
J Sched
DOI 10.1007/s10951-016-0471-3

Necessary and sufficient optimality conditions for scheduling unit
time jobs on identical parallel machines

Peter Brucker1 · Natalia V. Shakhlevich2

© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract In this paper we characterize optimal schedules
for scheduling problems with parallel machines and unit
processing times by providing necessary and sufficient con-
ditions of optimality. We show that the optimality conditions
for parallel machine scheduling are equivalent to detecting
negative cycles in a specially defined graph. For a range of
the objective functions, we give an insight into the underly-
ing structure of the graph and specify the simplest types of
cycles involved in the optimality conditions.Usingour results
we demonstrate that the optimality check can be performed
by faster algorithms in comparison with existing approaches
based on sufficient conditions.

Keywords Parallel machine scheduling · Unit processing
times · Optimality conditions

1 Introduction

Finding optimal schedules is the primary goal of scheduling
and therefore the main stream of research often deals with
sufficient conditions of optimality that play the key role in
the design of solution algorithms and in proving their correct-
ness. The new trend is the study of the structural properties
of optimal solutions. The practical aspects of this research

Peter Brucker tragically passed away on July 24, 2013. This paper is the
outcome of our collaborative research and is dedicated to his memory.

B Natalia V. Shakhlevich
N.Shakhlevich@leeds.ac.uk

1 Fachbereich Mathematik/Informatik, Universität Osnabrück,
49069 Osnabrück, Germany

2 School of Computing, University of Leeds, Leeds LS2 9JT,
UK

direction are discussed in the recent paper by Lin and Wang
(2007) which presents necessary and sufficient conditions of
optimality for someclasses of schedulingproblems.As stated
in Lin and Wang (2007), the optimality conditions may be
useful for

• developing efficient algorithms that verify whether a
given solution is optimal (such algorithms may be faster
than the algorithms which construct optimal solutions);

• finding several (or all) optimal solutions;
• multi-objective hierarchical optimization (finding a char-
acterization of all optimal solutions for the primary
criterion and then optimizing the other one);

• developing new solution algorithms.

The most recent application of optimality conditions is
related to solving inverse scheduling problems, which has
become an important research area (see surveys Ahuja and
Orlin 2001; Heuberger 2004). In an inverse scheduling
problem, there is given a target solution, which may be
non-optimal for initial values of problem parameters. The
objective is to adjust problem parameters (e.g., to modify
job weights) to make the target solution optimal. A typical
approach for solving inverse problems is based on necessary
and sufficient conditions of optimality which are used to pro-
duce amathematical programming formulation of the inverse
problem.

In this paper, we study a range of scheduling models with
unit time operations. Given are m identical parallel machines
and a set J = {1, 2, . . . , n} of n jobs with processing times
p j = 1, j ∈ J . Each job j has to be processed by one
machine; it cannot start before some integer time r j ≥ 0
and it is desirable to complete it before a given due date d j .
A schedule C = (C j)

n
j=1 assigns to each job j a finishing

time C j (or starting time S j = C j − 1). C is feasible if

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-016-0471-3&domain=pdf

J Sched

r j ≤ C j −1 for each job j and the number of jobs processed
simultaneously at any time is at most m. We assume that all
data are integer. The objective is to find a feasible scheduleC
which minimizes a given non-decreasing function F (C,w)

depending on job completion times and job weights w =
(w j)

n
j=1, which are assumed to be positive. The objective

functions considered in this paper are

(a) total weighted completion time
∑n

j=1 w j C j ;
(b) the weighted number of late jobs

∑
w jU j

(
C j

)
, where

U j
(
C j

)
is the unit penalty for completing job j after its

due date d j , U j
(
C j

) = 1 if C j > d j and U j
(
C j

) = 0,
otherwise;

(c) the weighted tardiness
∑

w j Tj
(
C j

)
, where Tj

(
C j

) =
max{C j − d j , 0} is the tardiness of job j .

The first function is strictly increasing while the last two
functions are non-decreasing. In the last two caseswe classify
all jobs as early or late. Early jobs satisfy condition C j ≤ d j

and they incur a zero cost.
Using standard three field notation, the scheduling prob-

lems we consider are denoted as P|r j , p j = 1|F (C,w),
where the first field represents identical parallel machines,
the second field specifies job requirements and the third field
is the objective function of type (a), (b) or (c). We replace P
by 1 in the first field if there is a single machine (m = 1).
We drop r j from the second field if all jobs are available
simultaneously (r j = 0 for all j ∈ J) and drop w from the
third field if all jobs have the same weight (w j = 1 for all
j ∈ J).
Our primary objective is to produce the necessary and

sufficient conditions of optimality for versions (a)-(c) of
problem P|r j , p j = 1|F (C,w). Our study complements
the earlier results for the following problems: 1||Lmax,
1|| ∑ w j C j , F2||Cmax, 1|| ∑ U j (Lin and Wang 2007), and
P|r j , p j = 1| ∑ w jU j (Dourado et al. 2009). Notice that in
the first problem Lmax denotes the maximum lateness objec-
tive function, Lmax = max j∈J {C j −d j }; in the third problem,
F2 in the first field denotes the two-machine flow shop prob-
lem.

In this paper we study the problems with unit time jobs.
We give a characterization of the block structure of optimal
schedules (Sect. 2) and derive the necessary and sufficient
conditions of optimality for the general problem P|r j , p j =
1|F (C,w). We show in Sect. 2.3 that verifying these condi-
tions results in detecting negative cycles in a specially defined
network N (C) of the transportation problem. The number of
nodes of that network is ν = ⌈ n

m

⌉
and the network can be

constructed in O
(
mν2

) = O
(

n2
m

)
time.

In the subsequent sections, we explore the properties of
network N (C) for the following problems:

• P|r j , p j = 1| ∑ w j C j (Sect. 3),
• P|r j , p j = 1| ∑ w jU j (Sect. 4) and its special case

P|p j = 1| ∑ w jU j (Sect. 5),
• P|r j , p j = 1| ∑ w j Tj (Sect. 6) and its special cases

P|r j , p j = 1| ∑ Tj (Sect. 7) and P|p j = 1| ∑ Tj

(Sect. 8).

Taking into account special features of the above problems,
we derive stronger conditions than those known for a gen-
eral transportation problem. For each problem we also give
an insight into the underlying structure of the graph N (C)

and specify the simplest types of cycles which are suf-
ficient to consider in the optimality conditions: two-node
cycles for problems P|r j , p j = 1| ∑ w j C j and P|p j =
1| ∑ Tj , chain cycles for problems P|p j = 1| ∑ w jU j and
P|r j , p j = 1| ∑ Tj , spiral cycles for problem P|r j , p j =
1| ∑ w jU j and for its unweighted case P|r j , p j = 1| ∑ U j ,
see Sect. 2.3 for the definitions of special cycles. Conclusions
and possible directions for future research are presented in
Sect. 9.

Notice that conditions we formulate for problem P|r j ,

p j = 1| ∑ w jU j are different from the previously known,
e.g., those presented in Dourado et al. (2009). In particular,
we give a precise characterization of spiral cycles that should
be examined in the underlying network. As the new condi-
tions are more explicit and precise, they allow us to develop
a fast algorithm for verifying optimality of a given solution
(see Appendix 3).

Verifying the optimality of a given schedule C is one of
the important application areas of our study. Instead of find-
ing an optimal solution C∗ by using a traditional scheduling
algorithm and comparing F (C,w) and F (C∗,w), the nec-
essary and sufficient conditions can be applied directly to C
without constructing an optimal solution C∗. We discuss the
computational aspects of the optimality check for the prob-
lems under study at the end of the corresponding section,
providing technical details in appendices. As we show, the
new algorithms based on the necessary and sufficient condi-
tions outperform those that find optimal schedules.

2 General structural properties of feasible
schedules

In this section we discuss the general structural properties of
feasible schedules. Depending on the objective function, it
might benecessary to start jobs as early as possible if the func-
tion is strictly increasing, or the jobs can be postponed within
some limits if the function is non-decreasing. For example,
in any optimal schedule for problem P|r j , p j = 1| ∑ w j C j

the maximum number of available jobs is allocated to each
unit time interval [t, t + 1[starting with t = min j∈J {r j }. In

123

J Sched

the case of problems P|r j , p j = 1| ∑ w jU j and P|r j , p j =
1| ∑ w j Tj , an optimal schedule can often be modified by
reshuffling and postponing early jobs without changing their
“early” status; the resulting schedule still has the same value
of the objective function.

In order to develop a uniform approach, we propose in
Sect. 2.1 the concept of an earliest start schedule, which pro-
vides a convenient framework for formulating the necessary
and sufficient conditions of optimality. Then in Sect. 2.2 we
demonstrate how an arbitrary schedule with postponed jobs
can be modified into an earliest start schedule.

2.1 Earliest start schedules

For non-decreasing objective functions, we are particularly
interested in so-called earliest start schedules which con-
tain the maximum number of jobs in each unit time interval
[t, t +1[, t ≥ min j∈J {r j }. For such a scheduleC, there exists
a partition of the job set J into disjoint sets B1, B2, . . . , Bκ ,
called block sets, and a partition of the time line into corre-
sponding block intervals T1, T2, . . . , Tκ , where Ti consists
of li consecutive time slots [t, t + 1[,
t ∈ Ti = {ti , ti + 1, . . . , ti + li − 1}

associated with the block set Bi . The pair (Bi , Ti) is a block
of length li if

(i) its starting time ti is equal to a minimum release date
among all jobs from Bi , ti = min{r j | j ∈ Bi };

(ii) it includes all jobs j with ti ≤ r j ≤ ti + li − 1 and none
of such jobs is included in any subsequent block;

(iii) each time interval [t, t + 1[, t ∈ Ti , with the exception
of the last one, contains exactly m jobs, while the last
unit time interval contains at most m jobs.

The first condition implies that block (Bi , Ti) starts at the
earliest possible start time ti . Moreover, all jobs j scheduled
in [ti , ti + 1[have r j = ti . The second condition is the sep-
arating rule for two consecutive blocks. It ensures that the
jobs that follow (Bi , Ti) cannot be moved to time intervals
Ti . The third condition characterizes the structure of a block;
it states that each unit time slot should be saturated.

The blocks are numbered in the order they appear in the
schedule: t1 < t2 < · · · < tκ . For a block set Bi , its length is

li =
⌈ |Bi |

m

⌉
. An earliest start schedule can be constructed by

Algorithm ‘Calculate Blocks’ presented in Appendix 1. At
the beginning the algorithm considers the time slot [t, t + 1[
defined by the minimal release time t . If the number z of
jobs which can be scheduled in this time slot is at most m,
then these jobs define the first block (Bi , Ti) , i = 1, with
T1 = {t}. Otherwise the block contains more than m jobs
and it is obtainedbyconsidering the subsequent time intervals

[t, t+1[one byone, adding each time to the block set Bi those
jobs which are released at time t and assigning the maximum
number of jobs to [t, t+1[.Whenever the number of available
jobs is m or less, the block (Bi , Ti) is finalized and the new
block is started. In addition to the schedule, the algorithmalso
calculates a function h : T → {1, . . . , m}, where T is the
union of all setsTi and h(t) is the number of jobs scheduled in
[t, t+1[for each t ∈ T . The algorithmcanbe implemented in
O(n log n) time by sorting the jobs in non-decreasing order
of their release dates in the beginning. Clearly schedule C
constructed by Algorithm ‘Calculate Blocks’ is an earliest
start schedule since the number of jobs h(t) scheduled at time
t is equal to m except for, probably, the last time interval of
a block, which may contain less jobs.

The following example illustrates the algorithm.

Example 1 Consider an instance of the problem P|r j , p j =
1|F (C,w) with m = 2 machines, n = 14 jobs and a non-
decreasing objective function F of job completion times. For
the release dates presented in the table

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

r j 0 0 1 1 0 4 4 4 5 6 7 7 7 8

the Algorithm ‘Calculate Blocks’ finds the block sets
B1 = {1, 2, 3, 4, 5} , B2 = {6, 7, 8, 9} , B3 = {10} , B4 =
{11, 12, 13, 14} and their starting times t1 = 0, t2 = 4, t3 =
6, t4 = 7.The corresponding setsT j areT1 = {0, 1, 2} , T2 =
{4, 5} , T3 = {6} , T4 = {7, 8} and the number of jobs h(t)
scheduled in [t, t + 1[is

t 0 1 2 3 4 5 6 7 8

h (t) 2 2 1 − 2 2 1 2 2

A feasible earliest start schedule C with block sets
B1, B2, B3 and B4 is shown in Fig. 1. The jobs which start
exactly at their release dates are dashed; the remaining jobs
start after their release dates.

If a schedule C is given by a list of unit time intervals and
a list of jobs allocated to them, then conditions (i)–(iii) can

Fig. 1 The Gantt chart of schedule C found by Algorithm ‘Calculate
Blocks’

123

J Sched

be verified for all time slots in O (n) time by scanning the
time slots of C three times.

In the first scan, the algorithm identifies time-values
τ1, τ2, . . . , τk with the property: all jobs that start at τu, 1 ≤
u ≤ k, have their release times equal to τu . Clearly, the iden-
tified τ values satisfy property (i) of the block definition, and
therefore they get a label of a ‘t-candidate.’

In the second scan, the algorithm removes from the list
of ‘t-candidates’ those values which do not satisfy property
(ii): a ‘t-candidate’ τu cannot define the starting time of a
block if there is a job j starting after τu (S j > τu) which
is related to an earlier block (r j < τu). To check condition
(ii) efficiently, the ‘t-candidates’ are scanned right to left
updating ρ accordingly.

The third scan is performed to verify property (iii) for the
remaining ‘t-candidates.’

The formal description of this approach is presented in
Appendix 1 as Algorithm ‘Earliest Start Schedule Verifica-
tion.’ Its time complexity is O(n): there are no more than n
unit time slots and they are scanned three times. The first two
scans each consider n values of r j ; the third scan counts the
number of jobs assigned to each time slot, which total num-
ber is n. Notice that as a by-product, the algorithm returns
the t values, which define the decomposition of an earliest
start schedule into the blocks.

