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ABSTRACT 1 

Calibration and validation techniques pave the way towards the descriptive power of car-following 2 
models and their applicability for analyzing traffic flow. However, calibrating these models is 3 
never a trivial task because of the existing of unobservable parameters and erroneous traffic data. 4 
This contribution puts forward a new calibration framework of car-following models based on the 5 
Cross-Entropy Method and Probabilistic Sensitivity Analysis. Cross-Entropy Method is able to 6 
identify parameters of car-following models by formulating it as a stochastic optimization problem 7 
and to analyse the parameter estimations statistically while Probabilistic Sensitivity Analysis is 8 
used to identify the important parameters so as to reduce the complexity, data requirement and 9 
computational effort of the calibration process. Empirical results of calibration of intelligent 10 
driving model indicate the power of Cross-Entropy Method for searching global optimum for the 11 
case of synthetic data and next generation simulation datasets. Furthermore, adopting several 12 
termination criteria indicates better property of convergence of CEM than genetic algorithm. 13 
 14 
Keywords: Car-following model, Model calibration, Cross-Entropy Method, Probabilistic 15 

Sensitivity Analysis 16 
17 
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INTRODUCTION 1 

For most planning and operational applications, accurate representation of realistic driving 2 
behaviors offers a great help to transportation analysts. Along this stream, microscopic traffic 3 
models especially Car Following (CF) models are widely adopted to simulate complex traffic 4 
scenarios such as traffic incident, signal control, public transport priority wherein analytical 5 
methods are unlikely to work due to the complexity. A large number of CF models have been 6 
developed to describe CF behavior under a wide range of traffic conditions in the past decades 7 
(1-2). Model calibration would heavily affect the reliability of the results achieved by using the 8 
underlying model as well as its applicability in traffic engineering practice. Calibration is vital for 9 
microscopic traffic models, yet it can be rather difficult since these models often contain a wide 10 
range of variables. Moreover, some parameters, such as reaction time, desired spacing, desired 11 
time headway, desired speed, are generally not directly observable from traffic data, and this 12 
makes them hard to be identified. Nonetheless, the parameters are scenario specific, i.e. they are 13 
not transferable to other situations (different locations, periods of the day such as morning rush 14 
hours and evening rush hours, etc.). On the other hand, driving behavior and local traffic rules, 15 
which the microscopic traffic flow models intend to describe, are variable in time and space (3-4). 16 
Therefore, many of the microscopic traffic models were neither empirically calibrated nor 17 
validated using real traffic data until recently, a considerable amount of research have been 18 
devoted to the calibration and validation of microscopic models (2, 4, 5). However, guidance on 19 
the systematic and rigorous calibration and validation of traffic flow models is still lacking (2, 6). 20 
Nevertheless, traffic data might subject to various errors and noises. The calibration of stochastic 21 
microscopic models is more complicated as they will require multiple runs to reduce the noise in 22 
the objective function (6). To tackle these difficulties, this paper aims to develop a new framework 23 
for calibrating microscopic traffic models with various uncertainties to maximize the model’s 24 
descriptive power based on representative traffic data. 25 

Conventionally, deterministic search methods which aim to minimize the discrepancy 26 
between the model prediction and observed data are common approaches to access model 27 
calibration for both microscopic and macroscopic traffic models. As a consensus in the literature, 28 
such kind of methods will result in a large number of local optima due to different combinations of 29 
the set of parameters (6-8). Therefore, a popular and convenient approach to compensate this is to 30 
use random search techniques. The basic idea behind such methods is to systematically partition 31 
the feasible region into smaller subregions and then to move from one subregion to another based 32 
on information obtained by random search (6-7). Well-known examples include simulated 33 
annealing, genetic algorithm, tabu search, and ant colony methods. All these methods are reported 34 
to find a good local optimal solution (while some also claimed global optimal solution can be 35 
obtained) but there is not as yet a fully accepted method. Noticing the optimization nature of the 36 
calibration problem, Ciuffo and Punzo (7) applied the no free lunch theorems to the calibration 37 
problem of microscopic traffic models to access the performance of various algorithms ranging 38 
from heuristic optimization methods to meta heuristic searching methods. Remarkably, the 39 
analysis reveals that the Genetic Algorithm (GA), which is probably the most widely used 40 
algorithm type for the calibration of microscopic traffic simulation models, outperforms the others 41 
globally for the tested cases in (7). 42 

