in the introduction. We use a T cell movement model in which the
network is explicitly constructed and individual cells move on it, first developed in [41] and shown to
be compatible with existing in vivo movement data. The main features of the model are

• IL-7 secretion by FRCs, and collection by migrating T cells
• LT-β secretion by T cells, and deposition onto FRCs
• T cell trafficking between the LN and a bulk periphery
• T cell apoptosis and reproduction (IL-7 dependent)
• FRC apoptosis (LT-β dependent)
• Collagenation of the RN in HIV-infected individuals.
• Direct killing of T cells in HIV-infected individuals.
The combination of large numbers of cells, and long timescales of interest, mean that solutions of

the agent-based model are computationally intensive. To address this, we derive a partial differential
equation (PDE) population model, retaining the role of distributions of cytokine levels, but neglecting
explicit spatial effects of movement on the network. We also consider stochastic models for each
population in isolation, equivalent to de-coupling the PDE model, and derive explicit solutions for the
steady-state distribution of cell populations. These can further be reduced to a system of ordinary
differential equations by assuming steady-state distributions of cytokines.

By examining these reduced models, we can address a number of interesting questions: how is a
population of cells maintained? What is the total number of cells, and distribution of expression levels?
We devise some simple, stochastic, cell-based rules that are sufficient. By analyzing these models we
show that the hypothesis of mutual CD4+/FRC population loss in HIV-1 infection is a plausible
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mechanism for attenuated recovery after ART, and that the production of the T cell survival factor
IL-7 may be the key rate-limiting step in this process. The reduction approach, from an agent-based
stochastic model, first averaged into a PDE description which maintains a key role for distribution
of cytokine levels, and finally to a set of ODEs applicable near equilibrium, here shows that explicit
spatial effects of movement on the RN can be neglected in most situations. The reduction approach is
potentially useful in many contexts [42, 43].

2 Model

2.1 T cell circulation

The circulation of T cells through the body is represented by transit between two compartments. A T
cell in the first, peripheral, compartment has a probability per unit time, ρ, of transfer to the second,
lymph node, compartment. The lymph node compartment, in the model, is a single static network,
representing the T-cell zone of a typical lymph node [41]; a T cell enters at a location randomly
selected from the “entrance” nodes, and moves along the network until it finds one of the parts of the
network that is designated as an exit. Cells migrating on the network collect the IL-7 produced by the
FRCs, and conversely deposit LT-β, at rate γ, as they pass. A T cell in the periphery, provided it has
accumulated an IL-7 count above the threshold, X, may divide, with probability per unit time λ, in
which case the mother cell divides its IL-7 equally between two daughter cells.1 All T cells, in either
spatial compartment, may die, with probability per unit time µ. The circulation model is illustrated
schematically in Fig. 1.

The RN is constructed of FRCs of uniform size, aligned in straight edges connected at nodes. As
long as they are not collagen-coated, these cells produce IL-7 at a constant rate, ν, that can be picked
up by T cells that pass along the edge. A subset of RN edges are “exit” edges, and cells arriving there
exit to a bulk periphery. T cells move on the edges of the network with constant speed v. When they
arrive at a vertex, they select one of the available edges at random and continue.

Each T cell has an attribute that varies from cell to cell, and depends on time, that we imagine as
an IL-7 level and denote by x. Cells with values of x less than X cannot undergo division. A T cell in
the periphery, provided it has x > X, has probability per unit time, λ, of undergoing division, in which
case its IL-7 is divided equally between two daughter cells. Any IL-7 carried by a cell which undergoes
apoptosis is lost. Formulated in this way [44], the model is solved via Monte Carlo simulation [45],
which is conceptually simple but extremely computationally expensive. Additional details of the model,
and some of its properties, are given in Appendix A.

bulk periphery

P

entrance

exit

entrance rate ρ

A B

TP F
T cells in periphery T cells in LN FRCs

division: λ
entrance: ρ

exit

LTβ production: γ

IL7 production: ν

Figure 1: Schematic illustration of the detailed dynamics model. A: Geometry of LN and trafficking
to the bulk periphery. B: Interaction mechanisms between the cell populations.