2.2 Transforming an arbitrary schedule into an earliest
start schedule

In this sectionwe show that if a given scheduleC for problem
P|r j , p j = 1|F does not belong to the class of earliest start
schedules, it can be transformed into an earliest start schedule
C′ without increasing any of the completion times:

C ′
j ≤ C j for all j ∈ J. (1)

This can be achieved as follows. Algorithm ‘Calculate
Blocks’ is applied first in order to define the structure of the
earliest start schedule, namely the time intervals T and the
number of jobs allocated to them h(t), t ∈ T . Time intervals
[t, t + 1[, t ∈ T , are considered one by one, starting with
the earliest one. All jobs allocated in the original schedule
to those time intervals are kept. If their number is less than
h(t), the required number of additional jobs is moved from
later time intervals to [t, t + 1[; the preference is given to
the jobs with the smallest release dates. The formal descrip-
tion of such an algorithm (entitled as ‘Left Shift(C)’) and
its analysis are presented in Appendix 1. We also discuss
implementation details which result in the O(n log n) time
complexity.

The following proposition establishes a link between a
given optimal schedule and the earliest start optimal sched-
ule.

Proposition 1 A scheduleC is optimal for problem P|r j , p j

= 1|F (C,w) with a non-decreasing objective function F, if
and only if it can be transformed by Algorithm ‘Left Shift (C)’
into an optimal earliest start schedule C′ = (

C ′
1, . . . , C ′

n

)

without changing the value of the objective function.

Proof Due to the properties of Algorithm ‘Left Shift (C),’
schedules C and C′ satisfy inequalities (1). This implies that
for a non-decreasing objective function F ,

F
(
C′,w

) ≤ F (C,w) . (2)

If C is optimal, then condition (2) should hold as equality
since a strict inequality contradicts optimality of C. On the
other hand, if C can be transformed into an optimal earliest
start schedule C′ without changing the objective function
value, then clearly C must be optimal. �	

Due to the described relationship between an arbitrary
schedule C and an earliest start schedule C′, in the subse-
quent sections we deal with earliest start schedules only. The
optimality conditions which we formulate can be applied to
each block separately, since no job fromablock can bemoved
to a previous block.

Notice that if a given schedule does not belong to the
class of earliest start schedules, then one can first applyAlgo-
rithm ‘Left Shift (C)’ checking condition (2) for the resulting
schedule C′. If F

(
C′,w

)
< F (C,w), then schedule C can-

not be optimal; if F
(
C′,w

) = F (C,w) then one needs to
verify the optimality of the earliest start scheduleC′ applying
the necessary and sufficient conditions to it.

2.3 Earliest start schedule and associated compressed
network

Consider problem P|r j , p j = 1|F (C,w) with a separable
objective function F = ∑

w j f j (C j), where each function
f j (C j) is non-decreasing. For a given earliest start sched-
ule C consisting of a single block, the total number of time
intervals is

ν =
⌈ n

m

⌉
,

so that T = {0, 1, . . . , ν − 1}, and for each time t ∈ T there
are exactly h(t) jobs allocated to [t, t + 1[:

h(t) =
{

m, 0 ≤ t ≤ ν − 2,
n − m (ν − 1) ≤ m, t = ν − 1.

It is well known that a scheduling problem with unit time
jobs can be reformulated as a transportation problem. Any
feasible schedule corresponds to a feasible flow in the asso-
ciated network and the objective value of the schedule equals

123

J Sched

the cost of delivering the flow. This implies that the necessary
and sufficient conditions of optimality of a given schedule are
equivalent to non-existence of a negative cycle in the corre-
sponding residual network.

Formally, the transportation problem is defined by net-
work N (C) = (V, A(C), η),

V = {1, . . . , n} ∪ {It |t ∈ T },
A(C) = {(j, It) | j is assigned or can be assigned to It } .

Here, the vertex set V consists of job nodes {1, . . . , n}, each
of which has a supply of 1, and interval nodes {It | t ∈ T }
with demand h(t). The arc set A(C) consists of the arcs (j, It)

defined for each feasible allocation of job j to interval [t, t +
1[, t ≥ r j . The cost of an arc (j, It) represents the cost of
allocating job j to time interval [t, t + 1[:

η j t = w j × f j (t + 1)

and its capacity is 1. Depending on the type of the objective
function,

η j t =
⎧
⎨

⎩

w j × (t + 1), if F = ∑
w j C j ,

w j × U j (t + 1) , if F = ∑
w jU j ,

w j × Tj (t + 1) , if F = ∑
w j Tj .

For a given solution C, a residual network Nr (C) =
(V, Ar (C), ξ) has the same vertex set V , while the arc set
Ar (C) and the costs ξ are defined as follows:

Ar (C) = {(It , j) | j is allocated in C to [t, t + 1[}
∪ {

(j, It) | j is not allocated in C to [t, t + 1[, t ≥ r j
} ;

ξt j = −w j × f j (t + 1) for arcs (It , j) ,

ξ j t = w j × f j (t + 1) for arcs (j, It) .

Example 2 Consider problem P|r j , p j = 1| ∑ w j Tj with
m = 2machines and n = 5 jobs with release dates, due dates
and weights presented in the table:

j 1 2 3 4 5

r j 0 0 1 1 0
d j 2 1 2 3 1
w j 1 1 1 1 1

Observe that the release dates are the same as those of the
first 5 jobs of Example 1 processed as one block. The trans-
portation network N (C) is shown in Fig. 2a and the residual
network corresponding to the schedule given by the first
block of Fig. 1 is presented in Fig. 2b. The numbers at the
arcs indicate the arc costs.

Fig. 2 a Network N (C) for jobs {1, 2, 3, 4, 5} of Example 2 and
b residual network Nr(C) for the schedule given by block B1 of Fig. 1

Reformulating the well-known network flow theorem
(see, e.g., Ahuja et al. 1993) we conclude that an earli-
est start schedule C is optimal for problem P|r j , p j =
1| ∑ w j f j (C j) if and only if the corresponding residual net-
work Nr (C) = (V, Ar (C), ξ) constructed for each block of
C contains no negative cycle.

A cycle in the residual network Nr (C) is of the form
It1 , j1, It2 , j2, . . . , Itκ , jκ , It1 . The arcs are alternating
between an arc from an interval node It to a job node j
and from a job node to an interval node.

It is convenient to compress the residual network Nr (C)

into a network Ñ (C) by eliminating the job nodes; this results
in multiple arcs connecting the interval nodes. We denote the
nodes in Ñ (C) by t ∈ {0, 1, . . . , ν − 1}. For any two nodes t
and t ′ we have an arc from t to t ′ with length ξt j +ξ j t ′ , where
ξt j +ξ j t ′ is the change of the objective function

∑
w j f j (C j)

when job j is moved from [t, t +1[to [t ′, t ′ +1[. Such an arc
replaces the two alternating arcs It → j → It ′ in Nr (C).
It is important to notice that the length �(t,t ′) of the arc from
t to t ′ depends not only on t and t ′, but on job j allocated
in C to [t, t + 1[. Since there are h(t) jobs allocated to each
time interval, there are h(t) arcs (t, t ′) for t ′ > t since any
job allocated to [t, t + 1[can be moved to a later time slot
[t ′, t ′ + 1[. However, for t ′ < t there can be less than h(t)
arcs since not every job allocated to [t, t + 1[can be moved
to an earlier time slot [t ′, t ′ + 1[.

For the three objective functions we consider, the cost of
the arc (t, t ′), associated with job j allocated to [t, t + 1[, is
given by

�(t,t ′) =
⎧
⎨

⎩

w j × (t ′ − t), if F = ∑
w j C j ;

w j × (
U j

(
t ′ + 1

) − U j (t + 1)
)
, if F = ∑

w j U j ;
w j × (

Tj
(
t ′ + 1

) − Tj (t + 1)
)
, if F = ∑

w j Tj .

123

J Sched

Fig. 3 Two compressed
networks for Example 2:
a Ñ (C) and b N (C)

Example 3 Consider again the instance fromExample 2. The
corresponding residual network is presented in Fig. 2b and it
contains a negative cycle I0, 1, I1, 4, I2, 5, I0 (its arcs are
in bold) of length−w1 max {1 − 2, 0}+w1 max {2 − 2, 0}−
w4 max {2 − 3, 0}+w4 max {3 − 3, 0}−w5 max {3 − 1, 0}+
w5 max {1 − 1, 0} = −2w5 = −2. This negative cycle char-
acterizes that the series of the following moves leads to a
schedule with a smaller value of

∑
w j Tj :

– moving job 1 from time interval [0, 1[to time interval
[1, 2[,

– moving job 4 from time interval [1, 2[to time interval
[2, 3[,

– moving job 5 from time interval [2, 3[to time interval
[0, 1[.

The compressed residual network is shown in Fig. 3a, and
the corresponding negative cycle (marked by bold arcs) is
0, 1, 2, 0.

We distinguish between right and left arcs in Ñ (C). Arc
(t, t ′) is a left arc if it is directed from t to a vertex corre-
sponding to an earlier time slot t ′, t ′ < t ; for a right arc
(t, t ′), t ′ > t .

Consider a pair of time-nodes t and t ′, corresponding to
time intervals [t, t + 1[and [t ′, t ′ + 1[. Since our aim is
to detect negative cycles or to prove that none exists, we
can compress network Ñ (C) further by eliminating multiple
arcs of larger costs. Instead of keeping multiple arcs (t, t ′)
and multiple arcs (t ′, t), we can keep just one arc in each
direction that has the smallest cost.

Denote the resulting network by N (C). For Example 2,
the corresponding network N (C) is shown in Fig. 3b. Let Jt

be the set of jobs assigned in C to time interval [t, t + 1[.
Then the cost (or the length) of the right arc (t, t ′), t < t ′,
originating from t is defined as

�(t,t ′) = min
j∈Jt

{
w j × [

f j
(
t ′ + 1

) − f j (t + 1)
]}

.

In particular, for F = ∑
w j C j

�(t,t ′) = min
j∈Jt

{
w j

} × (t ′ − t), (3)

for F = ∑
w jU j

�(t,t ′)=
{
min
j∈Jt

{
w j

}
, if t + 1 ≤ d j < t ′ + 1 for all j ∈ Jt ,

0, otherwise;

(4)

for F = ∑
w j Tj

�(t,t ′) = min
j∈Jt

{
w j × [

Tj
(
t ′ + 1

) − Tj (t + 1)
]}

.

Considering left arcs (t, t ′), t > t ′, originating from t ,
we need to take into account the release dates of the jobs
from Jt since not all of them can be moved to an earlier
time slot [t ′, t ′ + 1[. Let J(t,t ′) denote a subset of jobs from
Jt , which can be re-allocated to [t ′, t ′ + 1[without violating
their release dates:

J(t,t ′) = {
j ∈ Jt |r j ≤ t ′

}
.

Then the left arc
(
t, t ′

)
exists if J(t,t ′) �= ∅ and its length is

defined as

�(t,t ′) = − max
j∈J(t,t ′)

{
w j

[
f j (t + 1) − f j

(
t ′ + 1

)]}
.

In particular, for F = ∑
w j C j

�(t,t ′) = − max
j∈J(t,t ′)

{
w j

} × (t − t ′), (5)

123

J Sched

for F = ∑
w jU j

�(t,t ′) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if t ′ + 1 > d j or t + 1 ≤ d j

for all j ∈ J(t,t ′),
−max j∈J(t,t ′),

t ′+1≤d j <t+1

{
w j

}
, otherwise;

for F = ∑
w j Tj

�(t,t ′) = − max
j∈J(t,t ′)

{
w j

[
Tj (t + 1) − Tj

(
t ′ + 1

)]}
.

It is easy to make sure that if residual network Nr (C)

and the corresponding compressed network N (C) contain a
negative cycle with repeated node t , then the cycle can be
decomposed into two cycles and at least one of them is neg-
ative. Clearly, it is sufficient to consider the cycles without
repeated time-values. Thus the necessary and sufficient opti-
mality conditions can be formulated as follows.

Theorem 1 A scheduleC for a given instance of P|r j , p j =
1| ∑ w j f j (C j) is optimal if and only if

1. transforming C into an earliest start schedule does not
change the objective value;

2. for each block of the resulting earliest start schedule,
the corresponding compressed network N (C) contains
no negative cycle.

We estimate the size of the compressed network N (C) and
the time complexity of constructing it assuming that a given
earliest start schedule C has n jobs assigned to m machines
and it consists of a single block. The number of nodes of
N (C) is ν = ⌈ n

m

⌉
. Each pair of nodes t and t ′ are connected

by at most two arcs (t, t ′) and (t ′, t), so that the total number
of arcs is O

(
ν2

)
. For each right arc (t, t ′), its cost can be

found in O(m) time since |Jt | ≤ m, and for each left arc
(t, t ′), its cost can also be found in O(m) time since |J(t,t ′)| ≤
m. Thus the overall time complexity of constructing N (C) is

O
(
mν2

) = O
(

n2
m

)
.

In the subsequent sections we show that, depending on
the type of the problem, Condition 2 of Theorem 1 can be
reformulated so that instead of checking the non-negative
condition for all possible cycles only special types of cycles
can be considered, namely two-node cycles, chain cycles and
spiral cycles. Each of these cycles has exactly one arc of
negative length denoted by (t, τ); it originates in the right-
most node t of the cycle and contains no more than one
positive arc; all other arcs have zero lengths. If the cycle
contains a positive arc, that arc has end-node t .

A two-node cycle consists of two arcs (t, τ) and (τ, t), see
Fig. 4.

A chain cycle consists of an arc in one direction and a
chain of arcs in the opposite direction. A right-chain cycle

tτ

negative arc

…… ……

Fig. 4 Two-node cycle

(a)

(b)

Fig. 5 Chain cycles: a right-chain cycle and b left-chain cycle

starts with the negative left arc (t, τ) and then proceeds with
a chain R of right arcs from τ to t , see Fig. 5a. A left-chain
cycle starts with the negative left arc (t, τ), proceeds then
with a chain L of left arcs to the left-most node of the cycle
and returns to the origin t via one right arc, see Fig. 5b.

A spiral cycle is defined as the one satisfying the following
five properties.

Property 1: The cycle contains exactly one negative arc
(t, τ), all other left arcs have zero length.

Property 2: No left arc, except for possibly (t, τ), spans
over a node which appears in the remaining part of the
cycle after that arc.

Property 3: No right arc spans over a node which appears
in the remaining part of the cycle after that arc.

Property 4: The right-most node of the cycle is t .
Property 5: All right arcs have zero length except for the

last right arc terminating in t which may be of positive
length or of zero length.

