

This is a repository copy of *Response to: 'reporting of potential immunogenicity with biologic drugs: clarity and accuracy required' by Moots et al.*

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/94491/

Version: Accepted Version

Article:

Emery, P, Vencovský, J and Ghil, J (2016) Response to: 'reporting of potential immunogenicity with biologic drugs: clarity and accuracy required' by Moots et al. Annals of the Rheumatic Diseases, 75 (5). e25. ISSN 0003-4967

https://doi.org/10.1136/annrheumdis-2016-209203

(c) Article author (or their employer), 2016. Produced by BMJ Publishing Group Ltd (& EULAR) under licence. This is an author produced version of a paper published in Annals of the Rheumatic Diseases. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Annals of the **RHEUMATIC DISEASES** The Eular Journal

Response to eLetter by R Moots

Journal:	Annals of the Rheumatic Diseases	
Manuscript ID	annrheumdis-2016-209203	
Article Type:	Correspondence response	
Date Submitted by the Author:	25-Jan-2016	
Complete List of Authors:	Emery, Paul; 1. Leeds Institute of Rheumatic and Musculoskeletal Medicine, ; 2. NIHR Leeds Musculoskeletal Biomedical Research Unit, Leeds Teaching Hospitals NHS Trust Vencovsky, Jiri; Institute of Rheumatology, Ghil, Jeehoon; Samsung Bioepis,	
Keywords:	DMARDs (biologic), Rheumatoid Arthritis, Autoantibodies	

SCHOLARONE" Manuscripts

Response to: 'reporting of potential immunogenicity with biologic drugs: clarity and accuracy required' by Moots et al.

Correspondence to Professor Paul Emery, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Chapel Allerton Hospital, Chapeltown Road, Leeds, LS7 4SA, UK; p.emery@leeds.ac.uk

Paul Emery¹, Jiří Vencovský², Jeehoon Ghil³

¹Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, UK

²Institute of Rheumatology, Prague, Czech Republic

³Samsung Bioepis Co., Ltd. Incheon, Republic of Korea

We thank Moots et al for the questions regarding the immunogenicity results in our study.

While it seems that there was much concern about the details of the methods and results of the immunogenicity data, the authors would like to reassure Dr. Moots and colleagues that the presented data are valid and reliable and follow standard reporting procedures. We provide the following explanations and that they are helpful in this respect.

The proportion of patients who tested positive for anti-drug antibodies (ADA) at least once up to Week 24 was significantly lower in SB4 compared to the etanercept reference product (ETN) (2 patients [0.7%] in SB4 and 39 patients [13.1%] in ETN, *p*-value < 0.001). Only one in the ETN group had neutralising capacity [1]. The incidence of patients with positive ADA by titre up to Week 24 is presented in Table 1. Almost all ADAs were transient, which is consistent with the previous studies with ETN [2 3]. All patients were reported as positive only once throughout the study except one patient in the ETN group. This patient was reported as positive ADA at two visits (Week 4 [titer of 64] and Week 8 [titer of 16]).

The MSD electrochemiluminescence (ECL) bridging assay (Meso Scale Discovery, MD, USA) with acid dissociation was employed to determine ADA in the study. The bridging assay format relies on the characteristics of ADA to crosslink two drug molecules conjugated to a capture and a detection label. In addition, a multi-tiered approach was applied as recommended by the European Medicines Agency [4 5]. This includes a screening assay that was to detect samples that has a binding reactivity to drug and the confirmatory test is to confirm that the binding reactivity is indeed specific to the drug. The assay cut points were appropriately determined and not biased by any presence of drug since randomly selected 50 individual drug naïve samples were used for setting up the study specific cut points. In addition, the experimental approach was applied as the recommendation [6] that is widely followed by the industry to reduce subjectivity and increase objectivity in determined with 5% and 0.1% false positive rate respectively.

There are product-specific factors known to affect immunogenicity, such as product origin (foreign or human), product aggregates, impurities, glycosylation, formulation, or container closure system [7]. Among these factors the level of product aggregates (high molecular weight in size exclusion-high performance liquid chromatography [SE-HPLC] and peak 3 in hydrophobic interaction chromatography [HIC]), impurities (host cell proteins [HCPs]), and glycosylation (%high mannose N-glycan) are slightly lower in SB4 compared with EU-ETN. Although it is unclear why the incidence of ADA was lower in SB4 compared with ETN, the differences in product aggregates, impurities, and glycosylation may have caused the lower incidence of ADA in SB4 compared to ETN.