The effect of HIV infection is twofold: 1) direct killing of T cells, and 2) collagenation of the RN
(which blocks cytokine exchange between FRCs and T cells). We do not attempt to quantify these

1Here for simplicity we assume that T cells divide only in the bulk periphery and not while migrating the network.
This assumption is easily relaxed, with consequences discussed in Sec. 5.
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phenomena with explicit parameters, but instead explore the extent to which such changes can disrupt
the cytokine-based symbiosis between T cells and FRCs. In order to do so, we consider several reduced
models which allow either analytic solutions or reduced computational complexity.

3 Maintaining a heterogeneous population

As T cells circulate through the lymph node and peripheral compartments of our model, a homeostasis
of the heterogeneous T-cell population is established. On the one hand, steady state value of total
IL-7 is established by a balance between production by FRC, and consumption by T-cells. On the
other hand, a dynamically-maintained stationary distribution of values of x (the IL-7 level) is also
established. Each cell has a time-dependent value of x, but the distribution of values in a population
of cells may take a form that does not depend on time.

In this section, we investigate the stationary density of values of x over a population of cells, given
only the following assumptions:

• The physiological environment provides a constant production rate of IL-7, ν, that is equally
likely to be captured by all living cells.

• Each cell has an IL-7 ‘level’, x, that is a function of time. Cells with level above a threshold, X,
enter cell division with rate λ.

• When a cell i divides, each daughter cell begins life with IL-7 level xi/2.

• Each cell, independently of all others and of IL-7 level, has a probability µ per unit time (rate)
of death.

In order to derive equations governing these processes, we consider the probability density function
for the IL-7 level of a T cell as c(x, t), which then gives us

P[randomly-chosen cell has IL-7 level < x at time t] =

∫ x

0

c(y, t)dy.

Further suppose there are n(t) cells at time t. Then in a small time interval ∆t, the mean number of
cells that die is µn(t)∆t and the mean number of cells that divide is λf(t)n(t)∆t, where f(t) is the
fraction of cells with IL-7 level above the reproduction threshold X:

∫
∞

X

c(x, t)dx = f(t).

Thus, a steady-state balance between birth and death of cells requires

lim
t→∞

f(t) =
µ

λ
. (1)

Let the mean IL-7 level in the steady state be x̄:

x̄ = lim
t→∞

∫
∞

0

xc(x, t)dx.

Balance between production of IL-7 (at rate ν) and consumption of IL-7 implies µn̄x̄ = ν, where
n̄ = lim

t→∞

IE(n(t)), or

n̄ =
ν

µx̄
. (2)

Now consider the changes in a small time interval ∆t, as ∆t → 0. At most one of three things may
happen to a randomly-selected cell. Firstly, it may acquire a unit of IL-7, with probability ν

n(t)∆t.
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Secondly, it may die with probability µ∆t. Thirdly, if the cell’s value of x is not less than X, the cell
may divide, with probability λ∆t. As a cell with level x divides, it becomes a pair of cells each with
x/2. Hence, the set of cells with values of x in the interval [2x, 2x+2∆x] divide into a pair of daughter
cells which are then in the interval [x, x + ∆x]. Then as ∆t → 0, we combine these effects to obtain

c(x, t + ∆t) =







c(x, t)(1 − µ∆t) + 4λc(2x, t)∆t + ν
n(t) (c(x − 1, t) − c(x, t))∆t x ≤ X,

c(x, t)(1 − (µ + λ)∆t) + 4λc(2x, t)∆t + ν
n(t) (c(x − 1, t) − c(x, t))∆t x > X.

(3)

With the approximation c(x−1, t)−c(x, t) = ∂c
∂x (x, t), which is valid if x ≫ 1, and [c(x, t + ∆t) − c(x, t)] /∆t =

∂c
∂t (x, t), valid for small ∆t, we find

∂c

∂t
(x, t) =







−µc(x, t) + 4λc(2x, t) −
ν

n(t)

∂c

∂x
(x, t) x ≤ X,

−(µ + λ)c(x, t) + 4λc(2x, t) −
ν

n(t)

∂c

∂x
(x, t) x > X.

(4)

Then to derive an expression for the stationary IL-7 density in the heterogeneous population model,

C(x) = lim
t→∞

c(x, t),

we define

α =
x̄

1 + λ
µ

and β =
4λ

µ + λ
.

The stationary density satisfies

α
dC

dx
= −C(x) + βC(2x) x ≥ X

and

x̄
dC

dx
= −C(x) + 4

λ

µ
C(2x) X/2 < x < X.

The solution of these equations is found in Appendix B and plotted in Fig. 2, giving the characteristic
shape of the steady-state distribution.