An example of a spiral cycle is shown in Fig. 6. In general,
a spiral cycle contains alternating left chains L1, L2, . . . , Ls

and right chains R1, R2, . . . , Rs : the negative left arc (t, τ)

is followed by L1, R1, L2, R2, . . . , Ls, Rs terminating in t ,
see Fig. 6. L1 is a left chain originating in τ ; the first arc of
R1 spans over all nodes of L1; the first arc of L2 spans over
all nodes of L1 ∪ R1. For each k = 2, . . . , s, the first arc of
Lk spans over all nodes of L1, R1, L2, R2, . . . , Lk−1, Rk−1

123

J Sched

……τ… ………… … t …

negative arc

positive arc
or 0-length

arc

0

0

0

…… …… …

0

0

0

00

0

0

0

L2

R1

R2

L1

Fig. 6 Spiral cycle

Table 1 The simplest cycles which are sufficient to consider in optimality conditions

Problem Simplest negative cycles Reference

P|r j , p j = 1| ∑ w j C j Two-node cycles Theorem 2

P|r j , p j = 1| ∑ w j U j Spiral cycles (even if w j = 1) Theorem 4, Example 5

P|p j = 1| ∑ w j U j Right-chain cycles (even if w j = 1) Theorem 5, Example 6

P|r j , p j = 1| ∑ w j Tj Cycles with more than one negative arc (even if r j = 0) Example 8

P|r j , p j = 1| ∑ Tj Left-chain cycles Theorem 7

P|p j = 1| ∑ Tj Two-node cycles Theorem 8

and the first arc of Rk spans over all nodes of L1, R1, L2, R2,
…, Lk−1, Rk−1, Lk . The last chain Rs consists of right arcs
terminating in the origin t .

Notice that a two-node cycle is a special case of a chain
cycle, which in its turn is a special case of a spiral cycle.

The main outcomes of our study are summarized in
Table 1, where we list the types of cycles that should be
examined in a compressed residual network N (C), repre-
senting a one-block earliest start schedule. Notice that for
problem P|r j , p j = 1| ∑w j Tj and its special case P|p j =
1| ∑ w j Tj there exist instances for which even the simplest
negative cycles have several negative arcs so that they do not
fall in any of the above three categories of cycles. We do
not give a characterization of negative cycles for these two
problems since the usage of such a result is likely to be very
limited. For example, using those conditions in the optimal-
ity check would incur cycles with one negative arc, cycles
with pairs of negative arcs and even more complex cycles
with various combinations of negative arcs.

For all other problems and their special cases, we first
prove the result establishing the type of a simplest negative
cycle. Then we show that the result cannot be improved by
providing an example that there exists an instance of the

problem with only one negative cycle and it is of the type
established in the corresponding theorem. Such instances are
not needed for two-node cycles indeed.

In what follows we consider the three objective functions∑
w j C j ,

∑
w jU j and

∑
Tj and prove the relevant state-

ment about the type of the cycle for each problem. We then
explore how the identified types of cycles can be used in order
to speed up the optimality check.

3 Problem P|r j , p j = 1|∑w j C j

In this section we consider the problem P|r j , p j =
1| ∑ w j C j with the weighted completion time objective.We
show that the optimality conditions for this problem can be
simplified by limiting consideration to two-node cycles only.
Moreover, the reduced network N (C) can be compressed
further by eliminating transitive arcs, so that the resulting net-
work NTransRem(C) contains no more than 2 (ν − 1) arcs; its
left arcs form an out-tree and the right arcs form an in-tree. As
a result, the optimality check problem can be solved in O(n)

time, an improvement in comparison with the O(n log n)

time algorithm for finding an optimal schedule.

123

J Sched

Theorem 2 A compressed residual network N (C), repre-
senting a one-block earliest start schedule for a given
instance of problem P|r j , p j = 1| ∑ w j C j , contains a neg-
ative cycle if and only if it contains a negative two-node cycle.

Proof Clearly, the formulated condition is sufficient. In order
to prove that it is also necessary, assume that there exists an
instance of problem P|r j , p j = 1| ∑ w j C j such that all
two-node cycles are non-negative while there exists a nega-
tive cyclewith three ormore nodes. Let this cycle additionally
have the smallest number of nodes. We show that there exists
a negative cycle with a smaller number of nodes.

Denote by t1 the left-most node of the cycle. The cycle
starts with a positive arc (t1, t2), proceeds with a series of
arcs, whichwe denote by α, leading to node t3 and terminates
at the origin t1 with a negative arc (t3, t1). The length of the
positive arc (t1, t2) is w j1(t2 − t1), where job j1 is selected
in accordance with (3) so that

w j1 = min
j∈Jt1

{
w j

} ;

the length of the negative arc (t3, t1) is −w j3(t3 − t1), where
job j3 is selected in accordance with (5) so that

w j3 = max
j∈J(t3,t1)

{
w j

}
. (6)

Thus the length of the original cycle is

� = w j1(t2 − t1) + �α − w j3(t3 − t1), (7)

where �α is the length of fragment α.
First we derive an auxiliary inequality for w j1 and w j3 .

Due to the assumption, the cycle consisting of two arcs
(t3, t1) and (t1, t3) is non-negative. Since its length is (−w j3+
w j1)(t3 − t1), we conclude that

−w j3 + w j1 ≥ 0. (8)

Consider the following two cases, depending on the loca-
tion of t2 and t3. If t2 < t3, cycle ((t1, t2) , α, (t3, t1)) is of
the form shown in Fig. 7a. Since there exists arc (t3, t1) in
N (C), the set of jobs J(t3,t1), which can be re-allocated from
[t3, t3 + 1[to [t1, t1 + 1[is non-empty, and therefore the set
J(t3,t2) is also non-empty for t2 > t1. Hence we can intro-
duce the arc (t3, t2) and consider a cycle with less nodes,
namely (α, (t3, t2)), see Fig. 7b. The length of (t3, t2) is
associated with some job j ′3, w j ′3 = max

j∈J(t3,t2)

{
w j

}
, and due

to J(t3,t2) ⊇ J(t3,t1),

w j ′3 ≥ w j3 . (9)

(a)

(b)

Fig. 7 Replacing negative cycle ((t1, t2) , α, (t3, t1)) by (α, (t3, t2)) if
t1 < t2 < t3

Comparing the length of the original cycle � given by (7)
with the length of the new cycle �′ = �α − w j ′3(t3 − t2) we
conclude that if � < 0, the new cycle is also negative:

�′ − � =
[
�α − w j ′3(t3 − t2)

]

− [
w j1(t2 − t1) + �α − w j3(t3 − t1)

]

≤ −w j3(t3 − t2) − [
w j1(t2 − t1) − w j3(t3 − t1)

]

= (
w j3 − w j1

)
(t2 − t1) ≤ 0.

In the above formula, the first inequality is due to (9),
while the second inequality follows from (8). Thus we have
detected a negative cycle with a less number of nodes which
contradicts the assumption that the initial negative cycle has
the smallest number of nodes.

If t2 > t3, as shown in Fig. 8a, introduce the positive
arc (t3, t2) and consider a cycle with less nodes, namely
((t3, t2) , α), see Fig. 8b. The length of (t3, t2) is associated
with some job j ′′3 , w j ′′3 = min

j∈Jt3

{
w j

}
, see (3). Comparing the

latter formula with (6) we conclude that

w j ′′3 = min
j∈Jt3

{
w j

} ≤ min
j∈J(t3,t1)

{
w j

} ≤ max
j∈J(t3,t1)

{
w j

} = w j3

(10)

(notice that Jt3 ⊇ J(t3,t1) and the last equality corresponds to
(6)).

Denoting by �′′ the length of the cycle shown in Fig. 8b,
we obtain

�′′ − � =
[
w j ′′3 (t2 − t3) + �α

]

− [
w j1(t2 − t1) + �α − w j3(t3 − t1)

]

≤ w j3 (t2 − t3) − [
w j1(t2 − t1) − w j3(t3 − t1)

]

= (
w j3 − w j1

)
(t2 − t1) ≤ 0,

so that �′′ < 0 for � < 0. In the above formula, the first
inequality is due to (10), while the second inequality follows

123

J Sched

(a)

(b)

Fig. 8 Replacing negative cycle ((t1, t2) , α, (t3, t1)) by ((t3, t2) , α) if
t1 < t3 < t2

from (8). Again we have detected a negative cycle with a less
number of nodes which contradicts the assumption that the
initial negative cycle has the smallest number of nodes. �	

Notice that due to the definition of N (C), a right arc exists
for any pair of nodes, while left arc (t, τ) exists only if
J(t,τ) �= ∅. Therefore in order to enumerate all two-node
cycles one can consider left arcs one by one, complement-
ing each left arc with its right arc counterpart. Moreover, we
prove that transitive left arcs in N (C) are not needed.

Theorem 3 Consider network NTransRem(C) obtained from
N (C) by removing transitive left arcs and removing all right
arcs which do not have a left counterpart. Denote the set of
left arcs in NTransRem(C) by Aleft(C). Then N (C) does not
contain a negative cycle if and only if inequality

min
j∈Jτ

{
w j

} ≥ max
j∈J(t,τ)

{
w j

}
. (11)

is satisfied for each (t, τ) ∈ Aleft(C), τ < t .

Proof Necessity Clearly, relation (11) formulated for a left
arc (t, τ) is an equivalent representation of the condition that
the cycle defined by nodes t and τ is non–negative, see for-
mulae (3) and (5).

Sufficiency To prove that conditions (11) defined for (t, τ) ∈
Aleft(C), are sufficient, consider t1 < t2 < t3 assum-
ing that the left arcs (t2, t1) , (t3, t2) exist together with the
transitive left arc (t3, t1). The associated positive arcs are
(t1, t2) , (t2, t3) and (t1, t3). We show that if (11) holds for
the pair of nodes t1, t2 and for the pair t2, t3, then (11) also
holds for the pair of nodes t1, t3.

Indeed, conditions (11) for t1, t2 and for t2, t3 are of the
form:

min
j∈Jt1

{
w j

} ≥ max
j∈J(t2,t1)

{
w j

}
,

min
j∈Jt2

{
w j

} ≥ max
j∈J(t3,t2)

{
w j

}
.

The right-hand side of the first inequality is greater than or
equal to the left-hand side of the second inequality since
J(t2,t1) ⊆ Jt2 :

max
j∈J(t2,t1)

{
w j

} ≥ min
j∈J(t2,t1)

{
w j

} ≥ min
j∈Jt2

{
w j

}
.

The right-hand side of the second inequality can be bounded
as

max
j∈J(t3,t2)

{
w j

} ≥ max
j∈J(t3,t1)

{
w j

}

since J(t3,t2) ⊇ J(t3,t1).
We conclude that

min
j∈Jt1

{
w j

} ≥ max
j∈J(t3,t1)

{
w j

}
,

which implies that condition (11) also holds for the pair of
nodes t1, t3. �	
Proposition 2 The set of left arcs Aleft(C) in NTransRem(C)

is an out-tree.

Proof Suppose thepropositiondoes not hold, i.e., there exists
in Aleft(C) a pair of left arcs (t2, t1) and (t3, t1)with the same
end-node, t1 < t2 < t3. This implies that J(t2,t1) �= ∅ and
J(t3,t1) �= ∅. It follows from the latter condition that J(t3,t2) �=
∅ since the jobs that can be re-allocated from [t3, t3 + 1[
to [t1, t1 + 1[can also be re-allocated to [t2, t2 + 1[. Then
there exists arc (t3, t2) in N (C) and therefore the set of arcs
Aleft(C) in network NTransRem(C) (without transitive arcs)
cannot contain (t3, t1), a contradiction. �	
Example 4 The following table describes an instance of
problem P|r j , p j = 1| ∑ w j C j withn = 18 jobs andm = 2
machines:

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

r j 0 0 0 0 2 2 3 1 3 2 5 5 5 4 7 5 6 7
C j 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9

A feasible schedule C for this problem is shown in Fig. 9.
The jobs which start exactly at their release dates are dashed;
the remaining jobs start after their release dates.

The left arcs Aleft(C) of graph NTransRem(C) with transi-
tive arcs removed are shown in Fig. 10. The set Aleft(C) con-
sists of (8, 7) , (7, 6) , (6, 5) , (6, 4) , (4, 3) , (3, 2) , (3, 1) ,

(1, 0), which form an out-tree.

The proof of Proposition 2 justifies the following O(n)-
time algorithm for constructing left arcs Aleft(C) of network

123

J Sched

Fig. 9 Gantt chart of a feasible schedule C of Example 4

Fig. 10 Left arcs Aleft(C) of graph NTransRem(C) without transitive
arcs for a feasible schedule C of Example 4

NTransRem(C)without transitive arcs. It first connects consec-
utive nodes into left chains and then defines for the right-most
node of each chain an arc ending in that node with the origin
in the subsequent chain, giving preference to the left-most
possible origin. Having constructed the set Aleft(C) of left
arcs, the corresponding right arcs can be produced also in
O(n) time. Since |Aleft(C)| = ν − 1, there are ν − 1 two-
node cycles, which can be enumerated in O(ν) time, so that
the overall time complexity of the optimality check is O(n).
We provide the details of this approach in Appendix 2.

4 Problem P|r j , p j = 1|∑w jU j

This section explores the most general, spiral cycles.

Theorem 4 A compressed residual network N (C), repre-
senting a one-block earliest start schedule for problem
P|r j , p j = 1| ∑ w jU j , contains a negative cycle if and
only if it contains a negative spiral cycle.

Proof Consider an arbitrary negative cycle that starts with a
negative arc (t, τ). We show that then there exists a negative
cycle such that the five properties formulated in the definition
of a spiral cycle are satisfied.

In order to prove Property 1 (the cycle contains exactly
one negative arc (t, τ)) we demonstrate that a negative cycle
with the smallest number of nodes cannot contain more than
one negative arc. Suppose a negative cycle has several neg-
ative arcs (t1, τ1), (t2, τ2), . . . , (ty, τy), y ≥ 2. Without loss
of generality we assume that arc (t1, τ1) has the right-most
origin t1 among all negative arcs, i.e., t1 > max

{
t2, . . . , ty

}
.

Notice that no nodes are repeated in the cycle. Denoting the
path from τ1 to ty by α and the path from τy to t1 by β, the
cycle can be represented in the form

(
(t1, τ1) , α,

(
ty, τy

)
, β

)
,

where fragment α can be empty. The three possible types of
that cycle are illustrated in Fig. 11a–c depending on the rela-
tionship between τ1, ty and τy . Let the lengths of arcs (t1, τ1)
and

(
ty, τy

)
be−w j1 and−w jy , where j1 and jy are late jobs

allocated to [t1, t1 + 1[and [ty, ty + 1[, respectively.