However, it is known that the GA is generally computationally intensive and of no 43 
convergence proof. Moreover, the presence of random noise would affect the optimization 44 
procedures. Ngoduy and Maher (6) applied the Cross Entropy Method (CEM), which is a generic 45 
Monte Carlo technique with importance sampling for reducing the computational burden, to the 46 
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calibration purposes of a second order macroscopic model. The empirical results have verified 1 
several merits of such method including attaining globally optimal solution, computationally 2 
efficient and convergent. Furthermore, Maher et al. (9) extended this CEM framework for signal 3 
optimization to consider the effect of noise in the evaluation process. 4 

Because of the unobservable parameters of the CF models, inherent noise of traffic data, 5 
complicated human factors to be modeled and traffic scenarios to be simulated, one of the main 6 
challenges arising in the calibration process concerns the selection of the most important 7 
parameters and the identification of their probabilistic characteristics. Selecting the most important 8 
parameters also helps guiding data collection by limiting the number of input parameters to be 9 
observed rather than the whole parameter set (2). To avoid the potential negative effects caused by 10 
subjectively chosen set of calibration parameters, a Sensitivity Analysis (SA) of the parameters is 11 
essentially required. SA is a procedure to explore the relationship between the simulation output 12 
and input parameters considering the potential uncertainty (including noise, un-modeled 13 
characteristics and parameter variations etc.) on model response. SA is also a crucial procedure to 14 
individuate the most important sources of modeling uncertainties. Despite of its importance, a 15 
proper SA for traffic models is barely performed in common practice (10-11). 16 

One commonly adopted SA approach is the ANalysis Of Variance (ANOVA) which is able 17 
to quantify the uncertainty of a model and to capture the interactions among different factors (12).  18 
A more efficient SA method based on the decomposition of the variance has been adopted to the 19 
SA of CF models (13). However, the ANOVA method is not suitable to measure the dispersion of a 20 
variable with a heavy-tail or a multimodal distribution which may be the case of calibration of CF 21 
models (as it will be shown later in Empirical Study). Furthermore, this method is computational 22 
burden which often requires a large number of model evaluations. 23 

To combine the calibration and SA into a unified framework, this paper puts forth a 24 
Cross-Entropy Method (CEM) (14-16) and the Probabilistic Sensitivity Analysis (PSA) based 25 
approach for model calibration and identification of important parameters. The CEM is able to find 26 
a global optimal solution to the calibration problem while the PSA reveals the probabilistic 27 
behavior of a model’s response with respect to its parameter uncertainties. Results from PSA can 28 
be used to assist engineering design from various aspects, such as to help reducing the dimension 29 
of a design problem, to investigate potential improvements on a probabilistic response (17). Since 30 
this method is based on the relative entropy, it better fits into the framework of CEM. To be more 31 
specific, the PSA can be conducted in conjunction with the importance sampling technique of the 32 
CEM to reduce the computational burden of the optimization whilst identifying the important 33 
parameters and the effect of noise. 34 

 35 

CAR-FOLLOWING MODELS 36 

The Intelligent Driving Model (IDM) proposed by Treiber et al. (18) is one of the widely-applied 37 
CF models. This model considers both the desired speed and the desired space headway to model 38 
the acceleration/deceleration strategy of subject vehicle with respect to the preceding vehicle, 39 

 
*

* 4 2

0

( , )
( , , ( , )) [1 ( ) ( ) ]f f

IDM f f

v s v v
v v s s v v a

v s


     (1) 40 

where a  is the maximum acceleration/deceleration of the subject vehicle, 0v  the desired velocity, 41 

fv  the velocity of following vehicle, s  the spacing between two vehicles measured from the front 42 

edge of the subject vehicle to the rear end of the preceding vehicle, and * ( )s   the desired spacing. 43 
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When preceding vehicle is far away, the third term in this equation becomes negligible small and 1 
the model performs as a free flow model where the desired speed of the driver governs the 2 

acceleration, i.e., 4
0[1 ( ) ]free fv a v v  . When the subject vehicle approaches the preceding 3 

vehicle, the braking strategy * 2( , , ) ( )brake fv s v v a s s    will be dominant to ensure s  to approach 4 

the desired minimum gap *s , which depends on several factors: speed, speed difference (v ), the 5 
maximum acceleration a , a comfortable deceleration (or the desired deceleration which will be 6 
active in non-stationary traffic) b , the minimum spacing at the standstill situation 0s , and the 7 

desired time gap T . To be specific,  8 

 *
0( , )

