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Abstract

A framework is presented that distinguishes the conceptually separate decisions of which treatment
strategy is optimal from the question of whether more information is required to inform this choice in
the future. The authors argue that the choice of treatment strategy should be based on expected utility,
and the only valid reason to characterize the uncertainty surrounding outcomes of interest is to establish
the value of acquiring additional information. A Bayesian decision theoretic approach is demonstrated
through a probabilistic analysis of a published policy model of Alzheimer’s disease. The expected value
of perfect information is estimated for the decision to adopt a new pharmaceutical for the population of
patients with Alzheimer’s disease in the United States. This provides an upper bound on the value of
additional research. The value of information is also estimated for each of the model inputs. This anal-
ysis can focus future research by identifying those parameters where more precise estimates would be
most valuable and indicating whether an experimental design would be required. We also discuss how
this type of analysis can also be used to design experimental research efficiently (identifying optimal
sample size and optimal sample allocation) based on the marginal cost and marginal benefit of sample
information. Value-of-information analysis can provide a measure of the expected payoff from proposed
research, which can be used to set priorities in research and development. It can also inform an efficient
regulatory framework for new healthcare technologies: an analysis of the value of information would
define when a claim for a new technology should be deemed substantiated and when evidence should
be considered competent and reliable when it is not cost-effective to gather any more information.

Bayesian decision theory provides a valuable framework for healthcare technology assess-

ment that distinguishes the conceptually separate decision of whether a new technology

should be adopted from the question of whether more research is required to inform this
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Bayesian value-of-information analysis

choice in the future (5). This type of approach is demonstrated by applying it to a published

policy model of Alzheimer’s disease (28). A probabilistic analysis of this model is con-

ducted by assigning prior distributions to characterize the uncertainty surrounding model

inputs, and the decision uncertainty is represented in the form of a cost-effectiveness ac-

ceptability curve. However, Bayesian decision theory suggests that the choice of treatment

strategy should be based on expected utility, and the only valid reason to characterize the

uncertainty surrounding outcomes of interest is to establish the value of acquiring addi-

tional information. The expected value of perfect information is estimated for the decision

to adopt a new pharmaceutical for the population of patients with Alzheimer’s disease

in the United States. This provides an upper bound on the value of additional research.

The value of information is also estimated for each of the model inputs so that future

research may focus on those parameters where more precise estimates would be most

valuable.

The value of conducting additional research to inform particular clinical decision prob-

lems and of acquiring more precise estimates of particular inputs used in a cost-effectiveness

analysis of healthcare technologies is of general interest. It has implications for the design,

conduct, and interpretation of research, as well as the more general policy issue of setting

priorities in clinical research and development. These issues are also at the heart of the cur-

rent international debate about the appropriate regulation of new healthcare technologies.

In the United States this debate has been focused in part on the implementation of the Food

and Drug Administration Modernization Act (16).

The FDA Modernization Act amended the standard for health economic claims from

“substantial evidence [typically demonstrated] by two adequate and well controlled clinical

trials” (15;27) to “competent and reliable scientific evidence.” What constitutes competent

and reliable evidence is not clear in the legislation, but Bayesian decision theory and an

analysis of the value of information can be used to asses whether input data for cost-

effectiveness analysis are “competent and reliable” and help determine whether an economic

claim for a new technology is “sufficiently substantiated.”

It cannot be efficient to demand the same standard of evidence in all circumstances and

across all technologies irrespective of any evidence already available, the size of the patient

population that could benefit from the new technology, and the costs of gathering more

information (4). These issues seem to be recognized in the more recent U.S. legislation

(16;17), which uses a definition of competent and reliable evidence from the Federal Trade

Commission’s standards (13):

. . . a reasonable basis [for a claim of cost-effectiveness] depends . . . on a number of factors relevant to

the benefits and costs of substantiating a particular claim. These factors include: the type of product,

the consequences of a false claim, the benefits of a truthful claim, the costs of developing substantiation

for the claim. . . . (16)

This standard of evidence requires explicit consideration of the marginal benefits and costs

of acquiring additional information, but no method for estimating these costs and benefits

has been suggested. The approach outlined in this paper provides a framework that can

define a claim as “substantiated” and evidence as “competent and reliable” such that it is

not efficient to gather any more information.

Bayesian value-of-information analysis is a useful analytic framework for both analysts

in designing and conducting research and for policy makers in considering research priorities

and the appropriate regulation of new technologies. We demonstrate the benefits and the

practicality of this approach by applying it to a published policy model of Alzheimer’s

disease.
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METHODOLOGIC BACKGROUND

Recently a Bayesian decision theoretic framework for the evaluation of healthcare pro-

grams has been presented (5;6;8). This analytic approach has a firm grounding in statistical

decision theory (30;32;33;38), and has been used in other areas of research including en-

gineering (20) and environmental risk assessment (19;43). The approach suggests that the

choice between mutually exclusive programs should be distinguished from the conceptually

separate question of whether more information should be acquired to inform this decision in

the future. Within this framework the choice between programs should be based on expected

utility, and the most important reason to consider the uncertainties surrounding the outcome

of interest is to establish the value of acquiring additional information by conducting further

research.