4 PDE population models

The cell-based postulates in Section 3 are a simple way to understand the maintenance of a single,
but heterogeneous, cell population, with a distribution of values of the attribute x. In this Section,
we develop a PDE representation of the three interacting cell populations of our system: T cells in
the periphery, T cells in the the LN compartment, and FRC cells. The time-dependent distribution of
values of I, the attribute of T cells that describes an accumulation of IL-7 signal, is coupled to that of
values of L, attribute of FRCs that describes its accumulation of LT-β.

T (I, t) is the time- and IL-7-dependent distribution of T cells on the network; similarly P (I, t) is
the distribution of T cells in the bulk periphery, and F (L, t) is the LT-β dependent distribution of the
FRCs forming the RN. Then, based on the model developed in Section 3, we can write

∂T

∂t
= −µT − coT + ρP − ν̃

F̄ g(T̄ )

T̄

∂T

∂I
(5a)

∂P

∂t
= −µP + coT − ρP +







0, I < X/2
4λP (2I, t), X/2 ≤ I ≤ X

−λP (I, t) + 4λP (2I, t), I > X
(5b)

∂F

∂t
= β

∂F

∂L
− γ

T̄

F̄
∣
∣
t=0

∂F

∂L
+

D

2

∂2F

∂L2
− κF, for L ∈ [L̂,∞) with F (L̂, 0) = 0. (5c)
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Figure 2: Histogram of values of x in the heterogeneous T-cell population model. The analytical
solution (solid line) is compared with direct numerics, with µ = 1.0, λ = 2.0, X = 102, ν = 4 × 104.

Here we have defined total cell counts, denoted with the overbar, as

T̄ (t) =

∫
∞

0

T (I, t)dI,

P̄ (t) =

∫
∞

0

P (I, t)dI,

F̄ (t) =

∫
∞

L̂

F (L, t)dL

and also

D = β + γ
T̄

F̄
∣
∣
t=0

and

g(T̄ ) = 2

(
1

1 + e−T̄ /T̄0

−
1

2

)

.

The equations for T and P , 5a and 5b, are adaptations of the sharing model, with transiting between
the two populations with rates c0 (T → P ) and ρ (P → T ). The equation for F 5c is a Fokker-Planck
approximation of the birth-death process [46], where “birth” and “death” are collection of LT-β and
consumption of LT-β, respectively. Consumption of LT-β occurs at a rate per FRC, hence the simple
term β ∂F

∂L ; collection, on the other hand, depends on the production, which occurs per unit of T , but
also the collection efficiency. Thus total LT-β production is γT̄ , but this is distributed over the entire
network, and so the LT-β actually collected by an average, active FRC is γT̄ /

[
F̄

∣
∣
t=0

]
. Because FRCs

die when their LT-β level falls below L̂ we have the homogeneous Dirichlet condition at L = L̂. We
also include the term −κF in 5c as loss of FRCs due to HIV-induced collagenation.

All parameters are directly equivalent to their counterparts from microscopic dynamics except for
co and T̄0. The parameter c0 is easily approximated as 1/τ , where τ is the mean network transit time,
discussed in Appendix A. The parameter T̄0 describes the network saturation dynamics. By way of
comparison with the model of Sec. 3, here we use ν̃ ∼ ν/n representing the mean IL-7 collection rate
per T cell. Parameter values are discussed fully in Appendix A.

6



4.1 HIV infection and ART

We first attempt to establish the effects of HIV infection, which can affect the system both by direct
killing of T cells, and by collagenation of the RN. Comparison with experimental data allows us to
estimate parameters in order to see the relative contributions of each process.
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Figure 3: Response to HIV and ART. Upper left panel: HIV is simulated with direct killing of T
cells only, for a range of values of µ. T cell loss during active HIV is severe, but the recovery during
ART is close to full. Lower left panel: simulated collagenation of the RN only, for a range of κ. Here
modest T cell loss during HIV is followed by further loss during ART, due to persistent damage to
the RN. Right-hand panel: same data, comparing the change in cell count during HIV alone with the
change in cell count during ART.