… t1τ1 ……ty… (a)τy … …

α

β

… t1τ1 …… ty… τy …… …

1j
w−yj

w−

α

1j
w−

yj
w−

(b)

… t1τ1 …… ty… (c)τy … …

1j
w−

α

β

β

yj
w−

Fig. 11 Negative cycle
(
(t1, τ1) , α,

(
ty, τy

)
, β

)

Since the cycle passes through ty before it returns to t1 and
ty < t1, there should be an arc (e, f) belonging to fragment
β that straddles node ty , so that

e < ty < f,

and we can represent fragment β as
(
β ′, (e, f) , β ′′), see

Fig. 12. Notice that the case e = τy implies β ′ = ∅ and the
case f = t1 implies β ′′ = ∅. Let the job corresponding to
arc (e, f) be q so that the length of the arc is

�(e, f) =
{

wq , if e < dq ≤ f,
0, otherwise.

(12)

Since fragment β does not contain negative arcs, all its
three components are non-negative:

�β ′ ≥ 0,

�(e, f) ≥ 0,

�β ′′ ≥ 0.

Here �β ′ , �(e, f) and �β ′′ denote the lengths of β ′, (e, f) , β ′′,
respectively.

Consider instead of the original cycle two new cycles:

CycleI =
((

ty, τy
)
, β ′,

(
e, ty

))
and CycleI I = ((t1, τ1) ,

α,
(
ty, f

)
, β ′′). Notice that

�(e,ty) ≤ �(e, f)

since ty < f . Moreover

�(ty , f) = 0

123

J Sched

… t1fτ1 …… ty… (c)τy …e …

1j
w−

yj
w−

α

… t1f τ1 …… …ty… (a)τy …… e …

1j
w−

yj
w− α

… t1fτ1 …… ty… (b)τy …… e …

1j
w−yj

w−

α

β′ β ′′

β′

β′

β ′′

β ′′

Fig. 12 Negative cycle with fragment β decomposed into(
β ′, (e, f) , β ′′)

since Jty contains a late job (it defines the cost of the negative
left arc (ty, τy)). Thus we have

�(e,ty) + �(ty , f) ≤ �(e, f).

Denoting the length of the original cycle by �O and the
lengths of the two new cycles by �I and �I I we obtain:

�I + �I I ≤ �O < 0. (13)

Thus at least one of the new cycles is negative. This contra-
dicts the assumption that the initial negative cycle has the
smallest number of nodes.

We turn now to Property 2: no left arc, except for possibly
(t, τ), spans over a node which appears in the remaining
part of the cycle after that arc. Suppose for a negative cycle
satisfying Property 1 there exists a 0-length left arc (f, g)

which spans over node h that appears on the path from g to
t , so that g < h < f , see Fig. 13. If there are several nodes
of type h we select the right-most one. In that figure, solid
lines represent arcs and dotted lines represent the fragments
of the cycle which may consists of several arcs. Introduce
new left arc (f, h), which length is zero since there is only
one negative left arc (t, τ). Replacing the fragment of the
cycle from f to h by the arc (f, h), we remove 0-length left
arcs and non-negative right arcs. Hence the resulting cycle
is negative, but with less left arcs spanning over other nodes
on the path to t . Repeating this transformation we eventually
obtain a cycle satisfying Property 2.

The proof of Property 3 (no right arc spans over a node
which appears in the remaining part of the cycle after that
arc) is similar to the proof of Property 2: consider a right arc
(f, g)which spans over node h that appears on the path from

…h … τ…f…g… … t …

negative arc

positive arc
or 0-length arc

000

00

Fig. 13 Negative cycle with left arc (f, g) spanning over node h on
the path from g to t

g to t , so that f < h < g, and replace the fragment of the
cycle from f to h by the arc (f, h) with �(f,h) ≤ �(f,g).

The same idea can be used to prove Property 4 (t is the
right-most node of the cycle) using t instead of h in the above
arguments.

Finally, consider Property 5: all right arcs have zero length
except for the last right arc terminating in t which may be of
positive length or of zero length. Let there exists a negative
cycle satisfying Properties 1–4, but not satisfying Property 5.
Let the origin of the negative arc be t and let the first positive
arc be (e, f), where f < t due to Property 4. Again we
introduce a new arc (e, t). For the positive arc (e, f) all jobs
from Je are early and they become late if re-allocated to
[f, f + 1[, �(e, f) = min j∈Je {w j }, see (4). Then the same
holds for (e, t), which implies

�(e,t) = min
j∈Je

{w j } = �(e, f).

Thus replacing the fragment from e to t by arc (e, t) results
in a negative cycle with less nodes and no more than one
positive arc (e, t). �	

Clearly, spiral cycles have a more complex structure in
comparison with two-node cycles and chain cycles. We
demonstrate by means of Example 5 below that the result of
Theorem 4 cannot be strengthened for problem P|r j , p j =
1| ∑ w jU j , and spiral cycles cannot be replaced by simpler
counterparts. Since the instance below deals with the case of
unit weights, w j = 1 for all j ∈ J , the result of Theorem 4
cannot be strengthened for problem P|r j , p j = 1| ∑ U j .

Example 5 Consider an instance of the problem P|r j , p j =
1| ∑ U j for which a negative spiral cycle exists but there are
no negative cycles of simpler types. In that example, there is
one machine and n = 8 jobs with job characteristics given
by the table:

j 1 2 3 4 5 6 7 8

r j 0 1 2 2 1 0 6 3
d j 7 6 5 4 5 6 8 4
C j 1 2 3 4 5 6 7 8

123

J Sched

73 41 2 5 60

0

-1

0

0

0

0

0

0

Fig. 14 A unique negative cycle for Example 5 belonging to the spiral
category

Figure 14 represents a spiral negative cycle for this instance.
Notice that (7, 3) is the unique negative arc in the graph and
its length is −1. In order to construct a negative cycle with
that arc we need to find a 0-length path from 3 to 7. Due to the
release date and due date restrictions, there is only one path
with that property shown in Fig. 14. Thus there is only one
negative cycle and that cycle belongs to the spiral category.

Notice that for problem P|r j , p j = 1| ∑ w jU j with non-
unit weights, the last arc terminating in t = 7 may have
a positive weight. In particular, if in Example 5, condition
1 < w7 < w8 holds and d7 = 8 is replaced by d7 = 7, then
the spiral cycle shown in Fig. 14 has positive arc (6, 7) of
length w7. The cycle, however, is still negative; its length is
−w8 + w7.

The algorithm for optimality check is presented in Appen-
dix 3. Although the algorithm does not limit its search to
spiral cycles, still it outperforms the fastest algorithm for
finding the optimal solution for P|r j , p j = 1| ∑ w jU j .

5 Problem P| p j = 1|∑w jU j

We consider now the special case when all jobs are available
simultaneously (r j = 0 for j ∈ J) and show that for this
case it is sufficient to consider simpler cycles of chain type.

Theorem 5 A compressed residual network N (C), repre-
senting a one-block earliest start schedule for problem
P|p j = 1| ∑ w jU j , contains a negative cycle if and only if
it contains a negative right-chain cycle.

Proof Since problem P|p j = 1| ∑ w jU j is a special case of
P|r j , p j = 1| ∑ w jU j , we can use the result of Theorem 4
and consider only negative spiral cycles. Let z be the left-
most node of such a cycle. Consider a negative arc (t, τ) of
the cycle, which corresponds to moving some job j ∈ J(t,τ)

to time interval [τ, τ + 1[. Since all release dates are zero,
arc (t, τ) can be replaced by arc (t, z) which corresponds
to moving the same job j to time interval [z, z + 1[, the

1 20

-1

00

00

1

Fig. 15 A unique negative cycle for Example 6 belonging to the right-
chain category

length of the new arc being no larger than that of (t, τ). Since
the remaining part of the spiral cycle from z to t is a right
chain with 0-length arcs except for the last arc, which can be
positive, the new cycle with the shortcut (t, z) is a right-chain
cycle t, z, . . . , t of negative length. �	

The result formulated in Theorem 5 cannot be strength-
ened for the unweighted version P|p j = 1| ∑ U j , as the
following example illustrates.

Example 6 Consider an instance of the problem P|p j =
1| ∑ U j with onemachine and three jobswith due dates d1 =
2, d2 = 3, d3 = 1, and a schedule given by job sequence
(1, 2, 3). The corresponding graph, shown in Fig. 15, con-
tains a unique negative cycle (2, 0, 1, 2) of length −1; it is a
right-chain cycle; all two-node cycles are non-negative.

In what follows we show that network N (C) can be
reduced by removing some nodes and arcs. Recall that the
network reduction has been performed in Sect. 3 for prob-
lem P|r j , p j = 1| ∑ w j C j where it has been shown that
transitive arcs are not needed.

We start with decomposing N (C) into so called zero-
components. A zero-component Zi , 1 ≤ i ≤ γ , consists
of consecutive nodes τ i , τ i + 1, . . . , τ i , each of which can
be reached from the start-node τ i via a chain of 0-length right
arcs. For two zero-components Zi and Z j , i < j , there is no
0-length right arc (τ ′, τ ′′) connecting τ ′ ∈ Zi and τ ′ ∈ Z j .
Notice that Zi may consist of a single node, i.e., τ i = τ i .

• Zero-component Zi is the last one (i.e., τ i = ν − 1), if
one of the jobs of Zi has a due date no smaller than ν

or if Zi contains a late job; in both cases such a job can
be moved to any later time slot at a zero cost, so that all
right arcs originating from the corresponding node are of
zero length.

• Zero-component Zi is not the last one (i.e., τ i < ν − 1),
if all jobs scheduled in the time-slots τ i , τ i + 1, …, τ i

are early and their maximum due date is equal to τ i + 1.

The following example illustrates the decomposition of
N (C) into zero-components.

123

J Sched

Fig. 16 Decomposition of
N (C) for Example 7 into four
zero-components

1 20

0

3 4 5 6 7

Z2 Z4Z3Z1

0

0

0

0

Example 7 Consider an instance of the problem P|p j =
1| ∑ w jU j with m = 3 machines and n = 24 jobs with
parameters given by the table:

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
dj 1 1 1 2 3 4 3 3 3 4 4 5 5 5 5 6 7 8 1 2 5 8 8 8
wj 3 7 9 5 9 6 2 5 5 9 8 11 6 7 8 9 5 3 10 4 3 6 8 5
Cj 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8

Node
number 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7

In the table we separate job triples, which are processed in
the same unit time slot, by vertical lines. A schedulewith four
zero-components marked by rectangles is shown in Fig. 16;
the start- and end-nodes of the components are as follows:

τ 1 = 0; τ 1 = 0;
τ 2 = 1; τ 2 = 3;
τ 3 = 4; τ 3 = 4;
τ 4 = 5; τ 4 = 7.

Decomposition of a schedule into zero-components can
be performed by scanning the nodes τ = 0, 1, . . . , ν − 1
left to right, identifying for a current zero-component Zi the
furthest node from the start-node reachable by a chain of
0-length right arcs. We provide a formal description of pro-
cedure ‘Decomposition’ inAppendix 4 and show that its time
complexity is O(n).

Based on zero-components Z1, Z2, . . . , Zγ , we define the
notion of an essential cycle and prove that only essential
cycles need to be considered in the optimality conditions.
For all zero-components Zi except for the last one (1 ≤ i ≤
γ − 1) introduce characteristic w∗

i as the smallest w value
among the jobs of that component:

w∗
i = min

{
w j | τ i + 1 ≤ C j ≤ τ i + 1

}
. (14)

Let τ ∗
i be the node associated with w∗

i , i.e. [τ ∗
i , τ ∗

i +1[is the
time slot where the job with weightw∗

i is scheduled. A right-
chain cycle is essential if it is of the form t, τ i , . . . , τ

∗
i , t and

consists of

– a negative arc (t, τ i) with t belonging to the last compo-
nent Zγ and τ i being a start-node of the zero-component
Zi , 1 ≤ i ≤ γ ,

– a chain of right arcs of zero length from τ i to τ ∗
i , all

belonging to Zi ,
– a final arc (τ ∗

i , t) terminating at t .

Notice that if 1 ≤ i < γ , then the final arc (τ ∗
i , t) is of

positive length and if i = γ , then that arc is of zero length.
Essential cycles of Example 7 are shown in Fig. 17.

Theorem 6 Network N (C) contains a negative cycle if and
only if it contains a negative essential cycle.

Proof Due toTheorem5we can consider only negative right-
chain cycles. Let t be the right-most node of such cycle
and (t, τ) be its negative arc. This implies that time interval
[t, t + 1[contains a late job and therefore t belongs to the
last zero-component Zγ .

By the definition of a zero-component, any right arc from a
node of one component to a node of another component is of
positive length. Since there is nomore than one positive arc in
a right-chain cycle, the origin t is followedby the nodes of one
zero-component only, say Zi , 1 ≤ i ≤ γ . Thus a negative
right-chain cycle can be represented as t, τ ′

i , . . . , τ
′′
i , t , where

the zero length path τ ′
i , . . . , τ

′′
i consists of right arcs within

Zi . Notice that for a special case with τ ′
i = τ ′′

i we get a two-
node cycle. We show that the length of the essential cycle
t, τ i , . . . , τ

∗
i , t is no larger than that of an arbitrary negative

right-chain cycle t, τ ′
i , . . . , τ

′′
i , t with τ ′

i , . . . , τ
′′
i belonging

to Zi . Indeed, the left arcs of the two cycles satisfy �(t,τ i)
≤

�(t,τ ′
i)
since τ i < τ ′

i ; the internal paths within Zi are of zero
length for both cycles, i.e., �(τ i ,...,τ

∗
i) = �(τ ′

i ,...,τ
∗
i) = 0, while

for the final arcs condition �(τ∗
i ,t) = w∗

i ≤ �(τ ′′
i ,t) holds due

to the definition (14) of w∗
i . �	

We illustrate how the formulated optimality condition can
be used for the optimality check in Appendix 4; the result-
ing algorithm has time complexity O(n), an improvement
in comparison with the O(n log n)-time algorithm for find-
ing an optimal schedule for problem P|p j = 1| ∑ w jU j

(Brucker and Kravchenko 2006; Dessouky et al. 1990).

6 Problem P|r j , p j = 1|∑w j T j

Consider problem P|r j , p j = 1| ∑w j Tj with the weighted
tardiness objective function. It appears that the negative
cycles for problem P|r j , p j = 1| ∑ w j Tj are more com-
plicated than those introduced in Sect. 2.3 (two-node cycles,
chain cycles or spiral cycles). In fact theremay exist instances
for which the simplest negative cycles have more than one
negative arc - a major distinctions from the three types of
cycles with one negative arc.