Information is valuable because it reduces the expected costs of uncertainty surround-

ing a clinical decision. The expected costs of uncertainty are determined by the probability

that a treatment decision based on existing (prior) information will be wrong and by the con-

sequences if the wrong decision is made (loss function). The expected costs of uncertainty

can also be interpreted as the expected value of perfect information (EVPI), since perfect

information (an infinite sample) can eliminate the possibility of making the wrong decision.

It is also the maximum a decision maker should be willing to pay for additional evidence to

inform this decision in the future (6;43). If the EVPI exceeds the expected costs of additional

research, then it is potentially cost-effective to acquire more information by conducting ad-

ditional research (the maximum benefits exceed the costs of further investigation). It is

also possible to consider the value of information associated with reducing the uncertainty

surrounding each of the parameters in a cost-effectiveness analysis of alternative strategies

of patient management. This analysis can focus research priorities by identifying those pa-

rameters where more precise estimates would be most valuable and, in some circumstances,

indicating which endpoint should be included in further experimental research.

However, observing an EVPI greater than the cost of additional research provides only

the necessary but not the sufficient condition for deciding to acquire more experimental

information (for example, conducting a clinical trial). It is necessary to estimate the benefits

of sampling, or the expected value of sample information (EVSI) for the patient population,

and the cost of sample information, including the additional treatment and reporting cost.

The difference between the EVSI and sampling cost is the expected net benefits of sampling

(ENBS), or the societal pay-off to proposed research. An estimate of the ENBS for every

feasible allocation of each sample size is required to identify the optimal allocation of trial

entrants (where ENBS reaches a maximum for a given sample size) (5). The optimal sample

size for the trial is where ENBS reaches a maximum (given optimal sample allocation). If

the maximum ENBS is greater than the fixed costs of the research, then it will be efficient to

conduct further research at this technically efficient scale and design. Although estimates of

ENBS are not presented here, the application of this type of analysis to Alzheimer’s disease

is discussed later.

AN APPLICATION OF BAYESIAN VALUE-OF-INFORMATION
ANALYSIS

The benefits and practicality of taking a Bayesian decision theoretic approach to the value

of information is demonstrated by applying it to a published policy model of Alzheimer’s

disease (28). A probabilistic analysis of this model demonstrates that value-of-information

analysis (VOI) can inform important policy issues such as setting research priorities,

establishing technically efficient research design, and informing an efficient regulatory

framework.
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A Policy Model of Alzheimer’s Disease

The purpose of the original (deterministic) model was to evaluate the impact of a new

pharmaceutical (donepezil) on the costs and outcomes of mild to moderate Alzheimer’s

disease (AD). Information about the efficacy of this new drug was provided by the results

of a placebo-controlled double-blind clinical trial (35). However, the follow-up period of the

trial was only 24 weeks, and economic and quality of life data were not collected. To inform

the policy decision of whether to adopt this new technology, an assessment of the costs and

health outcomes for a general population of Alzheimer’s patients must be made over a longer

period. A state transition model (Markov process) was used to characterize the progression

of AD through different disease states and care settings (39). States in the model included

three disease states (mild, moderate, and severe) defined by scores on the Clinical Demential

Rating Scale (CDR) (25); death; and two care settings (community and nursing home).

Alzheimer’s disease is a chronic and progressive illness, and as patients enter a more severe

disease state the probability of moving from community to nursing home care increases. All

patients started in either the mild or moderate disease state (here we consider those starting

in the mild state). The cycle length in the model was 6 weeks with a time horizon of 6, 12,

and 18 months (see Figure 1 for an illustration of the states and possible transitions).

The underlying disease progression (transition probabilities) was derived using data

from the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD): a longi-

tudinal data base of 1,145 AD patients (26). Transitions to the two care settings in each

disease state were also based on the CERAD data. Health state utilities were assigned to

each of the seven states using the Health Utilities Index Mark II (HUI:2) and the HUI:2

multi-attribute utility function (29;44). These measures of health-related quality of life were

based on a cross-sectional study of 679 AD patient and caregiver pairs (29). Direct medical,

nonmedical, and indirect costs were based on a previously published analysis (34). In this

probabilistic analysis of the model, costs were based on an analysis of the cross-sectional

study of patients and caregivers (21). The effectiveness of the new drug was modeled as

relative risk ratios that were estimated using data from the 24-week trial and a Cox pro-

portional hazards regression model. The natural history transition probabilities, between

the mild and moderate health states (based on CERAD data), were converted into hazard

rates. The estimated relative risk ratios were applied to the natural history hazard rate to

provide hazard rates on treatment. These rates were converted back to treatment transition

probabilities.

