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Abstract—Recent research shows that terahertz quantum cas-
cade lasers are well-suited to high speed free space communica-
tion. The results of both theoretical and laboratory work indicate
the devices are able to deliver bandwidths in the gigahertz to tens
of gigahertz range without the burden of relaxation oscillations
found in diode lasers. Using a novel rate equation model we
explore the frequency response characteristics of a real device
and report on the finding of a strongly peaked bias current-
dependent response.

Index Terms—Free space communication, terahertz quantum
cascade laser, bandwidth

I. INTRODUCTION

Reduced rate equation (RRE) models are a computationally

efficient means of exploring laser dynamics and have been

used widely to do so [1], [2], [3]. Bandwidth estimation for

quantum cascade lasers (QCLs) has traditionally been carried

out through laboratory measurement [4], and theoretically, by

means of small signal models developed from the RREs [3],

[5]. The RRE parameters (gain, carrier lifetimes, and injection

efficiencies) used in such models are usually constant, and are

specific to the lattice temperature and electric field (bias) for

which they were developed. This restricts their use somewhat,

as both the static and dynamic behavior of the laser is strongly

affected by the RRE parameters. They must therefore be re-

determined if temperature or bias change significantly.

We have taken a different approach by developing a RRE

model with parameters that are functions of both temperature

and bias. We create these functions by calculating all param-

eters using full-multi subband QCL energy-balance scattering

rate transport Schrödinger–Poisson (S–P) solver [6] for a range

of temperatures and biases, and then interpolate the calculated

values to find values at a specified temperature and bias whilst

solving the RREs. This gives our model the ability to produce

a realistic output, whatever the lattice temperature and bias.
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Under large signal conditions the temperature (due to self-

heating) and bias are ever-changing, and we manage this

by continuously updating the parameters as the solution of

the RREs progresses. This necessitates the use of a thermal

model in conjunction with the RREs, as the (unknown) lat-

tice temperature has to be determined from the cold finger

temperature, self-heating power, and the characteristics of the

thermal circuit.

Using our RRE together with an ODE solver, we can easily

assess the bandwidth of a QCL for any cold finger temperature

and drive current waveform. We do this by superimposing a

small test sinusoid on the DC bias current and observing the

corresponding response (optical output power).

In this paper we present the frequency response and band-

width predicted by our model at a fixed cold finger tempera-

ture, for a range of bias currents. We also present the time-

resolved pulse response at the maximum-bandwidth-bias on a

laser dynamics timescale and observe an absence of relaxation

oscillations.

II. EXEMPLAR DEVICE MODEL

The exemplar QCL we chose to model is a GaAs/AlGaAs

Fabry–Pérot, single-mode, 90 period, bound-to-continuum ter-

ahertz (THz) QCL emitting at 2.59 THz. More information

about the structure of the device can be found in [7], and

the full set of rate and thermal equations for our model is

detailed in [8]. The rate equation parameters comprising gain,

carrier lifetimes, and injection efficiencies, were calculated

specifically for our exemplar QCL using the structure of the

device as input to a S–P solver for the full rate equations. We

validated the steady state behavior of our model by simulating

light-current (L–I) curves and comparing them with laboratory

measurements under the same conditions (see Fig. 1).

III. RESULTS AND DISCUSSION

Our frequency response simulation was done at a cold finger

temperature of 15 Kelvin, for four bias currents — 425 mA,

440 mA, 450 mA, and 460 mA. In each case a test sinusoid of

20 µA peak-to-peak amplitude was superimposed on the bias

current for a range of frequencies from 200 MHz to 30 GHz.

The result, shown in Fig. 2, demonstrates the 3 dB bandwidth

rising to a maximum just before the peak of the L–I curve at

460 mA. To the right of the L–I curve’s peak the bandwidth
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Fig. 1. (Color online) RRE simulated L–I curves for four cold finger temper-
atures. Inset: measured L–I characteristics at some of the same temperatures.

Fig. 2. RRE simulated frequency response, at a cold finger temperature of
15 K, for four bias currents. The curves are normalized for comparison, and
rapidly diminish with bias current when plotted on an absolute scale.

falls with increasing current, but not in a symmetrical manner

(not shown in the figure).

The curves in Fig. 2 are normalized for comparison. On an

absolute scale the output power of the time–varying compo-

nent is greatest at low bias currents, where the slope efficiency

is best. At higher bias currents the optical output power

produced by the test signal diminishes due to falling slope

efficiency and vanishes at the crest of the L–I curve, making

it impossible to obtain a meaningful frequency response at

that point. Our test signal was small enough to reach within 1

mA of the crest without being adversely affected by nonlinear

effects.

A salient feature of Fig. 2 is the increasingly peaked

frequency response as the crest of the L–I curve is approached.

Despite this, the time-resolved pulse response for the same

current, 460 mA, shows no trace of oscillatory response (see

Fig. 3), corroborating the findings of others [9], [10]. The test

signal for the time trace was a square wave of amplitude 1 mA

peak-to-peak and 2.5 ns period (corresponding frequency

400 MHz). For comparison, the pulse response at 425 mA,

Fig. 3. RRE simulated time-resolved pulse response. The test pulse train is
a square wave of amplitude 1 mA and period 2.5 ns superimposed on a bias
current of 460 mA (timing shown as dashed lines in main figure). Inset: pulse
response for the same small signal stimulus at a bias current of 425 mA.

Fig. 4. Bandwidth against bias current. Each data point was obtained by
finding the 3 dB cutoff in the frequency response (0.5 in Fig. 2). The left
hand curve represents the bandwidth for the ascending part of the L–I curve
(Fig. 1) and the right hand one the descending part.

shown in the inset, appears as a damped response.

Dependence of the modulation bandwidth on bias current

(inferred from the frequency response curves) is shown in

Fig. 4. The left hand section of graph corresponds to the

family of curves in Fig. 2. The right hand (shaded) section

corresponds to bias currents on the right hand (descending)

part of the L–I curve, and would not normally be used due to

the higher heat dissipated at higher bias currents.

Although the graph appears to have a singularity at the crest

of the L–I curve, the bandwidth of the device will in fact

be limited to under 30 GHz. We note the asymmetry of the

bandwidth vs. bias current characteristic, and in particular the

bandwidth plateau at about 480 mA that does not exist for

the left-hand half of the L–I curve. The large apparent gain in

bandwidth at and above 460 mA seen in Fig. 4 is offset by

an optical output power that diminishes at least as fast as the

bandwidth increases.



3

IV. CONCLUSION

Using a novel RRE model of a real bound-to-continuum

2.59 THz QCL, we have found the frequency response and

hence bandwidth of the device for a variety of bias conditions.

Our results show that bandwidth increases with bias current, is

highest at the crest of the L–I curve, and then falls off again in

an asymmetrical manner with further increases in bias current.

We observe that despite a sharply peaked frequency response

at the crest of the L–I characteristic, the time-resolved pulse

response shows no relaxation oscillation.
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