123

J Sched

Fig. 17 Essential cycles of
Example 7

1 20

0

3 4 5 6 7

Z2 Z4Z3Z1

3

-3

-4

-10

2

6

31 20

-10
-10

-10

5

10

15

20

40

10

-10

0

-10

Fig. 18 A graph for Example 8 with the unique negative cycle con-
taining two negative arcs

Example 8 Consider an instance of the problem P|r j , p j =
1| ∑ w j Tj with one machine and n = 4 jobs given by the
table

j 1 2 3 4

r j 0 0 0 0
d j 1 2 2 3
w j 5 20 10 10
C j 1 2 3 4

Figure 18 represents the corresponding graph; the unique
negative cycle (3, 2, 0, 3) is marked by bold arcs and it con-
tains two negative arcs (3, 2) and (2, 0).

Notice that the instance presented in Example 8 has zero
release dates for all jobs, which implies that for problem
P|p j = 1| ∑ w j Tj we also cannot limit our consideration
to the three types of cycles defined above. In this paper we
do not introduce new cycle types with several negative arcs;

it is likely that the resulting rather complicated optimality
conditions would have limited application.

In what follows we discuss how solution optimality can
be checked using Theorem 1. Recall that Theorem 1 pro-
vides the necessary and sufficient optimality conditions for
the most general problem P|r j , p j = 1| ∑ w j f j (C j) with
an arbitrary separable objective function. In order to ver-
ify the optimality of a given solution C, we first apply the
O(n log n)-timeAlgorithm ‘Left Shift(C).’ Then the reduced

graph N (C) is constructed in O
(

n2
m

)
time, as described in

Sect. 2.3. It has ν = ⌈ n
m

⌉
nodes and a arcs, a < ν2. Since

the fastest algorithms for negative cycle detection are of time
complexity O (νa) (Cherkassky and Goldberg 1999), which

is O
(

n3

m3

)
in our case, schedule optimality can be verified in

O
(

n3

m3 + n2
m

)
time - an improvement in comparison with the

straightforward O(n3) approach based on finding an optimal
solution to problem P|r j , p j = 1| ∑ w j Tj via solving the
associated assignment problem.

7 Problem P|r j , p j = 1|∑ Tj

We consider now the equal weight special case (w j = 1 for
j ∈ J) and show that for this case it is sufficient to consider
simpler cycles of chain type.

Theorem 7 A compressed residual network N (C), repre-
senting a one-block earliest start schedule for problem
P|r j , p j = 1| ∑ Tj , contains a negative cycle if and only
if it contains a negative left-chain cycle.

Proof Consider a negative cycle O with the smallest number
of nodes. We prove that such a cycle satisfies Properties 1–4
of the definition of a spiral cycle and instead of Property 5,
it satisfies a stronger property, namely

123

J Sched

te τ f

α

β

… … … … …

Fig. 19 Negative cycle for problem P|r j , p j = 1| ∑ Tj that does not
satisfy Property 5′

Property 5′: there is no right arc (e, f) with the end-node f
to the left of t .
Properties 1–4 combined with 5′ imply that a negative cycle
with the smallest number of nodes is a left-chain cycle.

The proof of Properties 1–4 follows the same ideas as the
proof of Theorem 4 for problem P|r j , p j = 1| ∑ w jU j ; we
present that proof in Appendix 5. Consider now Property 5′.

Let (e, f) be the first right arc with f < t . We denote the
fragment of cycle O from τ to e by α and the fragment of
the schedule from f to t by β, see Fig. 19. Notice that by the
definition of the spiral cycle

e ≤ τ < f, (15)

�α = 0,

�β ≥ 0,

see also Fig. 6.

Let j be a job in J(t,τ) with the smallest due date, so that
the length of arc (t, τ) is defined via that job,

�(t,τ) = − (
t + 1 − max

{
d j , τ + 1

})
.

Notice that

d j < t + 1; (16)

otherwise the length of the arc (t, τ) is not negative. Similarly,
let k be a job in Je with the largest due date, so that the length
of arc (e, f) is defined via that job,

�(e, f) = max { f + 1 − max {dk, e + 1} , 0} .

Introduce an artificial right arc (e, t) and replace the frag-
ment (e, f), β of cycle O by a single arc (e, t). The length
of the new cycle is

�(t,τ) + �α + �(e,t) = − (
t + 1 − max

{
d j , τ + 1

})

+0 + max {t + 1 − max {dk, e + 1} , 0} .

Clearly, if dk > t + 1, then the last term in the above expres-
sion is 0, so that the resulting cycle is negative and it satisfies

Property 5′. Also, if max
{
d j , τ + 1

}
< dk ≤ t + 1, then the

resulting cycle is negative and it satisfies Property 5′ as well:

�(t,τ) + �α + �(e,t) = − (
t + 1 − max

{
d j , τ + 1

})

+0 + (t + 1 − max {dk, e + 1})
= max

{
d j , τ + 1

} − max {dk, e + 1}
< dk − max {dk, e + 1} ≤ 0.

Thus in what follows we assume

dk ≤ max
{
d j , τ + 1

}
. (17)

We show that introducing an artificial left arc (t, f) and
replacing in the original cycle O the fragment (t, τ), α, (e, f)

by that arc we obtain a modified cycle M with less nodes
which length �M is negative. To this end, we calculate the
difference �M − �O using the formula

�M − �O = (
�(t, f) + �β

) − (
�(t,τ) + �α + �(e, f) + �β

)

= �(t, f) − �(t,τ) − �(e, f).

Let i be a job in J(t, f) with the smallest due date, so that
the length of arc (t, f) is defined via that job,

�(t, f) = − (t + 1 − max {di , f + 1}) .

Notice that J(t,τ) ⊆ J(t, f) and, as defined earlier for J(t,τ), j
is the job with the smallest due date among J(t,τ). It follows
that di ≤ d j so that

�(t, f) ≤ − (
t + 1 − max

{
d j , f + 1

})
.

We consider the following cases with respect to d j .

(1) The case of d j ≥ t + 1 is eliminated due to (16).
(2) If f + 1 ≤ d j < t + 1, then

�(t, f) ≤ − (
t + 1 − max

{
d j , f +1

}) = − (
t+1 − d j

)
,

−�(t,τ) = t + 1 − d j ,

and hence

�M − �O ≤ − (
t + 1 − d j

) + (
t + 1 − d j

) − �(e, f)

= −�(e, f) ≤ 0.

(3) If τ + 1 < d j < f + 1, then due to di ≤ d j ,

�(t, f) = − (t − f) ,

−�(t,τ) = t + 1 − d j ,

−�(e, f) = −max { f + 1 − max {dk, e + 1} , 0} .

Notice that

max {dk, e + 1} ≤ max
{
d j , τ + 1, e + 1

}

123

J Sched

= max
{
d j , τ + 1

} = d j ,

where we first use inequality (17), then (15), while the
last equality holds due to the assumption of case (3).
Hence

−�(e, f)

= − (f + 1) + max {dk, e + 1} ≤ − (f + 1) + d j .

We conclude that

�M − �O ≤ − (t − f)

+ (
t + 1 − d j

) − (f + 1) + d j = 0.

(4) Finally, if d j ≤ τ + 1, then dk ≤ τ + 1 by (17) and

�(t, f) = − (t − f) ,

−�(t,τ) = t − τ,

−�(e, f) = − (f + 1 − max {dk, e + 1})
≤ −(f + 1) + max {τ + 1, e + 1}
= −(f + 1) + (τ + 1) = τ − f.

Here we use (15) for max {τ + 1, e + 1}. It follows that

�M − �O ≤ − (t − f) + (t − τ) + (τ − f) = 0.

Thus Property 5′ is proved which, together with Proper-
ties 1–4 implies that the negative cycle with the smallest
number of nodes belongs to the class of left-chain
cycles. �	

The algorithm to check the optimality of a given schedule
is presented in Appendix 6. Its time complexity is O(n log n)

provided that an earliest start schedule is given, and it reduces
to O(n) if all jobs are available simultaneously (r j = 0 for
all j ∈ J).

We now demonstrate that there are instances of problem
P|r j , p j = 1| ∑ Tj for which negative left-chain cycles
exist but there are no negative cycles of a simpler type,
namely, two-node cycles.

Example 9 Consider an instance of the problem P|r j , p j =
1| ∑ Tj with m = 1 and n = 4 given by the table

j 1 2 3 4

r j 0 0 1 2
d j 4 2 3 3
C j 1 2 3 4

Figure 20 represents a unique negative cycle for this instance
which is a left-chain cycle. It is easy to verify that all two-
node cycles are non-negative.

31 20

0

0

-1

0

0 0

1 1

2

Fig. 20 A unique negative cycle for Example 9 of the left-chain type

8 Problem P| p j = 1|∑ Tj

In problem P|p j = 1| ∑ Tj all jobs are available simul-
taneously (r j = 0, j ∈ J) and have unit weights. We first
show that the necessary and sufficient conditions for problem
P|r j , p j = 1| ∑ Tj can be simplified so that only two-node
cycles are considered.

Theorem 8 A compressed residual network N (C), repre-
senting a one-block earliest start schedule for problem
P|p j = 1| ∑ Tj , contains a negative cycle if and only if
it contains a negative two-node cycle.

Proof Due toTheorem7, if the graph for problem P|r j , p j =
1| ∑ Tj contains a negative cycle, it also contains a negative
left-chain cycle. Given an arbitrary negative left-chain cycle
we replace the whole left chain by a single arc. Since the
length of that arc is no larger than that of the initial negative
arc and the remaining removed left arcs are of zero lengths,
we obtain a negative two-node cycle. �	

Notice that unlike problem P|r j , p j = 1| ∑ w j C j , the
transitive arcs cannot be eliminated, as the following example
shows.

Example 10 Consider an instance of the problem P|p j =
1| ∑ Tj with one machine and three jobs with the due dates
d1 = 2, d2 = 2, d3 = 1. The schedule C is given by C1 =
1, C2 = 2 and C3 = 3. If the transitive arcs (2, 0) and (0, 2)
are not considered, then the two-node cycle consisting of
arcs (1, 0) and (0, 1) is of length 0, another two-node cycle
consisting of arcs (2, 1) and (1, 2) is of length −1 + 1 = 0.
The two-node cycle consisting of transitive arcs (2, 0) and
(0, 2) is, however, negative: −2 + 1 = −1.

Observe that the algorithm for optimality check for prob-
lem P|p j = 1| ∑ Tj follows from the algorithm for themore
general problem P|r j , p j = 1| ∑ Tj presented in Appendix
6. The time complexity of the latter algorithm is O(n) for
an earliest start schedule. Since in the case of r j = 0 for all
j ∈ J , Algorithm ‘Left Shift(C)’ transforms a given sched-
ule into an earliest start schedule in O(n) time, the optimality
check for problem P|p j = 1| ∑ Tj can be performed in
O(n) time for an arbitrary schedule.

123

J Sched

9 Conclusions

In this paper we have studied the necessary and sufficient
optimality conditions for various problemswith parallel iden-
tical machines and unit job processing times. The formulated
conditions deal with a specially defined network N (C) and
they are based on detecting negative cycles. For each prob-
lem we give an insight into the underlying structure of
the graph N (C) and specify the simplest types of cycles
which need to be considered in the optimality conditions:
two-node cycles, chain cycles and spiral cycles. The sum-
mary of the cycle types for different versions of problem
P|r j , p j = 1|F (C,w) is provided in Table 1 in Sect. 2.3.

The special features of the cycles allow us to develop effi-
cient algorithms for verifying optimality of a given schedule.
Wedescribe the ideas of the optimality check algorithms after
formulating the optimality conditions for each problem and
present all technical details in the appendices. The summary
of the results is presented in Table 2 where we compare the
time complexity of traditional algorithms for finding opti-
mal schedules with the complexity of our optimality check
algorithms.

In the table we assume that an earliest start schedule con-
sisting of a single block is given (which can be verified in
O(n) time by the algorithm from Appendix 1). Otherwise
an initial schedule can be converted into an earliest start
schedule by Algorithm ‘Left Shift’ from Appendix 1; after
that the optimality check can be performed for each block
considered separately. Notice that Algorithm ‘Left Shift’
requires O(n log n) time if release dates are arbitrary and
O(n) time if all jobs are available simultaneously (r j = 0
for all j ∈ J). This implies that ‘Left Shift’ does not affect
the O(n) time complexity of the algorithms for problems
P|p j = 1| ∑ w jU j and P|p j = 1| ∑ Tj ; for other prob-
lems the time complexity should be increased by O(n log n)

if the initial schedule does not belong to the class of earliest
start schedules.

While we have illustrated only one application of the
necessary and sufficient optimality conditions, they might
be beneficial for solving other problems as well. Further
applications of the optimality conditions may involve the
development of new algorithms for finding alternative opti-
mal solutions different from those produced by the known
algorithms or algorithms for finding several optimal sched-
ules. Another application area is hierarchical optimization,
where it is required to select among solutions optimal for one
criterion those solutions which minimize the secondary cri-
terion. Finally, the optimality conditions play an important
role in inverse scheduling (Heuberger 2004) where a target
schedule is given and it is required to modify the problem
parameters to make the target solution optimal. Develop-
ing optimality conditions for other scheduling problems and

Ta
bl
e
2

T
im

e
co
m
pl
ex
ity

of
fin

di
ng

op
tim

al
so
lu
tio

ns
an
d
pe
rf
or
m
in
g
th
e
op

tim
al
ity

ch
ec
k

Pr
ob
le
m

an
d

cy
cl
e
ty
pe

of
th
e
op

tim
al
ity

co
nd
iti
on

Fi
nd

in
g
an

op
tim

al
so
lu
tio

n
O
pt
im

al
ity

ch
ec
k

(f
or

an
ea
rl
ie
st

st
ar
t

sc
he
du

le
co
ns
is
tin

g
of

a
si
ng

le
bl
oc
k)

P
|r j

,
p

j
=

1|
∑

w
jC

j
tw
o-
no
de

cy
cl
es

O
(n

lo
g

n)
∗

O
(n

)
Se

ct
io
n
3

P
|r j

,
p

j
=

1|
∑

w
jU

j
sp
ir
al
cy
cl
es

O
(

n2
lo
g

m
m

+
n
lo
g

n)
D
ou
ra
do

et
al
.(
20
09
)

O
(

n2 m
+

n)
A
pp
en
di
x
3

P
|p

j
=

1|
∑

w
jU

j
ri
gh

t-
ch
ai
n
cy
cl
es

O
(n

lo
g

n)
B
ru
ck
er

an
d
K
ra
vc
he
nk
o
(2
00
6)
;D

es
so
uk
y
et
al
.(
19
90
)

O
(n

)
A
pp
en
di
x
4

P
|r j

,
p

j
=

1|
∑

w
jT

j
co
m
pl
ex

cy
cl
es

O
(n3

)
A
ss
ig
nm

en
tp

ro
bl
em

O
(

n3 m
3

+
n2 m

)
Se

ct
io
n
6

P
|r j

,
p

j
=

1|
∑

T
j
le
ft
-c
ha
in

cy
cl
es

O
(n

3
)

A
ss
ig
nm

en
tp

ro
bl
em

O
(n

lo
g

n)
A
pp
en
di
x
6

P
|p

j
=

1|
∑

T
j
tw
o-
no
de

cy
cl
es

O
(n

lo
g

n)
D
es
so
uk
y
et
al
.(
19
90
)

O
(n

)
A
pp
en
di
x
6,

Se
c-

tio
n
8

∗ U
si
ng

a
he
ap

to
se
le
ct
fo
r
ea
ch

tim
e
sl
ot

av
ai
la
bl
e
jo
bs

w
ith

la
rg
es
tw

j

123

J Sched

exploring their usage in the application areas listed above can
be a subject of further research.