Evaluation for efficacy, safety and immunogenicity was performed in all patients enrolled, while PK was assessed in a subset of the enrolled patients (41 patients in SB4 and 38 patients in ETN). Among PK population, 1 patient in SB4 and 3 patients in ETN were reported to have positive ADA results. None of them had a positive result for neutralising antibodies. In SB4, mean trough concentrations ranged from 2.427 to 2.923 μ g/mL in patients with ADA negative results and from 1.078 to 2.277 μ g/mL in a patient with ADA positive results. In ETN, mean trough concentrations were ranged from 2.118 to 2.680 μ g/mL in patients with ADA negative results and from 1.137 to 2.139 μ g/mL in patients with ADA negative results and from 1.137 to 2.139 μ g/mL in patients with ADA negative results and from 1.137 to 2.139 μ g/mL in patients with ADA negative results and from 1.137 to 2.139 μ g/mL in patients with ADA negative results and from 1.137 to 2.139 μ g/mL in patients with ADA negative results and from 1.137 to 2.139 μ g/mL in patients with ADA negative results and from 1.137 to 2.139 μ g/mL in patients with ADA negative results and from 1.137 to 2.139 μ g/mL in patients with ADA negative results. However, in this study, the impact of ADA to the PK profiles could not be properly assessed due to low incidence of ADA formation [1].

There was no apparent correlation between ADA and safety profiles including injection site reactions. The proportion of patients who experienced any TEAEs and the TEAEs most commonly reported were comparable within each treatment group between patients with overall ADA positive and negative subgroups. ADA development did not have any notable impact on the incidence of injection site reactions, especially the ETN treatment group [1].

According to the American Association of Pharmaceutical Scientists Recommendation for the assessment and reporting of the clinical immunogenicity of therapeutic proteins, the ADA status (positive or negative) is recommended to be assessed in a cumulative manner at each time point (i.e., if a subject had a positive sample at any prior time before an efficacy assessment visit then that subject would be counted as positive through that time point) [8]. Since the American College of Rheumatology 20% (ACR20) response at Week 24 was the primary endpoint, ADA was reported using overall ADA incidence up to week 24.

With these explanations we hope that Dr. Moots and his colleagues are assured of the previously presented immunogenicity results in our study.

Peak titre	SB4 (N=299)	Enbrel [®] (N=297)
	n (%)	n (%)
2	0 (0.0)	1 (0.3)
4	1 (0.3)	2 (0.7)
8	0 (0.0)	6 (2.0)
16	0 (0.0)	15 (5.1)
32	1 (0.3)	4 (1.3)
64	0 (0.0)	7 (2.4)
128	0 (0.0)	1 (0.3)
256	0 (0.0)	2 (0.7)
512	0 (0.0)	0 (0.0)
1024	0 (0.0)	1 (0.3)

 Table 1. Number (%) of Patients with Positive Anti-drug Antibodies by Peak Titre and Treatment Group up to Week 24

References:

 Emery P, Vencovský J, Sylwestrzak A, *et al.* A phase III randomised, double-blind,parallelgroup study comparing SB4 with etanercept reference product in patients with active rheumatoid arthritis despite methotrexate therapy. *Ann Rheum Dis* 2015 Jul 6. pii: annrheumdis-2015-207588. doi:10.1136/annrheumdis-2015-207588.

- - 2) Klareskog L, Gaubitz M, Rodríguez-Valverde V, *et al.* Assessment of long-term safety and efficacy of etanercept in a 5-year extension study in patients with rheumatoid arthritis. *Clin Exp Rheumatol* 2011;29:238-47.
 - 3) Enbrel Summary of Product Characteristics. <u>http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-</u> <u>Product_Information/human/000262/WC500027361.pdf</u> (27 Feb 2015).
 - 4) Committee for Medicinal Products for Human Use (CHMP). Guideline on immunogenicity assessment of monoclonal antibodies intended for in vivo clinical use. CHMP/BMWP/86289/2010; May 2012. Available at: <u>http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/06/WC5_00128688.pdf</u> (16 Jan 2016).
 - 5) Committee for Medicinal Products for Human Use (CHMP). Guideline on immunogenicity assessment of biotechnology-derived therapeutic proteins. CHMP/BMWP/14327/2006; December 2007. Available at: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC5_00003946.pdf (16 Jan 2016).
 - 6) Shankar G, Devanarayan V, Amaravadi L, *et al.* Recommendations for the validation of immunoassays used for detection of host antibodies against biotechnology products. *J Pharm Biomed Anal* 2008;48:1267-81.
 - 7) US Department of Health and Human Services Food and Drug Administration. Guidance for Industry: Immunogenicity assessment for therapeutic protein products. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/u cm338856.pdf (27 Feb 2015).
 - 8) Shankar G, Arkin S, Cocea L, *et al*. Assessment and reporting of the clinical immunogenicity of therapeutic proteins and peptides-harmonized terminology and tactical recommendations. *AAPS J* 2014;16:658-73.