2
f

f f

v v
s v v s v T

ab


     (2) 9 

Remarkably, the deceleration of IDM will be quite strong if the current gap becomes too small to 10 
ensure collision-freeness. Reaction time is ignored in this model. 11 

It is worth noticing that parameters of IDM are related to different traffic conditions. For 12 
example, the maximum acceleration a  and the desired deceleration b  are related to stop-and-go 13 
traffic flow while the desired time gap T  is mainly involved in the steady-state car-following 14 
period, the desired velocity 0v  is observed in free-flow traffic condition while the creeping and 15 

standing traffic situation is crucial for the identification of the minimum distance 0s . In other 16 

words, the data sources used to calibrate IDM are suggested to contain all traffic regimes 17 
mentioned above.  18 

Some parameters of the CF models, such as the desired time gap, desired spacing, 19 
comfortable deceleration etc., are subject to human factors, which mainly features in the 20 
inter-driver and intra-driver heterogeneity. Generally, the inter-driver heterogeneity implies that 21 
different drivers behave in different ways even if they follow the same vehicle due to individual 22 
driving habits, while the intra-driver heterogeneity indicates that a driver shows differential 23 
response to the same change of driving situation at different time or under different conditions (20). 24 
Inter-driver heterogeneity is easily explained by the traffic oscillations caused by the aggressive 25 
and timid driver behaviors (21). The intra-driver variability accounts for a large part of the 26 
deviations between simulations and empirical observations (19). Several recent studies (2, 22, 23) 27 
argued that the parameters of CF models differ from drivers because drivers are different so as 28 
their driving styles and risk-taking capabilities. All these suggest that the randomness in the CF 29 
models can be interpreted as uncertainty in the parameters (24). Furthermore, the desired 30 
parameters such as desired time headway, desired velocity are generally unobservable in nature, 31 
which renders the parameter estimation problem more challenging (2). Therefore, it is necessary to 32 
consider such randomness in the calibration process. 33 

 34 

THE CROSS-ENTROPY METHOD 35 

As discussed in Introduction, a cross-entropy method based approach is proposed to solve the 36 
calibration problem. Simply speaking, the CEM approach can be broken down into two key steps: 37 

1. Generate a number of trial parameter sets randomly according to a chosen distributions. 38 
2. Based on the values of the objective function associated with each trial parameter set, 39 
update the probability distribution used to generate the random trial sets according to the 40 
principle of ‘importance sampling’. 41 

For a general optimization problem, obtaining a (global) optimum solution can be regarded as a 42 
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rare event. The CEM is a general Monte Carlo approach to solve rare event probability estimation 1 
problems. In this sense, we can reformulate an optimization problem in terms of cross entropy 2 
method as follows. Without loss of generality, consider the following minimization problem: 3 

 * min ( )
x

S x





  (3) 4 

where *  represents the minimum of ( )S x  and x  is defined in a function space  . By the above 5 

analogy, the cross-entropy method may first formulate a family of Probability Density Functions 6 
(PDF) distributed in  , denoted by ( ; )f x v , parameterized by v . For the minimization of ( )S x , 7 

by defining the minimum *  as a threshold (or some *   but sufficient close to * ), we can 8 

define a rare event as ( )S x  . To this end, we can define 9 

 { ( ) }( ) ( ( ) ) ( )u u S XS X I         (4) 10 

where   is a threshold and 1 2( , ,..., )nX X X X  is a random vector generated by PDF with 11 

parameter v  set to u  (i.e., a realization) in ( ; )f x v . u  denotes the probability, u  denotes the 12 

expectation, and ( )I   is the indicator function, i.e., { ( ) } 1S XI    if and only if ( )S X   is true, 0 13 

otherwise. By this, we convert the original optimization problem into a rare event probability 14 
estimation problem. Detailed routine for solving this estimation problem by the CEM can be found 15 
in the cross entropy tutorial (15).  16 

To apply the CEM optimization algorithm to the calibration problem, it is necessary to 17 
apply the time-discretization scheme to convert the infinite-dimensional functional optimization 18 
problem into a finite-dimensional parametric optimization problem. A simple way to achieve this 19 
is to divide the simulation time span into 1   subintervals. The parametric optimization problem 20 

yielded belongs to continuous multi-extremal optimization problems, i.e. each decision variable is 21 
real valued and the decision vector belongs to a subset of Euclidean space. A CEM approach based 22 
on kernel density estimation method is proposed by Ngoduy and Maher (6) to solve such 23 
optimization problems. However, the drawback of such kernel based CEM is its high 24 
computational demand. On the other hand, noting that the sampling distribution of the CEM can be 25 
quite arbitrary, and does not need to be related to the function that is being optimized (25). 26 
Adopting Gaussian (mixture) distributions is convenient and can reduce the computational effort. 27 
The relevant pseudo code for such modified CEM is summarized in the next second section. 28 