Acknowledgments This research was supported by the EPSRC
funded project EP/D059518 “Inverse Optimization in Application to
Scheduling.”

OpenAccess This article is distributed under the terms of theCreative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Appendix 1: Earliest start schedule construction
and verification

We present the pseudocodes of the algorithms described in
Sects. 2.1, 2.2. The first algorithm constructs an earliest start
schedule in O(n log n) time. The second algorithm veri-
fies in O(n) time whether a given schedule belongs to the
class of earliest start schedules. The third one transforms in
O(n log n) time a given schedule into an earliest start sched-
ule, if it does not belong to this class.

Algorithm ‘Calculate Blocks’

1. i := 1; t := 0;
2. While a job j exists with r j ≥ t do
3. t := min

{
r j |r j ≥ t

}
;

4. ti := t ;
5. Bi := {

j |r j = t
}
; Ti := {t};

6. z := |Bi |;
7. While z ≥ m + 1 do
8. Assign the first m jobs to time interval

[t, t + 1[;
9. h(t) := m;

10. t := t + 1;
11. Bi := Bi ∪ {

j |r j = t
}
; Ti := Ti ∪ {t};

12. z := z + ∣
∣
{

j |r j = t
}∣
∣ − m;

endwhile;
13. Assign all z jobs from Bi to time interval [t, t + 1[
14. h(t) := z;
15. i := i + 1;
16. t := t + 1

endwhile

Algorithm ‘Earliest Start Schedule Verification’

1. Scan unit time slots left to right identifying all time-
values τ1, τ2, . . . , τk with the property: τu = r j for all
jobs j scheduled in [τu, τu + 1[, 1 ≤ u ≤ k; for com-
pleteness define τk+1 as the makespan of the schedule

(maximum job completion time); mark the identified τ

values as ‘t-candidates’
2. If the first time slot of the schedule is not marked as a

‘t -candidate,’ stop: property (i) of a block definition does
not hold for the first time slot and the schedule is not an
earliest start schedule;

3. Initialize ρ := τk+1;
4. For u = k to 1 by −1
5. ρ := min

{
ρ, min

{
r j |τu < S j ≤ τu+1 − 1

}}
,where

S j is the starting time of job j ;
6. If ρ < τu , remove the mark of a ‘t-candidate’ from

τu ;
7. endfor
8. If the first time slot of the schedule is not marked as a

‘t -candidate,’ stop: property (ii) of a block definition
does not hold for the first time slot and the schedule is
not an earliest start schedule;

9. Define blocks (Bi , Ti) using ‘t-candidates’ to specify
block starting times;

10. For each block (Bi , Ti) do
11. If property (iii) of a block definition does not hold,

stop: the schedule is not an earliest start schedule;
12. endfor
13. Output the t values for the earliest start schedule

Algorithm ‘Left Shift(C)’

1. Calculate T = ∪r
i=1Ti and h(t) for all t ∈ T using

Algorithm ‘Calculate Blocks’;
2. Construct a list H of all jobs ordered according to

non-decreasing r j values; introduce pointers so that the
position of job j in H and in C can be found in O(1)
time;

3. For each t ∈ T in increasing order do
4. In listH, mark all jobs j withC j = t +1 as ‘deleted’;
5. � = |{ j |C j = t + 1}| ;
6. While � < m and the first non-deleted job f in H

satisfies condition r f ≤ t do
7. Move f in C to [t, t + 1[;
8. � := � + 1;
9. In list H, mark f as ‘deleted’
10. endwhile
11. endfor

The overall running time of Algorithm ‘Left Shift(C)’
is O (n log n). Indeed, the most time consuming step is the
O(n log n)-timeAlgorithm ‘Calculate Blocks’ needed to cal-
culate h(t). For efficient implementation of the remaining
steps, an auxiliary data structure H is used to list the jobs
in non-decreasing order of the release dates; in addition the
pointers are introduced to locate jobs in list H and in the
schedule C in constant time. In schedule C, moving a sin-

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

J Sched

gle job requires constant time. In the list H, marking a job
in H as ‘deleted’ requires O(1) time, if pointers are used.
Maintaining a special additional pointer and incrementing
it throughout the algorithm, all steps of identifying the first
non-deleted job f in H require O(n) time.

Appendix 2: Verifying solution optimality for
P|r j , p j = 1|∑w j C j

Given an earliest start schedule, construct left arcs Aleft(C)

of network NTransRem(C) without transitive arcs, to com-
plement them with the corresponding right arcs and to
verify conditions (11) for ν − 1 pairs of nodes t and
τ . We first provide the details of the algorithm for con-
structing Aleft(C) and then analyze it, together with the
remaining steps of the optimality check. As before, we
assume that C consists of one block of ν = ⌈ n

m

⌉
unit time

intervals.

Algorithm ‘Construct Left Arcs Aleft(C) of NTransRem(C)’

1. For t = 0 to ν − 2
2. Define J(t+1,t) as the set of jobs allocated to

[t + 1, t + 2[which can be moved to [t, t+1[;
3. If J(t+1,t) �= ∅ introduce left arc (t + 1, t) of length

�(t+1,t) = − max
j∈J(t+1,t)

{
w j

}
;

endfor
4. If the resulting arcs connect all nodes into the single

chain, then stop;
else

5. For each separate chain of left arcs, except for the last
one,

6. Consider its right end-node τ and find the earliest
time t from the next chain such that

J(t,τ) �= ∅

(the set of jobs that can be moved from [t, t + 1[
to [τ, τ + 1[, τ < t , is not empty);

7. Introduce left arc (t, τ) of length �(t,τ) =
− max

j∈J(t,τ)

{
w j

}
(t − τ);

endfor
endif

Clearly, each for-loop of the algorithm scans the nodes of
NTransRem(C) once performing for each time slot t at most
m operations on the jobs allocated to it. Thus the above algo-
rithm can be implemented in O (νm) = O (n) time.

For each left arc of the constructed out-tree, the length
of its right arc counterpart can be found by (3). Since the
number of left arcs in the out-tree is ν − 1, the lengths of all

right arcs of NTransRem(C) can be found in O (νm) = O (n)

time as well.
Verifying conditions (11) for ν − 1 pairs of nodes t and

τ requires O(ν) time, if the lengths of arcs (t, τ) and (τ, t)
have been determined. Thus the overall time complexity of
the optimality check for problem P|r j , p j = 1| ∑ w j C j

is O(n). Notice that for problem P|r j , p j = 1| ∑w j C j , an
optimal solution can be found in O (n log n) time by schedul-
ing at each decision point an available job with the largest
w j value.

Appendix 3: Verifying solution optimality for
P|r j , p j = 1|∑w jU j

The fastest algorithm for solving problem P|r j , p j =
1| ∑ w jU j is due to Dourado et al. (2009) and it is of time

complexity O
(

n2 logm
m + n log n

)
. We show that the opti-

mality check can be performed by a slightly faster algorithm

of time complexity O
(

n2
m + n

)
.

By Theorem 4, it is sufficient to explore whether there
exists a negative spiral cycle for a given earliest start sched-
ule. Our approach consists of three stages, where the first
two stages deal with pre-processing. We assume that graph
N (C) is constructed and its set of nodes corresponds to time
intervals T ={0, 1, . . . , ν − 1}.

Stage 1. Determine for each τ ∈ T the left-most node λ(τ)

reachable from τ via a 0-length left chain, and the right-
most node μ(τ) reachable from τ via a 0-length right
chain.

Stage 2. Determine for each τ ∈ T the left-most node a(τ)

and the right-most node b(τ) reachable from τ via a 0-
length path consisting of alternating left chains and right
chains.

Stage 3. The negative arcs are considered one by one. For
each arc (t, τ) of length �(t,τ) < 0, one of the two con-
ditions happen: a(τ) ≤ τ < t ≤ b(τ) or a(τ) ≤ τ <

b(τ) < t . In the former case there exists a negative cycle
consisting of (t, τ) and a 0-length path from τ to t . In the
latter case the algorithm finds the shortest path from τ to
t as the smallest w value of one of the jobs processed in
[a(τ), b(τ)]. We denote that value by w[a(τ),b(τ)],

w[a(τ),b(τ)] = min
{
w j | j ∈ Jz, a(τ) ≤ z ≤ b(τ)

}
.

(18)

If �(t,τ) + w[a(τ),b(τ)] < 0, then there exists a negative
cycle consisting of the negative arc (t, τ), a 0-length path
with the nodes belonging to [a(τ), b(τ)] and a positive
arc of length w[a(τ),b(τ)].

123

J Sched

Graph N (C) can be constructed in O
(

n2
m

)
time, see

Sect. 2.3. As we show below, the complexities of the subse-

quent three stages are O
(

n2

m2 + n
)

, O
(

n2

m2

)
and O

(
n2

m2 + n
)
,

respectively, so that the overall time complexity is
(

n2
m + n

)
.

We start with the formal description of the procedure of
Stage 1. It first determines for each τ ∈ T the set of nodes
L(τ) to the left of τ connected with τ by 0-length left arcs.
The values λ(τ) are defined one by one for τ = 0, 1, . . . , ν−
1. If λ(0), λ(1), . . . , λ(τ − 1) are known, then λ(τ) is the
smallest value among λ(τ ′), where τ ′ ∈ L(τ), or λ(τ) = τ

if there are no 0-length left arcs originating from τ .
Findingμ values is similar, but there is one point of differ-

ence: the 0-length right arcs originating from τ are defined
via early jobs from Jτ that can be moved to the right to the
time slots no later than their due dates; however, if there is
at least one late job Jτ , then all right arcs originating from
τ are of 0 length. Formally, this procedure is described as
follows.

Stage 1: ‘Calculate λ(τ) and μ(τ) for all τ ∈ T ’

1. For each τ from T ={0, 1, . . . , ν − 1}, set rmin
τ :=

min j∈Jτ {r j }, dmax
τ := max j∈Jτ {d j },

L(τ) :=
{∅, if r(τ) = τ ;

{rmin
τ , rmin

τ + 1, . . . , τ − 1}, otherwise;

M(τ) :=
⎧
⎨

⎩

∅, if all jobs in Jτ have due date τ + 1;{
τ + 1, τ + 2, . . . , dmax

τ − 1
}
, if all jobs in Jτ are early and dmax

τ > τ + 1;
{τ + 1, τ + 2, . . . , ν − 1} , if at least one job from Jτ is late;

//λ-calculation:

2. λ(0) := 0;
3. For τ = 1 to ν − 1 do
4. λ(τ) := min

{
τ, minτ ′∈L(τ)

{
λ(τ ′)

}}
;

5. endfor
//μ-calculation:

6. μ(ν − 1) := ν − 1;
7. For τ = ν − 2 down to 0 do
8. μ(τ) := max

{
τ, maxτ ′∈M(τ)

{
μ(τ ′)

}}
;

9. endfor

Step 1 incurs O(n) time, while the loops of Steps 3–5 and

7–9 require O(ν2) = O
(

n2

m2

)
time.

The procedure for Stage 2 is based on the definition of a
spiral cycle, see Sect. 2.3. The origin t of the negative left arc
(t, τ) is not fixed, but node τ is fixed. The output for a given τ

is thewidest possible range of nodes a(τ), a(τ)+1, . . . , b(τ)

reachable via 0-length paths.

Stage 2: ‘Calculate a(τ) and b(τ) for all τ ∈ T ’

1. For each τ from T ={0, 1, . . . , ν − 1}
2. Set a(τ) := τ and b(τ) := τ ;
3. While interval [a(τ), b(τ)] can be extended do
4. Identify the nodes of the left chain L1 =

{λ(τ), λ(τ) + 1, . . . , τ } originating from τ ;
Set a(τ) := λ(τ);
Scanning the nodes of L1 and the associated μ

values for them, determine the
right-most node of the right chain R1; set b(τ) :=
max {μ(z)|z ∈ L1};
Proceed in a similar manner with subsequent Li

and Ri , i ≥ 2;
5. endwhile
6. endfor

For a fixed τ , finding a(τ) and b(τ) incurs scanning no
more than ν nodes. Hence the overall time complexity of

finding a(τ) and b(τ) for all τ ∈ T is O(ν2) = O
(

n2

m2

)
.

The key step of Stage 3 is calculating w[τ1,τ2] by (18) for
all possible ranges τ1 ≤ τ2. Clearly, if w[τ1,τ2−1] and w[τ2,τ2]
are known, then

w[τ1,τ2] = min
{
w[τ1,τ2−1], w[τ2,τ2]

}
. (19)

Thus the procedure of Stage 3 can be formulated as follows.

Stage 3 ‘Spiral Cycle Check’

1. For τ = 0 to ν − 1
2. Define w[τ,τ] := min j∈Jτ

{
w j

}
;

3. endfor
4. For τ1 = 0 to ν − 2
5. For τ2 = τ1 + 1 to ν − 1
6. w[τ1,τ2] = min

{
w[τ1,τ2−1], w[τ2,τ2]

}
;

7. endfor
8. endfor
9. For each negative arc (t, τ) do
10. If t ∈ [a(τ), b(τ)] stop: a negative cycle exists;
11. If �(t,τ)+w[a(τ),b(τ)] < 0 stop: a negative cycle exists;
12. endfor

123

J Sched

Steps 1–3 incur O(νm) = O(n) time to calculate w[τ,τ],
while Steps 4–8 incur O(ν2) time to calculate w[τ1,τ2] for
all τ1 < τ2. The total number of arcs (t, τ) examined in

Steps 9–12 is O(ν2) = O
(

n2

m2

)
. For arc (t, τ), verifying

conditions of Steps 10–11 takes O(1) time. Thus the overall

time complexity of Stage 3 is O
(

n2

m2 + n
)
.