Figure 1. A Markov model of disease progression.
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The authors conducted a series of univariate sensitivity analyses on key parameters

to account for the considerable uncertainties in the model, including alternative scenarios

of the duration of efficacy of the new drug beyond the 24-week trial follow-up. The cost-

effectiveness of the new drug was sensitive to duration of drug effect, and the authors

emphasize the need for more precise and direct estimates of key parameters in future

research. Neumann et al. (28) provides a more detailed discussion of the model, data, and

results.

The Policy Issues

This application poses two important and conceptually separate policy questions: a) given

existing information should the new drug treatment be adopted; and b) should more infor-

mation be acquired (by conducting additional research) to inform this choice in the future?

The first policy question is straightforward. That is, when faced with a choice between

mutually exclusive strategies of patient management, we should simply choose the strat-

egy with the highest expected utility. Inference and the distribution of expected utility is

irrelevant to treatment choice (5). Indeed, we demonstrate below that the traditional rules

of inference will impose substantial costs on patients with AD in the United States that can

be measured in terms of resources or health improvement forgone.

The distribution of expected utility may be irrelevant to treatment choice, but it is very

relevant to the second policy question: should more information be acquired to inform this

treatment choice in the future? We can phrase this second policy decision in terms of the

FDA Modernization Act: is the economic claim for this new pharmaceutical substantiated

and can the evidence be regarded as competent and reliable? The framework presented

below can help answer these general questions. We can also address a number of specific

questions in the AD example, including:

r Is additional research in AD potentially cost-effective?

r Are the estimates of the AD model inputs adequate?

r For which model inputs would more precise estimates be most valuable?

r Is experimental design required for subsequent research?

r If so, which endpoints should be included in any future clinical trial?

r What is the optimal follow-up period?

r What is the optimal sample size?

r How should trial entrants be allocated between the arms of the trial?

r What is the value of this proposed research?

In short, the key questions are: what is a technically efficient research design and how should

research and development resources be allocated?

Developing a Probabilistic Model

Before the value of additional information can be established, the existing (prior) infor-

mation must be identified, characterized, and incorporated in the model. Characterizing

existing information and the current uncertainties surrounding this decision problem can

be done by assigning prior distributions to each of the model inputs. These distributions

are of prior means and represent the current second order uncertainty (i.e., the distribution

of the mean) surrounding the estimates of each of these inputs (3;42;44). Once existing or

prior information has been characterized in this way, these distributions can be propagated

through the model using Monte Carlo simulation (3;11;42;44). The output of this simulation
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provides a distribution of the prior incremental net benefit of the new drug, which can be

expressed in either health outcome (η) or monetary terms (µ) (5;6;41):

µ = λ · (U2 − U1) − (C2 − C1) or (λ.U2 − C2) − (λ · U1 − C1) (1a)

η = (U2 − U1) − 1/λ · (C2 − C1) or (U2 − 1/λ · C2) − (U1 − 1/λ · C1) (1b)

where U2 and C2 are the health outcome and costs associated with the new drug treatment,

respectively, and U1 and C1 are the outcomes and costs associated with current practice (in

this case, no treatment). Consistent with the original model we take a societal perspective,

so the monetary valuation of health outcome (λ) can be interpreted as the marginal societal

willingness to pay for an improvement in health outcome (the budget constraint is endoge-

nous) (18;31). The value of λ is then the normative choice of a social decision maker, and

although an analyst may not know with certainty which value of λ will be selected, it will

not be uncertain to the decision maker at the time the choice is made. Therefore, it is not

unreasonable to regard λ as a constant and conduct analysis conditional on a range of values

of λ. It is then the task of societal decision makers to make a normative choice of which

value of λ is acceptable. In this analysis we use $50,000 per quality-adjusted life-year as a

central value but conduct analysis on values ranging from $1,000 to $100,000.

Characterizing Prior Information

The characterization of prior information surrounding model inputs in the probabilistic

model is summarized in Table 1. The baseline transition probabilities were characterized

as beta distributions, which seems appropriate for two reasons: the beta distribution takes

values between 0 and 1, and its parameters (α, β) represent the number of “successes” and

“failures” that were directly available from the CERAD database (1;3).1 The prior mean

health state utility for each state in the model was characterized as normally distributed

with standard deviations based on standard errors from the data in the cros-sectional study

(29).2 Data for direct and indirect costs for each health state were reported only as means

and standard errors. We characterized their prior distribution as lognormal (with standard

deviations equal to the reported standard errors) because it has some useful characteristics

for modeling costs data (it cannot take values less than zero and it is positively skewed) (11).