 29 

PROBABILISTIC SENSITIVITY ANALYSIS 30 

Noting that the relative entropy (also known as Kullback-Leibler (K-L) distance) is calculated 31 
directly from the probability distribution function and thus provides a more general measure of 32 
output variability. For discrete probability distributions kp  and kq , the K-L distance of q  from p  33 

is defined to be 34 

 
1

( || ) ln
K

k
KL k

k k

p
D p q p

q

  (5) 35 

Based on the relative entropy, Liu et al. (17) proposed a new Probabilistic Sensitivity 36 
Analysis (PSA) approach to evaluate the impact of a random variable on the performance index 37 
function by measuring the K-L distance between two probability density functions of the 38 
performance index function, obtained before and after the variation reduction of the chosen 39 
random variable. This method has been recently extended to study the SA of complex stochastic 40 
processes (26-27). 41 
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Assume the model of interest admits a mapping of the following form 1 
 1 2( , ,..., )nY h X X X  (6) 2 

where 1 2, ,..., nX X X  are the random inputs that refer to intrinsic model parameters of the CF 3 

models in this paper. We assume that the model output has a PDF of ( )f y . Global sensitivity 4 

analysis aims to rank the inputs 1 2, ,..., nX X X  according to the degree to which they influence the 5 

output, individually and conjointly. If one particular parameter iX  is fixed to its nominal value (or 6 

its mean value or one of its realizations/observations) say replacing it with ix , then the yielded 7 

PDF of Y  is denoted as ( | )ig y x . From the above paragraph, the K-L distance ( ( | ) || ( ))iD g y x f y  8 

measures the difference between the divergence between two probability density functions of the 9 
output obtained before and after the variation reduction of the random variable iX . Specifically, 10 

 
( | )

( ( | ) || ( )) ( | ) ln
( )Xi

i
KL i i

g y x
D g y x f y g y x

f y
  (7) 11 

for a discrete case. This equation quantifies the change of the PDF of the model output after 12 
eliminating the variability in iX . Therefore, the K-L distance ( ( | ) || ( ))

Xi
KL iD g y x f y  is regarded 13 

as the total sensitivity index of iX . The larger value ( ( | ) || ( ))
Xi

KL iD g y x f y  is, the more important 14 

iX  is (which implies that Y  is more sensitive to iX ). More details and applications of PSA can be 15 

found in (17). 16 
 17 

THE PSEUDO CODE OF CEM AND PSA 18 

Note that the PSA requires PDF estimations which can be achieved by the Kernel density 19 
estimation method. To this end, we combine the CEM for continuous optimization in terms of 20 
Normal updating by (25) and the Kernel-based updating by Ngoduy and Maher (6) to reduce 21 
computational burden, which is summarized as follows: 22 
Step 1. Discretize the simulation time span into 1   equal sub-intervals 1 2 1[ , ],...,[ , ]     . 23 

Step 2. Set 0t  , and choose 0û  and 2
0̂ . In empirical study we choose 0ˆ [3,3,20,2.5,4]Tu   and 24 

2
0ˆ [100,100,100,100,100]T  , with each element corresponds to the maximum acceleration a , 25 

desired deceleration b , desired speed 0v , desired time gap T , and minimum gap 0s  of IDM, 26 

respectively. 27 

Step 3. Increase t  by 1. Generate a set of random samples 1,..., N   from 2
1 1ˆ ˆ( , )t tu    28 

distribution, which is an n−dimensional normal distribution with independent components. N  is 29 
set to 1000 in our cases.  30 
Step 3.1. For a given sample of the parameters, solve the IDM and calculate the objective function 31 

( )iS   for each sample. 32 

Step 3.2. Order ( )iS   from smallest to the largest as (1) (2) ( )... NS S S    and finally evaluate the 33 

(1 )100%  sample percentile ̂t  of the sample scores, 34 

 ( (1 ) )t̂ NS    
  (8) 35 

where   is a small real number and set to 0.01 here.  36 

Step 3.3. Let   be the indices of the eliteN  best performing samples. 37 
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Step 3.4. For all 1,2,...,j n , let 1 