Appendix 4: Verifying solution optimality for P| p j
= 1|∑w jU j

The fastest algorithm for solvingproblem P|p j = 1| ∑ w jU j

is of timecomplexity O (n log n), seeBrucker andKravchenko
(2006), Dessouky et al. (1990). We show that the optimality
check can be performed in O(n) time based on Theorem 6.

First we notice that since in problem P|p j = 1| ∑ w jU j

all jobs are available simultaneously, algorithm ‘Left Shift(C)’
which transforms a given schedule into an earliest start
schedule takes O(n) time rather than O(n log n). In what
follows we consider an earliest start schedule with time slots
T = {0, 1, . . . , ν − 1}.

Instead of constructing the whole graph N (C) with

O
(

n2

m2

)
arcs, we identify the zero-components Z1, Z2,…,

Zγ using procedure ‘Decomposition’ described below, and
then perform the optimality check based on Theorem 6.

Decomposition is performed by considering the nodes
T = {0, 1, . . . , ν − 1} left to right identifying for a cur-
rent zero-component the furthest node from the start-node
reachable by a chain of 0-length right arcs.

Procedure ‘Decomposition’

1. Initiate the counter i for the zero-components as i := 1,
set τ i = τ i = 0 and the current node τ = 0;

2. While τ ≤ τ i do
3. If there is a late job in Jτ , set τ i := ν − 1 to include

in the zero-component
all nodes to the right of τ and Stop;

4. Define the maximum due date dmax
τ for the jobs Jτ

scheduled in [τ, τ + 1[:

dmax
τ = max

j∈Jτ

{d j };

5. If dmax
τ > τ i + 1, then update τ i :=

min
{
dmax
τ − 1, ν − 1

}
;

6. τ := τ + 1;
7. endwhile
8. Construction of Zi is completed;

If τ i < ν − 1, proceed with the next component: set
i := i + 1, define new values of τ i , τ i , τ , all equal to
τ i−1 + 1, and perform Steps 2–6.

Notice that if condition of Step 5 holds, then the right arcs
(τ, τ ′) are of zero length for each node τ ′ ∈ {τ + 1, τ +
2, . . . , dmax

τ − 1} and hence all nodes τ ′ should be included
in the current zero-component.

The time complexity of procedure ‘Decomposition’ is
O(n): it enumerates no more than ν = ⌈ n

m

⌉
nodes τi , 0 ≤

τ ≤ ν − 1 performing each time O(m) operations to check
in Step 3 whether a late job in Jτ exists, or to find dmax

τ in
Step 4, and no more than one update of τ i .

The algorithm for the optimality check enumerates essen-
tial cycles each of which starts in a node of the last
zero-component Zγ , reaches via a negative arc a start-node τ i
of a zero-component Zi , 1 ≤ i ≤ γ , and returns back to the
origin via right arcs. In order to perform the search efficiently,
the algorithm uses auxiliary procedure ‘Find Most Negative
Arcs’ which determines for each node τ ∈ {0, 1, . . . , ν−1} a
negative arc (T (τ), τ) with the origin T (τ) belonging to the
last zero-component (T (τ) ∈ Zγ) such that the length of that
arc, denoted by a negative value −W (τ) (W (τ) > 0), has
the most negative value among other arcs originating from
t ∈ Zγ :

W (τ) = max
t∈Zγ

{w j | j ∈ J late
t , t ∈ Zγ }.

Here J late
t is the set of late jobs scheduled in [t, t +1[, J late

t =
{ j ∈ Jt | d j ≤ t}. If there is no negative arc (t, τ) with
the origin in Zγ , we indicate this by setting T (τ) = 0 and
W (τ) = 0. We describe the procedure for finding the values
T (τ) and W (τ) after the main algorithm.

Suppose T (τ) and W (τ) are defined for all τ ∈ {0, 1,
. . . , ν − 1}. In the main algorithm we first verify whether
there exists a negative essential cycle with all nodes belong-
ing to the last zero-component Zγ . This happens if there
exists a negative arc leading to τγ , i.e., if W (τ γ) �= 0. The
corresponding essential cycle consists then of the negative
arc (T (τ γ), τ γ) of length −W (τ γ) < 0 and 0-length right
arcs all belonging to Zγ returning back to T (τ γ).

In the remaining part of the algorithm we consider all
but last zero-components Zi , i = 1, . . . , γ − 1, and verify
whether there exists a negative essential cycle passing via
the start-node τ i of Zi . To this end we identify the most
negative arc (T (τ i), τ i) of length −W (τ i) leading from a
node of the last zero-component Zγ to τ i and a positive arc
of the smallest length w∗

i defined by (14) from a node of
Zi to Zγ . If −W (τ i) + w∗

i < 0, then the corresponding
essential cycle consisting of (T (τ i), τ i), 0-length right arcs
belonging to Zi and a positive arc returning back to T (τ i)

is negative. Otherwise all essential cycles passing via τ i are
non-negative since (T (τ i), τ i) is the most negative arc lead-
ing to τ i . Formally the main algorithm can be described as
follows.

123

J Sched

Algorithm ‘Optimality Check for P|p j = 1| ∑w jU j ’

1. Use procedure ‘Decomposition’ to decompose a given
schedule into zero-components Z1, Z2, . . . , Zγ ;

2. Use procedure ‘Find Most Negative Arcs’ (formulated
below) to determine for each τ ∈ {0, 1, . . . , ν − 1} the
most negative arc (T (τ), τ) of length −W (τ) with the
origin T (τ) belonging to the last zero-component Zγ ;

3. If −W (τ γ) < 0 then Stop: there exists an essential cycle
with the negative arc (T (τ γ), τ γ) and 0-length right arcs
all belonging to Zγ returning back to T (τ γ);

4. For i = 1 to γ − 1
5. Use (14) to calculate for the zero-component Zi

characteristic w∗
i as the smallest w value among all

jobs of Zi ;
6. If −W (τ i) + w∗

i < 0, then Stop: there exists an
essential cycle with the negative arc (T (τ i), τ i).

7. endfor

Step 1 involves procedure ‘Decomposition’ of time com-
plexity O(n). Step 2 uses the O(n)-time Procedure ‘Find
Most Negative Arcs’ presented and analyzed below. Steps 3–
7 are dominated by Step 5 which involves O(νm) = O(n)

jobs belonging to Z1∪ Z2∪· · ·∪ Zγ−1. Thus the overall time
complexity for checking optimality of a solution to problem
P|p j = 1| ∑ w jU j is O(n).

We now describe Procedure ‘Find Most Negative Arcs’
used in Step 2. It starts with setting up the initial values
W (τ) := 0 and T (τ) := 0 for each τ = 0, 1, . . . , ν − 1. In
the first part of the algorithm (Steps 2–7)we identify negative
arcs (t, τ) originating from all possible nodes t ∈ Zγ of the
last zero-component by considering late jobs j ∈ J late

t of
the corresponding time slot [t, t + 1[. A late job j induces
negative arcs (t, τ), (t, τ − 1), …, (t, 0) of the same length
−w j , where

τ = d j − 1. (20)

For a fast implementation, we set up values W (τ) and T (τ)

for nodes τ defined by (20) (Steps 2–7) and leave W and T
values for τ − 1, τ − 2, . . . , 0 to be updated in Steps 8–10.
For those updates we use the property that for a negative arc
(t, τ) there also exist negative arcs (t, τ − 1), . . . , (t, 0) of
the same length. We scan nodes τ right to left comparing
W (τ − 1) and W (τ). Whenever W (τ − 1) < W (τ), the
updates are performed for τ − 1 so that eventually we obtain
for τ − 1 the required values T (τ − 1) and W (τ − 1) which
define the most negative arc for it.

Procedure ‘Find Most Negative Arcs’

1. Initialize: set W (τ) := 0 and T (τ) := 0 for each τ =
0, 1, . . . , ν − 1;

2. For each time slot t ∈ Zγ of the last zero-component do
3. For each late job j ∈ J late

t do
4. Define the largest τ such that the arc (t, τ) is

negative: τ := d j − 1;
5. If W (τ)<w j , update W (τ) :=w j and T (τ) := t ;
6. endfor
7. endfor
8. For τ = ν − 1 down to 1 do
9. If W (τ −1) < W (τ), update W (τ −1) := W (τ)

and T (τ − 1) = T (τ);
10. endfor

Step 1 and Steps 8–10 deal with ν time-slots performing
O(1) operations for each of them. Steps 2–7 consider O(n)

jobs of J late
t , t ∈ Zγ , the number of updates for each job

being O(1). Thus the overall time-complexity of the proce-
dure is O(n).

Appendix 5: Spiral cycle properties for problem
P|r j , p j = 1|∑ Tj

In this appendix we present a proof that for problem
P|r j , p j = 1| ∑ Tj , a negative cycle with the smallest num-
ber of nodes satisfies Properties 1–4 from the definition of a
spiral cycle; the proof of the modified Property 5′, which is
stronger than Property 5, is presented in Sect. 7.

Proof We use the same idea as in the proof of Theorem 4
for problem P|r j , p j = 1| ∑ w jU j ; the differences in the
proofs are due to the formulae for calculating arc lengths
which are problem specific.

The proof of Property 1 of Theorem4 needs no changes up
to formula (12): the length of the arc (e, f) should be replaced
when considering objective

∑
Tj instead of

∑
w jU j . For∑

Tj , the length of that arc is defined by job q which has the
largest due date among the jobs in Je:

dq = max
j∈Je

{d j }

and the value is

�(e, f) =
{
0, if dq ≥ f + 1,
f + 1 − max

{
dq , e + 1

}
, otherwise.

Depending on the value of dq we have the following cases.

123

J Sched

If dq ≥ ty + 1, then �(e,ty) = 0 and we obtain a two-node
negative cycle consisting of arcs (ty, e) and (e, ty). Notice
that �(ty ,e) < 0 since there is a late job in Jty . Alternatively,
if dq < ty + 1, then

�(e,ty) = ty + 1 − max
{
dq , e + 1

}
,

�(ty , f) ≤ f − ty,

where the last condition may hold as inequality since there
may exist a job in Jty with a due date larger than ty +1. Thus

�(e,ty) + �(ty , f) ≤ f + 1 − max
{
dq , e + 1

} = �(e, f),

so that condition (13) holds and Property 1 is proved.
The proof of Properties 2-4 is the same as in Theorem 4.

�	

Appendix 6: Verifying solution optimality for
P|r j , p j = 1|∑ Tj

Without loss of generality we assume that

r j ≤ d j ≤ ν (21)

for all jobs j ∈ J . Indeed, if d j > ν for some job j , the value
of d j can be re-set to ν without affecting the objective value∑

Tj . If d j < r j for some job j , the value of d j can be re-set
to r j which decreases the objective value

∑
Tj by r j − d j , a

constant that does not depend on the job sequence and does
not affect the optimality of a schedule.

In order to formulate a fast algorithm for optimality check
we first re-formulate the optimality conditions of Theorem 7
and then describe the optimality check algorithm.

Theorem 9 For a negative left arc, let J late
(t,τ) be a set of late

jobs that can be moved from [t, t + 1[to [τ, τ + 1[and j∗
be a job from that set with the smallest due date d j∗ ,

d j∗ = min
{

d j | j ∈ J late
(t,τ)

}
.

Let a(τ) be the left-most node reachable from τ via a left
chain τ, . . . , a(τ) of zero length and d[a(τ),τ] be the maximum
due date among the jobs allocated to a(τ), a(τ)+ 1, . . . , τ ,

d[a(τ),τ] = max
a(τ)≤z≤τ

{
d j | j ∈ Jz

}
. (22)

There exists a negative cycle with a negative left arc (t, τ) if
and only if s

d[a(τ),τ] > max{τ + 1, d j∗}. (23)

Proof Let j ′ be the job that delivers maximum in (22) and let
τ ′, a(τ) ≤ τ ′ ≤ τ , be a time slot where job j ′ is scheduled,

j ′ ∈ Jτ ′ . Consider the left-chain cycle (t, τ, . . . , τ ′, t) con-
sisting of the negative arc (t, τ), a 0-length left chain from
τ to τ ′ followed by the right arc (τ ′, t). The components of
that cycle have the lengths:

�(t,τ) = − (
t + 1 − max

{
τ + 1, d j∗

})
,

�(τ,...,τ ′) = 0,

�(τ ′,t) = t + 1 − max
{
τ ′ + 1, d j ′

}
,

so that the length of the cycle is

�(t,τ,...,τ ′,t) = max
{
τ + 1, d j∗

} − max
{
τ ′ + 1, d j ′

}
.

If (23) holds, then

max{τ + 1, d j∗} < d j ′

and hence

�(t,τ,...,τ ′,t) < d j ′ − max
{
τ ′ + 1, d j ′

} ≤ 0,

i.e., (23) is a sufficient condition.
To prove that (23) is a necessary condition, suppose it does

not hold for the negative arc (t, τ), i.e.,

d j ′ ≤ max{τ+1, d j∗} for any j ′ ∈ Jτ ′ , a(τ) ≤ τ ′ ≤ τ. (24)

We show that all left-chain cycles are non-negative, which in
combination with Theorem 7 implies that all possible cycles
with arc (t, τ) are non-negative. Indeed, if τ ′ +1 ≤ d j ′ , then

�(t,τ,...,τ ′,t) = max
{
τ + 1, d j∗

} − d j ′ ≥ 0,

where the last inequality is by (24). Otherwise,

�(t,τ,...,τ ′,t) = max
{
τ + 1, d j∗

} − (
τ ′ + 1

)

≥ (τ + 1) − (
τ ′ + 1

) ≥ 0.

�	
The following corollary serves as the basis for our opti-

mality check algorithm.

Corollary 1 Let (t1, τ) and (t2, τ) be two negative arcs with
the same end-node τ , and let j∗1 and j∗2 be two late jobs
associated with these arcs, i.e., j∗1 and j∗2 are scheduled in
[t1, t1 + 1[and [t2, t2 + 1[, respectively, and they define the
lengths of the corresponding arcs. If

d j∗1 ≤ d j∗2

and j∗ = j∗1 does not satisfy the conditions of Theorem 9,
then both left-chain cycles with arc (t1, τ) and with arc (t2, τ)

are non-negative.

123

J Sched

Proof Since condition (23) does not hold for j∗ = j∗1 ,

d[a(τ),τ] ≤ max{τ + 1, d j∗1 }.