To do so, we begin by applying independent changes to two parameters, one associated with each
effect. Increased death of T cells in individuals with HIV infection is implemented via the T cell death
rate parameter µ and collagenation of the RN, by the parameter κ. We assume that ART is entirely
effective in that both parameter values return to baseline during ART. In Fig. 3 we show the effects
of altering each parameter separately. In the upper left panel, HIV is simulated with direct killing of
T cells only (no collagenation of the RN, κ = 0) for a range of values of the direct killing parameter.
In this case, while T cell loss during active HIV can be severe, the recovery during ART is close to
full. On the other hand, the lower left panel gives the results for simulating collagenation of the RN
only (no direct killing), again for a range of values of this parameter. Here the result is quite different:
relatively modest T cell loss during the unmitigated HIV phase is paired with further loss during
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Figure 4: Simulated ART treatment of HIV with different exposure times; parameters for HIV fitted
to the data of [47].

ART, due to persistent damage to the RN. The right-hand panel presents the same data in a different
manner, comparing the change in cell count during HIV alone with the change in cell count during
ART. T-cell counts recover from the effects of direct killing , except in cases of severe depletion, while
there is no recovery (and instead further decline) from collagenation.

Given this information on the distinct roles of direct killing and collagenation, it is then possible to
estimate the values of these parameters during HIV. Taking the data of [47] to make a first estimate
we target an initial reduction of 57% from baseline after 1 year of HIV (CD4+count declining from
∼ 1000 cells/mm3 to ∼ 430 cells/mm3) and a subsequent recovery of 31% after 4 years of ART
(CD4+count recovering from ∼ 430 cells/mm3 to ∼ 740 cells/mm3). Using this calibration we find
µHIV = 5.4 × 10−3/day and κ = 3.8 × 10−4/day2, and the results of this simulation are given by the
solid black curve in Fig. 4. Here we can also easily test the effects of introducing ART relatively earlier
or later, as considered by [47], shifting the HIV exposure time by 120 days in each direction; of course
greater exposure time without ART results in greater CD4+count decline during this phase, but also
the recovery is altered because of the level of RN damage from collagenation, with changes of ±120
days resulting in ±6.5% changes in recovery, respectively.

It is worth noting that this is a relatively simplistic treatment, assuming that the only possible
roles of HIV in the system are changes to µ and κ. Other possibilities include changes to cell motility,
which would alter c0 and perhaps ρ, but in such an environment more data would be needed in order
to determine the parameters.

4.2 Validation of PDE model

To compare solutions between the full model and the PDE approximation, we devise a test problem
at the limits of the computational complexity for the former case. Specifically, we construct a network
with 5,000 vertices which supports approximately 5,000 T cells at homeostatic equilibrium; we then
simulate for 5 years and the results are given in Fig. 5. The qualitative agreement is good given the
approximations made; in terms of computational cost, simulating the microscopic dynamics takes ∼ 43
hours on a modern workstation, while the PDEs can be solved accurately in less than 8 minutes. Here
we compare only distribution of T cells with respect to IL-7, with the histogram in the case of the full

2In terms per year: µHIV = 1.97/year and κ = 0.14/year
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Figure 5: Validation of PDE model against simulation of detailed dynamics; PDE results are red,
dashed – full model in blue. Time courses of cell populations are given in the left panels, and compar-
isons of the final distributions at 5 years in the right panels.

model, and the probability density of the PDE-based model. Given the approximations, the agreement
is very good.

4.2.1 Dependence of CD4+count changes on baseline count and collagenation

For an additional comparison with the limited experimental data which is available, we make model
predictions of T cell population change (after 6 months), as a function of both initial T cell population
size and the fraction of the RN covered with collagen; the simulation results are given in Fig. 6. This
protocol is structured for comparison with that of Schacker et al. [37] so as to make a direct comparison
with their Fig. 1, showing that, in both studies, the change in the T cell count is proportional to the
baseline count, but inversely proportional to the collagenation fraction. There are several differences
worth noting between the predictions of [37] and Fig. 6. First, here we predict relatively smaller changes
in T cell count after six months, especially at low collagenation levels.3 Second, the dependence
on collagenation level is closer to linear, rather than saturating. And third, as the baseline count
approaches the homeostatic equilibrium, the predicted change declines as there is less scope for recovery.
Still, the key qualitative aspects, especially inversely proportionality to the collagenation fraction, are
clear.

3This is in part a difference of recovery timescale, in that our populations are recovering rapidly after 6 months; if
we instead look after 1 year, the comparison improves markedly.
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The simulation protocol is designed to mimic Schacker et al. [37] and provide direct comparison with
their Fig. 1.