 , ,
elite

t j i j
i

u N


   (9) 2 

 2 2
, , ,( ) elite

t j i j t j
i

u N


    (10) 3 

Step 4. Smooth: 1 1ˆ ˆ ˆ ˆ(1 ) , (1 )t t t t t tu u u            . Here   is set to 0.7. 4 

Step 5. If ,ˆmax { }j t j   stop and return ˆtu u  (or the overall best solution generated by the 5 

algorithm) as the approximate solution to the optimization, where R   is a preset tolerance and 6 

set to 610  here. Otherwise, return to Step 3. 7 
Step 6. PSA: Generate a new set of random samples   from 0ˆ( , )u   distribution and regard it as 8 

original set of random samples. 9 
Step 6.1. Fix one parameter jx  to its optimal solution ju  to produce conditional samples, i.e. 10 

| jx , 1,2,...5j   for the IDM. 11 

Step 6.2. For original and conditional sets of samples , | , 1,2,...,5jx j   , simulate the IDM, 12 

then calculate the objective function ( )iS   accordingly. Then determine the PDFs ( )f y  and 13 

( | )ig y x  using Kernel density estimation method. 14 

Step 6.3. Calculate the corresponding sensitivities by solving Equations (7) and return. 15 
Constrains on each parameters of IDM are adopted into CEM to ensure a plausible 16 

optimum solution. In our case, the feasible region  includes 2[0.1,6]( / )a m s , 17 
2[0.1,6]( / )b m s , 0 [0.1,35]( / )v m s , [0.1,5]( )T s , 0 [0.1,8]( )s m .  18 

 19 

EMPIRICAL STUDY 20 

Data Processing 21 

Recent research has found that the trajectory data derived from the Next Generation SIMulation 22 
(NGSIM) project contains kinds of errors ranging from measurement to traffic flow characteristics 23 
(28). A multi-step procedure proposed by Punzo et al. (28) is adopted to eliminate possible biased 24 
trajectories in the I80 dataset which is a 15 minutes time frame observation (4:00 pm to 4:15 pm, 25 
on April 13, 2005) on a stretch of Interstate 80 in San Francisco, California. Here, we focus on the 26 
car-following behaviors of the middle lane, which is termed lane 3 in I80 dataset and hereafter, in 27 
order to maximize the fraction of pure car-following situations. 28 
 29 

Calibration through Synthetic Data 30 

As suggested in Ossen and Hoogendoorn (29), to assess how well parameters can be identified by 31 
the calibration procedure, the ‘ground truths’ of these parameters must be known since parameters 32 
minimizing the objective function do not necessarily capture following dynamics best. To show 33 
the proposed method can actually find the global optimum, a set of synthetic data is used. The 34 
synthetic data also help verifying whether the data contain enough information to estimate the 35 
parameters of interest which helps in analyzing the cause for deviations from the real parameters 36 
when performing calibration with real data. Calibrating the synthetic data can also provide 37 
guidance on choosing suitable variables in the objective function for better model calibration. 38 
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The synthetic data is obtained from simulating the IDM with trajectory of the leading 1 
vehicle and a set of parameters. To ensure that the synthetic data resemble real data as much as 2 
possible, the data of leading vehicle is derived from I80 dataset randomly. Here a parameter set 3 

* [1.5,0.8,20,1.25,4.5]Tx  , with each element is the same as 0û , is given as the ground truth. With 4 

this set of synthetic data and the same profile for the leading vehicle, calibration is carried out to 5 
find out the ability of CEM for searching the optimal parameters from this synthetic data set. 6 
Motivated by the empirical studies by Ossen and Hoogendoorn (29); Paz et al. (30) that including 7 
gap and speed in objective function would improve the calibration result. Thus, the authors 8 
adopted the following Combined Objective Function (COF): 9 

 

2 2

1 1*

2 2 2 2

1 1 1 1

1 1
( ( ) ) ( ( ) )

ˆ arg min (1 )
1 1 1 1

( ) ( ) ( ) ( )

cali data cali data
t t t t

t t

x
cali data cali data
t t t t

t t t t

s x s v x v

x

s x s v x v

 

 

 

   

   

 
 

  

 
   

 