For similar reasons we characterized the relative risk ratios applied to the mild to moderate

and moderate to mild transition as lognormal based on the reported mean and confidence

intervals from the Cox proportional hazards regression (28). Dropout or discontinuation

Table 1. Characterizing Prior Information

Parameter Prior distribution Source

Baseline transition Beta CERAD longitudinal data
probabilities (n = 1,745, 1,320)

Health state utilities Normal Cross-sectional study
(HUI.2, n = 191, 55) (HUI.2, n = 191, 55)

Direct costs Lognormal Cross-sectional study (n = 191, 10)
Indirect costs Lognormal Cross-sectional study (n = 191, 10)
Relative risk ratios Lognormal 24-week double-blind placebo-controlled

Mild to moderate (0.5, SD = 0.188) clinical trial
Moderate to mild (2.65, SD = 1.56)

Efficacy duration Lognormal Panel of clinical experts (n = 13, assumed
(78 weeks, SD = 47.3) not independent)

Dropout rate Lognormal Open label follow-up
(0.04, SD = 0.0128)
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rates were characterized as lognormal distributions with mean and standard deviations

based on the estimates used in the original model and limited evidence from an open

label follow-up study (36). Additional utilization and prices associated with the new drug

treatment (conditional on disease state) are regarded as constants because any differences in

utilization and price across decision makers/settings represent variability rather than second

order uncertainty (see Thompson and Graham [44] for a discussion of this distinction and

the dangers of conflating the two).

The duration of drug effect was found to be the most important uncertainty by Neumann

et al. (28), but clearly some assessment of effect beyond the 24-week follow-up is required

when making the policy decision of whether to adopt the new treatment. The evidence

from an open label follow-up study suggested that there may be a longer term effect, but

it was of limited use due to the absence of a control group (36). Neumann et al. (28)

conducted a survey of clinical experts and elicited judgments about the expected efficacy

duration from 13 respondents. A lognormal distribution with mean duration of 78 weeks

and standard deviation of 47.3 weeks were fitted to these data.3 This approach assumes that

responses were not independent: all responses were observations from the same (common)

prior distribution. This is the most conservative interpretation of the information provided

by these judgments because it implies that the second and subsequent responses do not

provide additional information. The alternative view would be to assume that the judgments

were independent, in which case they would be exchangeable with sample information (the

variance of the prior would be much smaller). This interpretation was rejected as far too

optimistic.

The Results of Probabilistic Analysis

Monte Carlo simulation (10,000 iterations) was used to propagate these prior distributions

through the model. The prior distribution of incremental net benefit is illustrated in Figure 2A

for time horizons of 24 weeks and 210 weeks for patients starting in the mild/community

state and using λ = $50,000. As the time horizon is extended, the expected incremental

net benefit increases and the new treatment becomes cost-effective (µ0 > 0) when costs

and outcomes are considered beyond 54 weeks. However, the uncertainty surrounding

Figure 2A. Prior distribution of incremental net benefit.

44 INTL. J. OF TECHNOLOGY ASSESSMENT IN HEALTH CARE 17:1, 2001



Bayesian value-of-information analysis

these estimates of net benefit is also increasing as the model extrapolated beyond the trial

period. So although the mean incremental net benefit is positive at 210 weeks ($1,220),

the uncertainty surrounding this estimate is substantial. It is also clear from Figure 2A

that evaluating this new treatment at 24 weeks would seriously underestimate the expected

health outcomes and overestimate costs (and uncertainty) in this chronic disease because

the benefits of an effective treatment can be expected to accumulate over a much longer

period of time.

The uncertainty surrounding the cost-effectiveness of donepezil at 4 years for a range

of values of λ can be represented as an acceptability curve in Figure 2B (2). The probability

that donepezil is cost-effective (p[µ0 ≥ 0]) is .6796 (µ0 = $1,220) when λ = $50,000 in

Figure 2B. However, the uncertainty surrounding µ0 is substantial (standard deviation (σ0)

of $2,168) and the error probability (α = 1 − p[µ0 ≥ 0]) that the new treatment is not cost-

effective is .3204, which is greater than the conventional benchmarks of .05 or .025 used in

both Bayesian inference (40) and traditional frequentist statistics. Equivalently µ0 is within

a Bayesian range of equivalence (40), or the lower 95% confidence limit includes zero in a

frequentist framework.

According to the rules of inference (whether Bayesian or frequentist), the apparent

cost-effectiveness of the new drug treatment is not statistically significant, we cannot reject

the null hypothesis, and the result is indeterminate. In these circumstances the new treatment

will be rejected in favor of current practice. However, these rules lead to the rejection of

the alternative with the highest probability of being optimal: the probability that the new

treatment will provide greater net benefits than current practice (based on the information

currently available) is 1 − α = .6798 in Figure 2B. Failure to adopt the new treatment

simply because the difference in net benefit is not regarded as statistically significant will

impose unnecessary costs. For an individual AD patient, these costs can be valued at $1,220

(the additional net benefit forgone) or 0.0244 quality-adjusted life-years (QALYs) forgone.

The costs imposed on the U.S. population of current and future AD patients over the effective

lifetime of this new technology can be valued at $1,064 million or 21,279 QALYs forgone

(estimates of the effective U.S. AD patient population are discussed later).