Moreover, max{τ + 1, d j∗1 } ≤ max{τ + 1, d j∗2 }, so that con-
dition (23) does not hold for j∗ = j∗2 as well. Hence by
Theorem 9 no negative left-chain cycles exist with arc (t1, τ)

or with arc (t2, τ). �	
Consider a single-block earliest start schedule with ν =⌈ n

m

⌉
unit time slots T = {0, 1, . . . , ν − 1}. Corollary 1

provides the order in which negative arcs (t, τ) should be
explored: late jobs J late = { j |d j < C j } should be considered
in the non-decreasing order of their due dates, so that we can
eliminate non-perspective late jobs if a job with a smaller due
date does not satisfy (23). Let the jobs in J late be renumbered
in the non-decreasing order of due dates. The late job j∗ = 1
has the smallest due date among J late and t is its starting time,
t = C j∗ − 1. All negative left arcs which lengths depend on
d j∗ are of the form (t, τ) with the end-node τ belonging to
the set U j∗ ∪ V j∗ , where U j∗ = {r j∗ , r j∗ + 1, . . . , d j∗ − 1}
and V j∗ = {d j∗ , d j∗ + 1, . . . , t − 1}. Since

max{τ + 1, d j∗} =
{

d j∗ , if τ ∈ U j∗ ,
τ + 1, if τ ∈ V j∗ ,

condition (23) can be re-written as

d[a(τ),τ] > d j∗ for τ ∈ U j∗ , (25)

d[a(τ),τ] > τ + 1 for τ ∈ V j∗ . (26)

If (25) does not hold for τ ∈ U j∗ and (26) does not hold for
τ ∈ V j∗ , then by Corollary 1 no negative left-chain cycle,
originating from t or from another node, can pass via τ ∈
U j∗ ∪ V j∗ and hence nodes U j∗ ∪ V j∗ can be excluded from
further consideration. We perform a similar analysis with the
next job j∗ = 2 that has the second smallest due date among
late jobs. The algorithmcontinues until all late jobs j∗ ∈ J late

are examined.
The formal description of the algorithm is presented

below. We assume that the values d[a(τ),τ] are known for
all τ, 0 ≤ τ ≤ ν − 1; the procedure for finding these values
is formulated later on.

Algorithm ‘Optimality Check for P|r j , p j = 1| ∑ Tj ’

1. Initialize T : = {0, 1, . . . , ν − 1};
2. Apply Procedure ‘Calculate d[a(τ),τ] values for all τ ∈

T ’;
3. Renumber late jobs J late = { j |d j < C j } so that d1 ≤

d2 ≤ · · · ≤ dz , where z = |J late|;
4. For j∗ = 1 to z
5. Set t := C j∗ − 1,U j∗ := {r j∗, r j∗ + 1, . . . , d j∗ − 1}

and V j∗ := {d j∗ , d j∗ + 1, . . . , t − 1};

6. For τ ∈ T ∩ U j∗ do
7. If d[a(τ),τ] > d j∗ stop: condition (25) holds for

j∗;
8. endfor
9. For τ ∈ T ∩ V j∗ do
10. If d[a(τ),τ] > τ + 1 stop: condition (26) holds for

j∗;
11. endfor
12. SetW j∗ = U j∗ ∪ V j∗ and T := T \W j∗ ;
13. endfor

Notice that the set U j∗ may be empty; then condition (25)
is not checked in Step 5.

We introduce and analyze the O(n) Procedure ‘Calculate
d[a(τ),τ] values’ later on.Herewe explain howSteps 3–13 can
be implemented in O(n log n

m) time assuming that the initial
schedule is the earliest start schedule. We also show that the
time complexity reduces to O(n) if all jobs are available
simultaneously (r j = 0 for all j ∈ J).

In Step 3 all values
{
d j | j ∈ J late

}
belong to set T =

{0, 1, . . . , ν−1} due to assumption (21); therefore algorithm
‘Distribution Counting’ (Knuth 1998) can be used to sort the
numbers in O(n) time.

For efficient implementation of Steps 4–13 we maintain
disjoint sets of prohibited τ -nodes which have already been
eliminated, specifying each such set by its first and last nodes.
Eliminating nodes W1 for job j∗ = 1 results in the first
prohibited set I1 = W1. Eliminating nodesW2 for job j∗ =
2 results in another prohibited set I2 = W2 located to the
right of I1, if the left node ofW2 is larger than the right node
of I1, or in an extended set I1, otherwise. Notice that the case
that the right node of W2 is smaller than the left node of I1
does not happen: if it was a case, then thewhole setW2 would
be located to the left ofW1, and hence two elements of those
sets could not satisfy d1 ≤ d2, d1 ∈ W1 and d2 ∈ W2.

Suppose that after j iterations jobs 1, 2, . . . , j have been
examined and h disjoint prohibited intervals I1, I2, . . . , Ih

have been produced, h ≤ j . It can be shown by induction
that themost recent job j with the largest due date d j belongs
to Ih . Consider the next job j + 1 and the nodes W j+1 that
should be eliminated. Eliminating nodes W j+1 results in

(i) another prohibited set Ih+1 = W j+1 located to the right
of Ih ,

(ii) or in an extended set Ih .

The case that the right node ofW j+1 is smaller than the left
node of Ih could not happen: if it was a case, then elements
d j+1 ∈ W j+1 and d j ∈ Ih of those sets could not satisfy
d j ≤ d j+1.

During the course of the algorithm, no more than ν

new disjoint sets Ih are created (in accordance with (i))

123

J Sched

Fig. 21 Calculating d values

τ… λ(τ) ……λ(τ)+1 τ−1

0

0

0

…ja(i)…

0
0

a(τ)=a(j)… …i

Nodes reachable from τ via 0-length arcsNodes reachable from τ via 0-length left chains

λ(τ)-1

and extended (in accordance with (ii)). Creating a new set
takes O(1): it incurs only one comparison of the left end
of W j+1 with the right end of Ih . Extending set Ih and its
possible merger with several preceding sets involves find-
ing the position of the left end of W j+1 with respect to
I1, I2, . . . , Ih , which can be done in O(log ν) time, and creat-
ing one extended set, which can be done in O(1) time. Thus
the total number of updates associated with sets of elimi-
nated nodes W1,W2, . . . ,Wz is O(z log ν) or O(n log ν)

since z ≤ n.
The loops of Steps 6–8 and 9–11 consider a separate τ

value nomore than once, so that the time complexity of those
two loops is O(ν). Thus the overall time complexity of the
optimality check is O(n log n

m), or O(n log n) in the worst
case, when the number of machines is m = 1.

Notice that if the jobs are available simultaneously (r j = 0
for all j ∈ J), the time complexity reduces to O(n) since all
setsW1,W2, . . . ,Wz have the same left end 0, so that there
is always only one prohibited interval I1 with the left end at
0.

It remains to formulate the procedure that finds the values
d[a(τ),τ] for all τ ∈ T . Suppose we have determined the val-
ues d[a(i),i] for all i = 0, 1, . . . , τ −1 and we are calculating
d[a(τ),τ]. By (22), calculating d[a(τ),τ] involves enumerating
the following nodes z, a(τ) ≤ z ≤ τ :

(a) node τ itself;
(b) each node i reachable from τ via a left arc (τ, i) of zero

length;
(c) each node reachable from i via a 0-length left chain.

We illustrate the nodes that appear in (a)-(c) in Fig. 21.
In that figure, solid arcs represent 0-length left arcs of type
(b) and dotted arcs represent 0-length left chains of type (c).
Notice that if τ ′ ∈ [a(τ ′′), τ ′′] for some τ ′′, then a(τ ′′) cannot
lie to the right of a(τ ′) since there exists a 0-length chain from
τ ′′ to τ ′ and then from τ ′ to a(τ ′). This implies

a(τ ′′) ≤ a(τ ′) ≤ τ ′ ≤ τ ′′ for τ ′ ∈ [a(τ ′′), τ ′′]. (27)

Furthermore, if i ∈ [a(j), j] for some j , then a(j) cannot
lie to the right of a(i) since there exists a 0-length chain
from j to i and then from i to a(i); this implies [a(i), i] ⊂
[a(j), j].

If the set J early
τ of early jobs scheduled in [τ, τ + 1[is

empty, then the nodes of type (b) and (c) do not exist. Other-
wise all nodes τ ′ that satisfy (b) form the set {λ(τ), λ(τ) +
1, . . . , τ − 1}, where λ(τ) is the left-most node reachable
from τ via a 0-length left arc,

λ(τ) = min
j∈J early

τ

{r j }.

Assuming that the values d[a(i),i] have been determined for
all i = 0, 1, . . . , τ − 1, we can find d[a(τ),τ] by the formula:

d[a(τ),τ] = max

{

max
j∈Jτ

{d j }, max
i∈{λ(τ),λ(τ)+1,...,τ−1} d[a(i),i]

}

,

where the first term considers node τ of case (a) and the
second term enumerates nodes i ∈ {λ(τ), λ(τ)+ 1, . . . , τ −
1} of types (b) and (c).

In the procedure presented below, d[a(0),0] receives the
initial value max j∈J0{d j }, where J0 is the set of jobs sched-
uled in [0, 1[. Each next value d[a(τ),τ] is pre-set initially
to max j∈Jτ {d j } and it is then adjusted by considering the
values d[a(i),i] for i = τ − 1, τ − 2, . . . , λ(τ). In our imple-
mentation, we do not enumerate all these i values explicitly.
Instead, having examined i = τ − 1 and the corresponding
value d[a(τ−1),τ−1], we skip i = τ − 2, τ − 3, . . . , a(τ − 1)
since, by definition,

d[a(τ−1),τ−1] = max
a(τ−1)≤z≤τ−1

{
d j | j ∈ Jz

}
,

and proceed with i = a(τ − 1) − 1. Formally this approach
can be formulated as follows.

123

J Sched

Procedure ‘Calculate d[a(τ),τ] values for all τ ∈ T ’

1. Set τ := 0, λ(τ) := 0 and d[a(0),0] := max j∈J0{d j };
2. For τ = 1 to ν − 1
3. Set λ(τ) := min

j∈J early
τ

{r j }, d[a(τ),τ] :=
max j∈Jτ {d j }, i := τ − 1;

4. While i ≥ λ(τ) do
5. Update d[a(τ),τ] := max

{
d[a(τ),τ], d[a(i),i]

}
;

6. Set i := a(i) − 1;
7. endwhile
8. endfor

Steps 1 and 3 consider τ = 0, 1, . . . , ν − 1 and incur
O(νm) = O(n) time. In what follows we demonstrate that
once the value d[a(i∗),i∗] is calculated for some i = i∗, that
value may be involved in the subsequent calculations only
once.

Consider the smallest value τ ′, τ ′ > i∗, for which i = i∗
is used for updating d[a(τ ′),τ ′] in Step 5. This happens if i∗ ∈
[a(τ ′), τ ′] and there is a 0-length left arc (τ ′, i∗). The next
attempt to use i = i∗ may happen whenever another node τ ′′
is considered, τ ′′ > τ ′, for which there exists a 0-length left
arc (τ ′′, τ ′). Notice that by inequality (27),

a(τ ′′) ≤ a(τ ′) ≤ i∗ ≤ τ ′ ≤ τ ′′ for τ ′ ∈ [a(τ ′′), τ ′′].

In Step 5, d[a(τ ′′),τ ′′] is updated with d[a(τ ′),τ ′]. By definition,
d[a(τ ′),τ ′] is the maximum due date among the jobs allocated
to {a(τ ′), a(τ ′) + 1, . . . , i∗, . . . τ ′}. Therefore, in Step 6 the
i value is decreased from i = τ ′ to i = a(τ ′) − 1 skip-
ping all nodes {a(τ ′), a(τ ′)+1, . . . , i∗, . . . τ ′}, including i∗.

Thus the total number of values d[a(i),i] involved in Step 5
in all iterations is O(ν), and the overall time complexity
of Procedure ‘Calculate d[a(τ),τ]’ is O(n). This concludes
the justification that the main algorithm for the optimality
check is of time complexity O(n log n) and O(n) for prob-
lems P|r j , p j = 1| ∑ Tj and P|p j = 1| ∑ Tj , respectively.

References

Ahuja, R.K.,Magnanti, T. L.,&Orlin, J. B. (1993).Network flows: The-
ory, algorithms, and applications. Englewood Cliffs, NJ: Prentice
Hall.

Ahuja, R. K., & Orlin, J. B. (2001). Inverse optimization. Operations
Research, 49, 771–783.

Brucker, P., & Kravchenko, S. (2006). Scheduling equal processing
time jobs to minimize the weighted number of late jobs. Journal
of Mathematical Modelling and Algorithms, 2, 245–252.

Cherkassky, B. V., & Goldberg, A. V. (1999). Negative-cycle detection
algorithms. Mathematical Programming, 85, 277–311.

Dessouky, M. I., Lageweg, B. J., Lenstra, J. K., & Van de Velde, S. L.
(1990). Scheduling identical jobs on uniform parallel machines.
Statistica Neerlandica, 44, 115–123.

Dourado, M. C., Rodrigues, R. F., & Szwarcfiter, J. L. (2009). Schedul-
ing unit time jobs with integer release dates to minimize the
weighted number of tardy jobs. Annals of Operations Research,
169, 81–91.

Heuberger, C. (2004). Inverse combinatorial optimization: A survey on
problems, methods and results. Journal of Combinatorial Opti-
mization, 8, 329–361.

Knuth, D. (1998). The Art of Computer Programming. Sorting and
Searching (Second ed., Vol. 3). Reading, MA: Addison-Wesley.

Lin, Y., &Wang, X. (2007). Necessary and sufficient conditions of opti-
mality for some classical scheduling problems. European Journal
of Operational Research, 176, 809–818.

123

	Necessary and sufficient optimality conditions for scheduling unit time jobs on identical parallel machines
	Abstract
	1 Introduction
	2 General structural properties of feasible schedules
	2.1 Earliest start schedules
	2.2 Transforming an arbitrary schedule into an earliest start schedule
	2.3 Earliest start schedule and associated compressed network

	3 Problem P|rj,pj=1|sumwjCj
	4 Problem P|rj,pj=1|sumwjUj
	5 Problem P|pj=1|sumwjUj
	6 Problem P|rj,pj=1|sumwjTj
	7 Problem P|rj,pj=1|sumTj
	8 Problem P|pj=1|sumTj
	9 Conclusions
	Acknowledgments
	Appendix 1: Earliest start schedule construction and verification
	Algorithm `Earliest Start Schedule Verification'

	Appendix 2: Verifying solution optimality for P|rj,pj=1|sumwjCj
	Appendix 3: Verifying solution optimality for P|rj,pj=1|sumwjUj
	Appendix 4: Verifying solution optimality for P|pj =1|sumwjUj
	Appendix 5: Spiral cycle properties for problem P|rj,pj=1|sumTj
	Appendix 6: Verifying solution optimality for P|rj,pj=1|sumTj
	References