5 Compartments and an ODE approximation

We can reduce the PDE model to an ODE model by integrating with respect to cytokine levels
and making assumptions about the equilibrium distributions of cytokine levels, yielding a linearized4

compartmental model as follows:

d

dt
T = ρP − c0T − µT − ν̃fT (6a)

d

dt
P = c0T − ρP − µP + 2λP ∗ (6b)

d

dt
T ∗ = ρP ∗ + ν̃fT − c0T

∗ − µT ∗ (6c)

d

dt
P ∗ = −ρP ∗ − µP ∗ + c0T

∗ − λP ∗. (6d)

where T and P are the sub-threshold populations (e.g. I < X), while the starred versions are super-
threshold. A derivation is given in Appendix C. The interactions can be understood schematically as
illustrated in the left panel of Fig. 7.

This formulation allows us to understand more readily the role of the parameters. For example, it
is easy to show, at equilibrium, that

P ∗ =
µ

λ
(T + T ∗ + P + P ∗). (7)

That is, the fraction of T cells which are available for reproduction (in the bulk periphery, and over
threshold) is determined only by the apoptosis parameter µ and the reproduction rate λ. A comparison
of this ratio with the full model is given in the right panel of Fig. 7. Other ratios can be similarly

4This model is not necessarily appropriate for direct solution as-is, because of the linearization. For example, 6a–6d
have only the trivial equilibrium unless the parameters are chosen such that the coefficient matrix has determinant
equal to zero. This is because the underlying nonlinearity has been approximated away into the new constant f (see
Appendix C); retaining the nonlinearity allows for the nontrivial (homeostatic) equilibrium, but greatly complicates the
analysis. However, useful insight about the system behaviour can still be inferred.
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Figure 7: Left panel: compartment model of T-cell homeostasis. Right panel: Comparison of steady
state cell population ratios between the compartmental ODE model, and the full computational model.

derived, for example

T

P
=

ρ

c0 + µ + ν̃f
, and (8)

T ∗

P ∗
=

ρ + µ + λ

c0
. (9)

Equation 7 was selected for direct comparison with the full simulations because it depends only on
explicitly-known parameters; however, using approximations to the indirect parameters, the other
ratios also have favourable comparisons.

Similarly, suppose we wish to relax the assumption that only peripheral T cells may divide, and
instead allow reproduction of T cells in the LN (following the same rules). Thus we must add two
terms, +2λT ∗ to the right hand side of 6a, and −λT ∗ to the right-hand side of 6c. Then the same
type of equilibrium ratios can be derived, for example the equivalent of 7 is now

T ∗ + P ∗ =
µ

λ
(T + T ∗ + P + P ∗), (10)

that is, the fraction of cells available for reproduction is unchanged.

6 Discussion

In this study we have constructed a sequence of mathematical models based on the experimental hy-
pothesis that FRC and T cell populations are mutually dependent via cytokine exchange and normally
establish a homeostatic equilibrium. More specifically, we use this framework to consider the extent to
which damage to the RN, in the form of HIV-induced collagen deposition, could be responsible for the
characteristic attenuated recovery seen in HIV patients post-ART. We show not only the plausibility
of this hypothesis, but explore the more specific mechanisms and dependencies via which it may occur.

In order to do so, we formulate first an explicit (agent-based) model which accounts for movements
of individual T cells in relation to the RN. While this model has advantages in terms of explicit
inclusion of the movement dynamics, it has drawbacks in terms of the computational cost of simulating
it (because of the relatively short timescale of the movement dynamics (e.g. < 1 min), the large number
of cells involved, and the relatively long periods of physiological interest (years)). To address these
issues, we derive a series of reduced models by averaging the spatial effects.
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First we derive a PDE-based model which retains a key role for the distribution of cytokine levels
within each cell population. Using this model we are able to explore the means by which HIV disrupts
the T cell-FRC homeostatic equilibrium, and the extent to which ART is able to affect a recovery. We
show that direct killing of T cells by HIV, even if resulting in significant depletion during the unmit-
igated HIV phase, is almost entirely reversible by ART. Only when CD4+depletion reaches roughly
70% from direct killing only does the recovery become attenuated. On the other hand, collagenation of
the RN in isolation from direct T cell killing has a relatively modest effect during HIV without ART,
but here the changes are persistent and in fact the declines continue even after ART is introduced.
Thus using these two factors and a comprehensive set of clinical data, we are able to estimate the rel-
ative contributions of both direct killing and RN collagenation in HIV, the subsequent reversal which
occurs. We also show that this reversal is dependent on the timing of ART introduction, as in [47],
with earlier ART leading to closer to full recovery.