Figure 2B. Acceptability curve for donepezil.
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If the societal objective is to maximize health gain subject to a budget constraint,

then (in the absence of substantial sunk costs or irreversibilities)4 alternative strategies

of patient management should be selected based on expected net benefit, irrespective of

whether any differences are regarded as statistically significant or fall outside a Bayesian

range of equivalence.5 This is because one of these two mutually exclusive alternatives

must be chosen and this decision simply cannot be deferred. The opportunity costs of

failing to make the correct decision based on expected net benefit are symmetrical, and the

historical accident that dictates which of the alternatives is regarded as current practice is

irrelevant. The measure of net benefit used in this analysis is based on a particular objective

(or social welfare function) that may be judged inappropriate. If the decision maker has

other legitimate concerns (for example, equity issues, a concern for rare but catastrophic

events, or preferences toward risk), then the measure of net benefit may be regarded as

incomplete. However, these arguments (which imply a different social welfare function)

could be incorporated in the analysis by amending the measure of outcome, and they do

not change the fundamental point that inference is irrelevant to treatment choice (5).

THE DECISION TO ACQUIRE MORE INFORMATION

Although the distribution of net benefit may not be relevant to the choice between treatment

strategies for AD, it is relevant to the decision of whether to collect more information to in-

form treatment choice now and in the future. This decision theoretic approach distinguishes

the simultaneous but conceptually separate steps of deciding which treatment should be

adopted, given existing (prior) information, from the question of whether more information

should be acquired.

Information is valuable because it reduces the expected costs of uncertainty surrounding

clinical decisions. The expected cost of this uncertainty will be determined by the probability

that a decision based on expected net benefit will be wrong (Figure 2A) and the size of

the opportunity loss if the wrong decision is made (these costs include resource savings

and health outcome forgone). The expected cost of uncertainty surrounding the treatment

decision when it is based on existing (prior) information can also be interpreted as the

expected value of perfect information (EVPI), since perfect information (an infinite sample)

would eliminate the possibility of making the wrong decision (20;32;33;36;38).6

EVPI = λ · σ0 · L(D0), where D0 =
|η0 − ηb|

σ0

(2)

L(D0) = unit normal loss integral for standardized distance D0, η0 = prior mean incremental

net benefit of the new treatment (in health outcome), and ηb = point of indifference between

the two alternatives (ηb = 0).

The probability that a treatment decision based on prior expected net benefits will be

wrong is determined by the distance η0 from ηb and the uncertainty surrounding η0, which

is measured by the prior standard deviation (σ0) and represents the amount and quality of

prior information available. The opportunity losses if the wrong decision is made is simply

the difference in net benefit between what would have been the optimal treatment choice

and the choice actually made based on prior information (|η0 − ηb|). These losses can be

expressed in money terms as λ · |η0 − ηb|, so the slope of the loss function is simply λ or

the monetary value placed on opportunity losses when they occur.

EVPI for the Choice Between Strategies

The EVPI in equation 2 is the maximum value that can be placed on acquiring additional

information to inform treatment choice for an individual AD patient. Figure 3A illustrates
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Figure 3A. EVPI for an individual patient.

the relationship between the EVPI and the time horizon when λ = $50,000. Evaluating this

problem at a time horizon of only 24 weeks will seriously underestimate the EVPI (as well

as η0) because the prior decision is to choose current practice (η0 < 0) and the uncertainty is

relatively small. As the time horizon is extended, η0 increases and becomes positive after 54

weeks, and the uncertainty surrounding η0 increases. The probability of making the wrong

decision (and the EVPI) unambiguously increases as the time horizon is extended from 24

to 54 weeks because σ0 increases and |η0 − ηb| falls. Beyond 54 weeks σ0 increases but

|η0 − ηb| also increases, and the impact on EVPI is ambiguous.

The information generated by research is nonrival and has public good characteristics

(10;37). Once it is produced, it can be used to inform the treatment decisions for all eligible

patients at no additional cost. The EVPI for the population of current and future AD patients

over the effective lifetime of this new technology (T) can be established based on estimates

of the incidence of AD patients (I) in each period (t) discounted at rate r.

Population EVPI = EVPI ·

T∑

t=1

It

(1 + r)t
(3)

The discounted effective U.S. population of AD patients was estimated to be 872,087.

This estimate was based on reported incidence rates of AD by age and gender, U.S. census

projections by age and gender, and an effective lifetime of the new technology ranging from

2 to 8 years.7 It is worth noting that the effective population (and therefore EVPI) will be

finite if either T is finite and/or r > 0.

The EVPI for the U.S. population of AD patients over a range of values of λ is illustrated

in Figure 3B. At a time horizon of 210 weeks and λ = $50,000, the EVPI is $339 million.