   
 (11) 10 

where ( )cali
ts x  and data

ts   denote the calibrated and observed gap of following vehicle towards 11 

preceding vehicle at time t , and ( )cali
tv x  and data

tv  denote the calibrated speed derived from 12 

simulation of IDM and observed speed, respectively. 0 1   is the weighting coefficient.  13 
By varying   from 1 to 0, the difference between calibrated parameters and their ‘ground 14 

truth’ counter-parts are present in Table 1.  15 
 16 
TABLE 1 The Solutions and Corresponding Relative Errors (RE) with respect to Different 17 
Weighting Coefficients 18 

 Parameters 2( / )a m s   2( / )b m s  0( / )v m s  ( )T s  0( )s m  OVa 

1   
Solution 1.43 0.89 18.55 1.29 4.31 1.34E-5 
REb 4.67% 11.25% 7.25% 3.20% 4.22% NVc 

0.8   
Solution 1.43 0.86 19.14 1.29 4.31 1.41E-5 
RE 4.67% 7.50% 4.30% 3.20% 4.22% NV 

0.5   
Solution 1.45 0.84 19.97 1.29 4.33 1.28E-5 
RE 3.33% 5.00% 0.15% 3.20% 3.78% NV 

0.2   
Solution 1.47 0.81 20.47 1.28 4.38 7.81E-6 
RE 2.00% 1.25% 2.35% 2.40% 2.67% NV 

0.1   
Solution 1.48 0.81 20.39 1.27 4.42 4.82E-6 
RE 1.33% 1.25% 1.95% 1.60% 1.78% NV 

0.01   
Solution 1.50 0.80 20.06 1.25 4.49 6.53E-7 
RE 0.00% 0.00% 0.00% 0.00% 0.00% NV 

0.001   
Solution 1.50 0.80 20.00 1.25 4.50 6.82E-8 
RE 0.00% 0.00% 0.00 % 0.00% 0.00% NV 

a: The Value of the Objective function 19 
b: * * *ˆ| |RE x x x   20 
c: Not a Value 21 
 22 
As observed, increasing the weighting of the speed fit in objective function, i.e. decreasing  , 23 
yields more accurate parameter estimation. Particularly, when the objective function contains 24 
almost only speed fit, the calibrated parameters are almost identical to their ground truth. The 25 
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reason may be that when the solution is approaching closely to the optimum, the space gap is 1 
sufficiently small and/or stationary, i.e. the effect of the gap fit part is very small. Under this 2 
situation, looking into its first order derivative, i.e. the speed gap, would help moving the solution 3 
towards to the optimum. Moreover, the speed evolution of the IDM depends on the following 4 
vehicle only while the derivative of the space gap is relative to the difference between the speeds of 5 
the preceding and the following vehicles, i.e.,  6 

 1ˆ ˆ ˆ( )*p
t t t ts v v t s     (12) 7 

where 0.1t   is the sample interval of I80 dataset. As the speed profile of the proceeding vehicle 8 
is given, the space gap will decrease by reducing the speed gap given that there is no offset which 9 
can be achieved easily by initializing the IDM with the corresponding measured location. 10 
 11 

Calibration with Actual Single Trajectory 12 

The goal of this test is to reproduce the chosen actual single trajectory data by identifying the five 13 
parameters of the IDM using cross entropy method whilst to evaluate the impact of each parameter 14 
on objective function by probabilistic sensitivity analysis. To this end, the authors randomly select 15 
a pair of following-leading vehicle from I80 dataset and set   to be 1, 0.5, 0.01, 0 respectively in 16 
the COF to assess the performance of the proposed calibration method.  17 

With the default settings of CEM algorithm, the calibration results are presented in Table 2. 18 
 19 
TABLE 2 Solutions to IDM for Actual Dataset with respect to Different Value of   20 

Parameters 2( / )a m s  2( / )b m s  0( / )v m s  ( )T s  0( )s m  OV 
1   1.20 6 35 1.25 3.28 0.0170 
0.5   1.19 6 35 1.25 3.25 0.0105 
0.01   1.07 6 35 1.29 2.31 0.0042 
0   1.04 6 35 1.31 1.62 0.0040 

GA 1.07 6 35 1.29 2.31 0.0042 
The optimum solutions of four cases seem plausible except the same high values of desired speed 21 

0 35 / (126 / )v m s km h ǂ  and desired deceleration 26 /b m s , which indeed hit the specified 22 

boundaries. This may be because that this actual single trajectory is not sufficient for calibrating all 23 
parameters which are relevant to different traffic regimes rather than the detailed structure of the 24 
objective function. To be specific, this single trajectory contains neither free flow nor approaching 25 
traffic regime which is necessary to calibrate desired speed and desired deceleration, respectively. 26 
Treiber et al. (4) regarded this phenomenon as data incompleteness. As a consensus in the 27 
literature of calibration of microscopic models, the choice of suitable inputs (inputs have to 28 
sufficiently excite the system in order to be informative) is critical.  29 