We also show that this PDE-based model agrees well with the agent-based model with explicit
spatial dynamics, and also the experimental data of Schacker et al. [37], in terms of the qualitative
dependence of T cell population changes on both baseline population levels, and collagenation levels
(despite the quantitative differences pointed out in Sec. 4.2.1).

While this PDE-based model has much more modest computational cost, it still must be solved
numerically. In order to better understand some of the underlying processes, we derive further reduc-
tions under specific assumptions. The first of these is to understand how the population of a single
cell type is maintained by the interacting processes of cytokine provision, cell reproduction, and death.
This results in the decoupling of the PDE-based model system, and the single PDE remaining can be
solved explicitly at steady-state. While derived for the specific biology of this problem, the population
maintenance ideas should be applicable in many other similar contexts.

The second reduction retains the interacting cell populations (T cells in the LN, T cells in the
periphery, FRCs), but we assume that the distributions of cytokine levels within each population are
at steady state; by doing so we can reduce the coupled partial differential equations to coupled ordinary
differential equations. These ODEs can then be used to derive key ratios which explain the population
behaviours in terms of the underlying parameters, for example that the fraction of cells available for
reproduction depends only on the T cell death rate µ and the reproduction rate λ.

Thus the conclusions of this study might be divided into two groups: first, the specific biological
implications for the process of T cell-FRC interdependence, its disruption by HIV, and recovery in
ART; and second, that the more general process of reducing the agent based model, by degrees, can
allow a much more complete understanding of complex biological systems than is possible by examining
any one model alone.

As with any model, there are a number of assumptions and limitations which should be noted. In
particular, we consider only two signalling agents, LT-β and IL-7, and the dynamics of the T cells on the
network, and the geometry of the network itself, is simplistic. Still, the models as constructed suggest
that the interactions between T cell and FRC populations play an important role in maintaining both
populations and governing response to both HIV and ART.
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A Properties of the model

Construction of the network

We follow the approach of [41] by first explicitly constructing the RN network, and then confining all
cell motion to it. Our spatial random networks [48] are constructed by first positioning vertices at
random, by sampling from the uniform distribution, and then generating edges between them. The
position of each of the N vertices is independently drawn from the uniform distribution inside a sphere
of radius R. Cells travel at a constant speed, changing direction upon reaching a vertex, where a T cell
selects a new edge at random. This type of motion on a network may be approximated, after many
turns, by a Brownian motion in three space dimensions whose diffusivity depends on the probability
density of edge lengths, l [41, 49]:

D =
v

6

IE(l2)

IE(l)
. (11)

Subsets of the network are marked as exits and entrances a priori : in a LN which a sphere of radius
R, vertices have coordinates (x, y, z) in cartesian coordinates, or radius r in spherical coordinates.
Then exit edges are those with r > 0.9R and z > 0 for both vertices, while entrances are vertices with
z < −0.75R.

Transit times

Given the geometry of our model, a key measure is the transit time – the time taken by a cell between
entering the network, and leaving again. The mean time for a Brownian motion with diffusivity D is

τD =
πR3

3aD
(12)

where a the radius of the exit on the surface of the sphere [50]. Using our effective diffusivity estimate
for network motion [41], we find that

τ ∝
R2N1/3

av
, (13)

where N is the number of vertices and v the constant velocity parameter of motion. We find this
scaling argument agrees well with the simulation results.

Parameters

The parameters used are given in Table 1. For R = 150µm and V = 1000, we find T̄0 ∼ 1800 from
direct fitting. For R = 300 µm, and V = 5000, we obtain τ = 0.98± 0.02 days with mean edge length
22.7 µm.