This represents the maximum value of acquiring additional information and suggests that

proposed research will be potentially cost-effective (the fixed costs of research are likely to
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Figure 3B. EVPI for treatment choice (US population).

be less than the EVPI). The value of information is closely related to the monetary valuation

of health outcome. At 210 weeks, as λ increases the EVPI falls (when λ > $12,000). This

is because η0 > 0, so as λ increases |η0 − ηb| also increases, and the probability of making

the wrong decision falls. However, the value placed on opportunity losses when they occur

is increasing. In this case the former offsets the latter8 (EVPI falls). At a time horizon of

54 weeks, the EVPI reaches a maximum at λ = $51,000, where η0 = ηb. At this point the

decision maker is indifferent between the treatment alternatives, and the probability that a

decision based on η0 will be wrong reaches a maximum. At a time horizon of only 24 weeks,

the new treatment is not cost-effective even at λ = $100,000. The EVPI is underestimated

and only rises to $4.6 million at λ = $100,000.

The results in Figure 3B demonstrate that the explicit monetary valuation of health out-

come is an essential and unavoidable issue in the decision to acquire additional information

to inform treatment choice. It cannot be avoided because any decisions that are made about

further research implicity assign such a value. The results also demonstrate that evaluating

the treatment at 24 weeks will underestimate the value of additional information as well as

underestimating health outcome and overestimating costs (also see Figure 2A).

The population EVPI for the choice between these strategies measures the maximum

possible payoff to additional research. It provides a first hurdle for proposed research (6), or

in the terms of FDAMA, further research will not be efficient. A claim can be regarded as

“substantiated” and evidence as “competent and reliable” if the EVPI is less than the fixed

costs of additional research. Alternatively, further research is potentially cost-effective and

a claim may not be substantiated if the EVPI exceeds the fixed costs of research. In this

example, the EVPI does exceed the fixed cost of further research and the economic claim

for the pharmaceutical may not be regarded as substantiated. However, observing EVPI

greater than the fixed costs of research is only a necessary but not sufficient condition for

demanding more information. The sufficient condition requires estimates of the marginal

benefits and marginal costs of additional information (see Discussion).
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EVPI for Model Inputs

The analysis described above established the EVPI for the clinical decision problem as

a whole; however, it is also useful to consider the value of information associated with

each of the uncertain parameters in the model. This type of analysis is the VOI equivalent

to conditional probabilistic analysis (3;11;14) where the Monte Carlo simulation is run

holding the parameter of interest constant at its expected value.9 For example, in the AD

model the EVPI associated with efficacy duration (EVPIED) is the difference between the

EVPI when all parameters are allowed to vary and the EVPI conditional on efficacy duration

taking its expected value (EVPI|ED=78 weeks).

EVPIED = EVPI − EVPI|ED=78 weeks (4)

This analysis can help to focus research priorities in AD by identifying those model

inputs where more precise estimates would be most valuable (where EVPI is high). In some

circumstances this can indicate whether an experimental or an observational study may be

required. Those parameters that are vulnerable to selection bias, such as measures of efficacy

and the duration of efficacy, will require experimental design. However, other inputs, such

as health state costs and health state utilities, may not be so vulnerable (particularly if they

are conditional on clinical events within the model), and a clinical trial may not be required.

This type of analysis can also start to address the questions of whether an experimental

design will require a longer follow-up than previous clinical trials and which endpoints

may be worth considering.

The EVPI associated with the AD model inputs at 210 weeks (λ = $50,000) are illus-

trated in Figure 4. These results suggest that longer follow-up may be worthwhile because the

EVPI associated with efficacy duration (ED) and with the relative risk ratio (RRR) beyond

24 weeks, conditional on efficacy being durable (RRR > 24), are substantial ($270 million

and $93 million, respectively). However, a more precise estimate of efficacy within the

Figure 4. EVPI for model inputs (210 weeks).
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existing trial period (RRR < 24) is still valuable ($84 million). Each of these inputs, as

well as the dropout rate ($39 million), are particularly vulnerable to selection bias so either

experimental design, or possibly econometric solutions to selection bias in observational

data (23;24), would be required.

The EVPIs associated with the other groups of inputs10 can be obtained by holding

each of the inputs constant at their expected value. These include baseline transitions,

direct costs, utilities, and indirect costs. The EVPIs for these groups of inputs are much

lower ($49 million, $38 million, $36 million, and $35 million, respectively). However, at the

margin this does not necessarily mean that additional research about these parameters should

take a lower priority, because the costs of including these endpoint in further experimental

research, both in terms of resources and the health gains forgone of those patients enrolled

and awaiting the results of the research, may also be lower. Similarly, the costs of obtaining

additional information about efficacy and duration may be high, so that high EVPI may not

necessarily indicate high priority at the margin.

Despite this, these estimates do give some indication of the value of including economic

as well as clinical endpoints in a proposed trial and the value of different design options.

For example, if the fixed costs of including health state utilities in a trial exceed the EVPI,

then it will not be efficient to include them as endpoints. It is also important to note that

the value of information for a group of model inputs is not the simple addition of the value

of information of each separately since this excludes the joint effects within the model.