For a more visible comparison, the simulated trajectory is plotted against the measured one 30 
in terms of gap and speed measures in Figure 1.  31 
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 1 
                                     (a)                                                                              (b) 2 

FIGURE 1 Comparison of three calibrated and observed data for  3 
(a) gap and (b) speed (‘Gap-1’ means the case of 1  ). 4 

 5 
The high consistency between the calibrated and observed measured of four cases indicates that 6 
the calibration results by the CEM is plausible. Remarkably, a better identification of standing 7 
traffic situation during time intervals from 300 to 400 is observed when 0.01   rather than 8 

0  . Although the global optimum can be found with synthetic data when there is only speed fit 9 
in objective function, i.e. 0  , a small weighting of the space gap is more suitable for calibration 10 
with actual trajectory data in this case study. The reason may be that, in contrast with the synthetic 11 
data, actual data such as NGSIM contains kinds of errors which renders considering speed fit only 12 
in the objective function is unsuitable for calibration (4, 29). 13 

To show the convergence of the CEM, the evolution of the PDF of the desired time gap for 14 
the case of 0.01   is shown in Figure 2.  15 

 16 
FIGURE 2 PDF estimation of T over first 10 iterations for 0.01  . 17 

 18 
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The change on the horizontal axis values of the PDF over iterations indicates that the PDF of the 1 
desired time gap becomes more and more concentrated around the optimal solution over iterations, 2 
and the optimal parameter is found when the standard deviations of this distribution is 3 
approximately zero (i.e. the density function is spiked). 4 

Probabilistic sensitivity analysis is conducted to provide an intuitive view of data 5 
incompleteness and identify the importance of certain parameters. For the case of 0.01  ,  the 6 
PDF by fixing certain parameter ix  to its optimal value while the other four parameters vary in 7 

pre-specified ranges, which is denoted as ( | )ig y x  previously, is presented in Figure 3. Note that 8 

2( | )g y x , where 2x  is the desired deceleration, is almost the same as ( )f y  which implies that the 9 

variation of other parameters except the desired deceleration contributes almost the total 10 
uncertainty to the objective function. As a result, the desired deceleration is identified as an 11 
insignificant parameter under this single trajectory case. In contrast, the PDF of the objective 12 
function by fixing the desired time gap T  presents a sharp spike. This distinct difference between 13 
the original PDF and 4( | )g y x  indicates that the variance of objective function concentrates 14 

around the range of 0 when desired time gap T  is fixing to its optimum. That is to say the variance 15 
of desired time gap contributes a lot to the uncertainty of the objective function under this single 16 
trajectory. Moreover, the low impact of certain parameters on objective function may be regarded 17 
as an index to data incompleteness such as the desired deceleration case. 18 

 19 
FIGURE 3 The results of PSA. 20 

 21 
The corresponding discrepancy of each ( | )ig y x  to ( )f y  is estimated by K-L distance, 22 

with results of  28,2,21,84,38
T

 for 1,2,...,5i  . On the one hand, small values of K-L distance of 23 

the desired deceleration and desired speed indicate that these two parameters are relevant 24 
insignificant inputs to objective function under this single trajectory, which may also correspond to 25 
the conclusion of data incompleteness of this single trajectory. On the other hand, the desired time 26 
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T  and minimum gap 0s , which are related to safe distance of individual driver in the IDM, are 1 

regarded as the most significant parameters beyond other parameters as indicated by their large 2 
values of K-L distance. Their variation contributes a lot to the fluctuation in the difference between 3 
calibrated and observed gap, which is consistent with the finding of Kesting et al. (19). 4 
 5 

Performance Assessment of the CEM and GA for Calibration 6 

In microscopic calibration literature, Genetic Algorithm (GA) is a widely adopted algorithm, 7 
which is also regarded as the benchmark solution algorithm, to solve the optimization problem (10, 8 
31). The GA is a stochastic-based global optimization method which mimics the natural biological 9 
evolution mechanisms, including selection and reproduction, cross over, and mutation 10 
mechanisms. GA is also one of the most popular optimization algorithms because not only any 11 
derivative information for optimization but also differentiable property for objective function are 12 
not required during process. With 1000 individuals and 100 maximum iterations, the optimal 13 
solution to the calibration problem of the IDM with single trajectory with respect to the case of 14 