B The steady state of the heterogeneous population model

Here we find the solution of the equations

α
dC

dx
= −C(x) + βC(2x) x ≥ X (14a)

x̄
dC

dx
= −C(x) + 4

λ

µ
C(2x) X/2 < x < X, (14b)

where

α =
x̄

1 + λ
µ

and β =
4λ

µ + λ
.
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µ T cell death rate 1/365 day−1

µHIV increased T cell death rate in HIV 5.4 × 10−3day−1

λ T cell division rate (IL-7 dependent) 10/365 day−1

X IL-7 division threshold 10 a.u.
ρ rate of traffic from periphery to LN 2 day−1

γ deposition of LT-β onto network from trafficking T cells 3/365 a.u. day−1

ν̃ IL-7 production rate 15/365 a.u. day−1

V number of vertices in RN 5000
FRC length 10 µm

β FRC consumption rate of LT-β 1/365 a.u. day−1

R radius of LN 300 µm
κ collagenation rate in HIV 3.8 × 10−4/day

Table 1: Parameter values, determined from experimental data where available. The HIV-active rates
µHIV and κ are fitted to the data of [47]. The FRC length is chosen to align with experimental data,
e.g. [22]. The number of vertices, and radius of the LN, are chosen as large as possible within constraints
of computational complexity for the agent-based model, while both maintaining a reasonable edge
length [41]. Other parameters values were chosen phenomenologically.

If, for x ≥ X, we write
C(x) = c0e

−x/α + c1e
−2x/α + c2e

−4x/α + · · · ,

then (14a) is satisfied if

ci = −
β

2i − 1
ci−1, i ≥ 1.

Using (1), we require
∫
∞

X
C(x)dx = µ

λ or

αc0

(

e−X/α − βe−2X/α +
1

3
β2e−4X/α + · · ·

)

=
µ

λ
. (15)

Now the task is to solve (14b). The solution of the differential equation

d

dx
Ci(x) +

1

x̄
Ci(x) = A exp

(

−ki
x

x̄

)

,

with Ci(X/2) = 0 is

Ci(x) =
x̄A

ki − 1

(

exp

(

−
1

2
(ki − 1)

X

x̄
−

x

x̄

)

− exp
(

−ki
x

x̄

))

.

The solution of (14b) is thus

C(x) = 4
λ

µ

∞∑

i=0

ci

ki − 1

(

exp(−
1

2
(ki − 1)

X

x̄
−

x

x̄
) − exp(−ki

x

x̄
)

)

, (16)

where ki = 2i+1(1 + λ
µ ). The two conditions, (15) and continuity of C(x) at x = X, allow us to find

the two unknowns, x̄ and c0. In Figure 8, we compare the steady-state values of the mean number of
cells, n̄, and the mean IL-7 level, x̄, obtained from numerical solution of the heterogeneous population
model introduced in Section 3, with the following approximation, obtained using only the first term
in (15) and (16):

x̄ ≃
X

2

(

log
4λ

µ + 2λ

)
−1

.
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Figure 8: Mean total number of cells, and mean IL-7 level per cell versus λ, for the heterogeneous
population model. Numerical results are compared with the formulae of this appendix. µ = 1.0,
X = 102, ν = 4 × 104.

C Derivation of the ODE model

Here we give the derivation of the ODE model, (6a)–(6d), from the PDE model, (5a)–(5c). We first
neglect F and consider T and P integrated with respect to I. We split the integrals at the division
threshold so that

T̄ =

∫
∞

0

TdI =

∫ X

0

TdI

︸ ︷︷ ︸

=T̃

+

∫
∞

X

TdI

︸ ︷︷ ︸

=T̃∗

= T̃ + T̃ ∗ (17)

and similarly for P . Then by integration we obtain

dP̃

dt
= −(µ + ρ)P̃ + coT̃ + 2λ

∫ 2X

X

P (I, t)dt (18a)

dP̃ ∗

dt
= −(µ + ρ)P̃ ∗ + coT̃

∗ − λP̃ ∗ + 2λ

∫
∞

2X

P (I, t)dt (18b)

dT̃

dt
= −(µ + co)T̃ + ρP̃ −

[
ν̃F̄ g(T̄ )

T̄
T

]∣
∣
∣
∣
I=X

(18c)

dT̃ ∗

dt
= −(µ + co)T̃

∗ + ρP̃ ∗ +

[
ν̃F̄ g(T̄ )

T̄
T

]∣
∣
∣
∣
I=X

. (18d)

If we make the approximations

∫ 2X

X

P (I, t)dt ≈ P̃ ∗

∫
∞

2X

P (I, t)dt ≈ 0
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(that is, that the P distribution above the level 2X is negligible) and that

T |I=X

T̄
∝ kT̃ (19)

and variation in g(T̄ ) is negligible near equilibrium, then assuming F̄ is constant, taking the constant

f to approximate
[

F̄ g(T̄ )
T̄

T
]∣
∣
∣
I=X

and dropping the tildes we obtain (6a)–(6d).
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