The EVPI associated with costs, utilities, and baseline transitions jointly was established

by running the simulation while holding them all constant at their expected values. The

EVPI or the maximum value of including these other endpoints was $64.4 million, which

is substantially less than the sum of the EVPI for each of these parameters.

Although observing an EVPI for a model input that is greater than the fixed costs of

research is only a necessary condition for demanding more information, it does start to

address the question: are the model inputs adequate? In the terms of FDAMA, the evidence

for a model input can be regarded as competent and reliable (or adequate) if the EVPI is

less than the fixed costs of additional research. However, if the EVPI is greater than the

fixed costs of research, then the evidence may not be regarded as competent and reliable

(or inadequate) once the marginal benefits and costs of acquiring a more precise estimate

have been established.

DISCUSSION

The framework presented above distinguishes the question of which strategy of patient

management should be chosen, given existing information, from the conceptually sepa-

rate decision of whether more information should be acquired to inform this choice in the

future. The rules of classical statistical inference and their Bayesian counterparts (ranges

of equivalence) appear to be inconsistent with the objectives of a coherent healthcare sys-

tem, impose unnecessary costs, and could be rejected in favor of maximizing expected

utility (net benefit) and establishing the value of information. Others have made similar

arguments:

It must be recognised that clinical trials are not there for inference but to reach a decision, and the

omission of their raison d’etre is serious. In the long term utility is realistic and indeed necessary. . . .

It is only by using expected utility that we can be sure that our actions fit together sensibly. I suspect

that the procedure of continuing with a trial until a tail area probability in the posterior is small is just

as incoherent as a belief based on the tail area p-value. Or if it is coherent, it implies an inept utility,

such as one taking only values of 0 and 1 (22).
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The possibility of abandoning inference (based on either a frequentist or Bayesian view of

probability) and taking a decision theoretic approach has been discussed for some time but

has often been rejected because:

. . .the consequences of any particular course of action are so uncertain that they make the meaningful

specification of utilities rather speculative. . . . (40,360)

It is certainly true that, when attempting to fully characterize the uncertainties in a decision

problem when there is a lack (or absence) of good quality data for key clinical events,

speculation and judgment are inevitable. There are a number of possible responses to this

situation: ignore the events for which evidence of an acceptable quality is unavailable (in

which case the analysis will be partial and biased); only analyze decision problems where

complete and good quality evidence has already been produced (in which case research will

focus on relatively simple questions where we already have solutions); or address complex

and uncertain problems in an explicit way, using the best evidence when it is available,

but accept speculation and judgment when it is not. The choice is not between speculation

or evidence but between methods that expose the lack of evidence and make judgments

and speculation explicit or those that leave the judgments and speculation for individuals

to make implicity and possibly inconsistently. Making judgment and speculation explicit

has a number of advantages, because only then are the key uncertainties exposed to debate,

alternative formulation, and an analysis that can indicate where more evidence should be

acquired through further research.

For example, in the AD model there is no experimental evidence for efficacy duration

beyond 24 weeks, and clinical judgments were used to form a diffuse prior distribution for

this key parameter. An alternative is to assume (as the FDA implicity does for purposes of

allowing promotional claims) that the drug becomes totally ineffective after 24 weeks. This

assumption is no more grounded in experimental evidence, and many clinical experts would

argue that this would not be credible (we have shown previously that it will underestimate

outcomes and overestimate costs). We extrapolated from the trial using an explicit model

of the disease process, combining informed speculation about possible efficacy duration.

The considerable uncertainty, due to the poor quality of evidence on efficacy duration, was

incorporated in the analysis by assuming that the clinical judgments were not independent

(which generated a diffuse prior). The results showed that the value of acquiring further

information about this uncertain but key parameter is substantial (EVPIED = $270 million)

and that additional experimental research is potentially cost-effective.

The same type of analytical framework can be used to establish the expected benefits

and the costs of sample information. It is then possible to answer questions such as whether

an additional clinical trial required before an economic claim for donepezil can be substan-

tiated. If so, should an economic evaluation be conducted alongside the new trial, and what

is the optimal follow-up, sample size, and patient allocation?

The societal payoff to proposed research, or the expected net benefits of sampling

(ENBS), is simply the difference between the expected benefits and expected cost of sam-

pling (5;6). If the ENBS > 0 for any sample size, then further experimental research will

be efficient and an economic claim for donepezil cannot be regarded as substantiated until

additional research has been conducted.11 The optimal sample size for this proposed re-

search will be where ENBS reaches a maximum, given that the trial entrants are allocated

optimally between the two arms of the trial (5;7).

This framework can also be used to decide which endpoints should be included in a

proposed trial. For example, excluding direct and indirect costs and heath state utilities will

mean that even very large samples cannot resolve all the uncertainty surrounding η, and the

expected benefits of sampling will be reduced. However, the fixed and marginal reporting
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costs of sampling will also be reduced, and economic evaluation alongside a trial will be

efficient if the former offsets the latter. In some circumstances large and simple clinical

trials may well be efficient, but for other clinical decision problems, trials with economic

endpoints will be required (9;12).