0.01   using GA is shown in the bottom of Table 2. As observed, the parameters calibrated by 15 
the CEM and the GA are almost the same. However, their convergence properties are quite 16 
different. 17 

To explore the convergence of CEM and GA, two commonly used termination criteria are 18 
adopted: 19 

1. Standard deviation of objective function S  of current iteration k  is less than  : 20 

 2
1

1

1
: ( )

N

ki k
i

TermCond S S
N




   (13) 21 

2. The difference between the current optimal value of the objective function best
kS  and the 22 

average of the optimal values of the objective function of last (several) iterationslastt  is less 23 

than  , which is also termed as running mean: 24 

 2
1

1
:|| ||

last

k
best best
k i

i k tlast

TermCond S S
t


  

   (14) 25 

In the following cases, the above two termination criteria are used to calibrate the single trajectory 26 
shown in Figure 3, with respect to COF with 0.01  , to investigate different convergent 27 
properties of these two algorithms. 28 

As indicated in Figure 4 (a) that in terms of the standard deviation convergence criterion 29 
the CEM converges within 13 iterations while the GA seems to fail to converge. That means the 30 
CEM also converges within several iterations in terms of the mean objective value. In contrast, the 31 
standard deviation of GA decreases in the first 20 iterations but trends to fluctuate in a large scale 32 
later on. This may be due to that the mutation mechanism of GA then tries to change certain 33 
property of several samples to explore new potential best samples but fails. This failure results in 34 
several extremely high values of the objective function. As a consequence, the standard deviation 35 
of objective function also oscillates and cannot meet the standard deviation convergence criterion. 36 

As for the second termination criterion, Figure 4 (b) depicts that both the running means of 37 
the GA and CEM are decreasing and less than   after finite iterations. Therefore, the running 38 
mean termination criterion is fulfilled. The CEM takes less iterations to converge than the GA does. 39 
In terms of computational time, the CEM requires 11 seconds to converge while the GA takes 15 40 
seconds. For a multi-trajectories case including 111 pairs of trajectories, the CEM takes 727 41 
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seconds to converge while the GA needs 1055 seconds, indicating a better performance of the 1 
CEM than the GA. 2 

 3 
                                       (a)                                                                      (b) 4 
FIGURE 4 The convergence property of CEM and GA with respect to termination criteria 5 

of (a) ‘Standard deviation’ and (b) ‘Running mean’. 6 
 7 

CONCLUSIONS 8 

This paper proposed a new framework based on CEM and PSA to calibrate CF models with 9 
uncertainties such as noisy data and heterogeneous driver behaviors. Converting the calibration 10 
problem into a rare event detection problem, the CEM based optimization method is proposed to 11 
identify the parameters of car-following models. To identify important parameters, PSA is applied 12 
to investigate the probabilistic behavior of the model output response with respect to its parameter 13 
uncertainties. The PSA can handle the case that the PDF of interest is nonlinear and/or 14 
non-Gaussian, and not only in a few moments, due to its heavy tail. Furthermore, since the CEM 15 
and PSA are both based on the K-L distance, they can be simultaneously integrated into a unified 16 
framework to reduce the computational burden. 17 

Several empirical studies were conducted to illustrate the performance of the proposed 18 
calibration framework. Firstly, a synthetic data is used to show the effectiveness of the CEM to 19 
search a global optimum. Furthermore, the results suggested to find a better structure of COF for 20 
better performance of certain CF models to avoid subjectively decision on the variables in 21 
objective function. Secondly, in terms of actual trajectory dataset, the unrealistic value of certain 22 
parameter, which may be caused by insufficient information, has been quantified by the low value 23 
of the relative entropy through the lens of PSA. For IDM, the low impact of the desired velocity 24 
may be because that most of the drivers would expect more or less the same desired velocity. On 25 
the other hand, the desired time gap and the minimum spacing are the two most significant factors 26 
by the PSA. This is consistent with the observation in huge heterogeneity in drivers’ desired time 27 
gap and minimum spacing. Finally, comparing with GA, the CEM shows its superiority in terms of 28 
accuracy, computational efficiency, and convergence property under different termination criteria. 29 

In the future, more trajectories will be used to attempt to increase significance of the 30 
desired deceleration on objective function. Besides, more experiments with noise in the objective 31 
function are needed to confirm the robustness of our framework. 32 

 33 
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