A similar approach can also be used to establish the optimal follow-up for any future

trial. For example, a proposed trial with a 36-week follow-up cannot fully resolve the

uncertainties about effectiveness and cost beyond 36 weeks (even when sample size is very

large), so the expected benefits of sampling will always be lower than with a longer follow-

up period. However, the fixed and marginal costs of research will also be lower, and the

societal payoff may increase or fall. The technically efficient follow-up for a trial will be

where the ENBS reaches a maximum over a range of possible follow-up periods.

This discussion suggests that technically efficient design can be established based on

estimates of ENBS for each combination of alternative endpoints, follow-up periods, sample

size, and sample allocation.

CONCLUSIONS

Once a Bayesian decision theoretic approach is adopted, the two conceptually separate

policy questions (whether the new drug treatment should be adopted and whether more

information should be acquired) can be addressed. We can phrase this second policy question

in terms of the FDA Modernization Act: is the economic claim for this new pharmaceutical

substantiated and can the evidence be regarded as competent and reliable? The analysis

presented above shows that this framework can inform these general policy issues and

address a number of specific questions in AD research, including:

r Is additional research in AD potentially cost-effective?

r Are the estimates of the AD model inputs adequate?

r For which model inputs would more precise estimates be most valuable?

r Is experimental design required for subsequent research?

r If so, which endpoints should be included in any future clinical trial?

r What is the optimal follow-up period?

r What is the optimal sample size?

r How should trial entrants be allocated between the arms of the trial?

r What is the value of this proposed research?

In short, this approach can establish technically efficient research design and provide a

societal value of proposed research that can be used to allocate research and development

resources efficiently. This type of analysis also informs an efficient regulatory framework

for new healthcare technologies: an analysis of the value of information defines a claim for

a new technology as substantiated and evidence as competent and reliable when it is not

efficient to gather any more information.

NOTES

1 Multiple transitions were restructured into a number of conditional probabilities so that each

set of transitions is a series of binary events. This ensures that probabilities less than zero or greater

than one cannot occur during simulation.
2 Although we did have access to the individual observations, which were not normally dis-

tributed, here we are only concerned with the second order uncertainty (the distribution of the mean),

so it is not unreasonable to use the normal distribution when sample size ranges from 55 to 191.

52 INTL. J. OF TECHNOLOGY ASSESSMENT IN HEALTH CARE 17:1, 2001



Bayesian value-of-information analysis

3 Conditional on efficacy being durable, the relative risk ratios for the 24-week trial were applied

to the baseline transition probabilities using a prior distribution based on the standard errors from

the Cox regression. If efficacy is not durable, then baseline transitions are used. This is only one

way to incorporate efficacy duration, and the uncertainties introduced as the results of the trial are

extrapolated.
4 If the adoption decision will result in sunk costs or irreversibilities, then maximizing expected

net benefit can be amended. Either the cost that will be sunk can be compared to the benefits of

adoption (5) or option prices can be used to adjust the estimates of net benefit. However, these issues

do not lead back to traditional rules of inference.
5 There may be other arguments in a societal decision maker’s utility function, such as equity,

access, and concern for catastrophic events. The appropriate response would be to incorporate these

arguments in a measure of net benefit rather than use tradition rules of inference.
6 This parametric approach requires the prior net benefit to be normally distributed (32;33).

Although EVPI can be established using a nonparametric approach directly from the Monte Carlo

simulation (14;43;44), we take the parametric approach for ease of exposition and so that the marginal

benefits of sampling can be more easily considered in the Discussion.
7 Where the probability of obsolescence rises from 2 to 8 years, the effective lifetime of the new

technology is uncertain, but it is only expectation of T that is relevant because it is only the expected

value of information (not its distribution) that is important for policy decisions.
8 This need not be the case, and EVPI may rise or fall with λ, depending on the strength of prior

information.
9 We should only be concerned with the expected value of information because a societal decision

maker should be risk-neutral with respect to the payoff from additional research. Therefore, if the

relationship between a parameter is not markedly nonlinear, it may be reasonable to conduct analysis

conditional on the expected value of the parameter.
10 We could also establish VOI for the costs, utilities, and baseline transition probabilities of each

heath state.
11 There is tension between the societal benefits of research (expressed as ENBS) and ethical

concerns for those enrolled in the trial. We do not attempt to incorporate important and legitimate

concerns for those enrolled, which is the responsibility of ethics and data monitoring committees.

However, the ENBS does provide an estimate of the opportunity costs to society (collective ethics) of

stopping a trial or failing to approve a trial on individual ethical grounds. Establishing the opportunity

cost of holding ethical concerns can help to achieve some consistency in the inevitable trade-off

between collective and individual ethics.
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