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*Highlights (for review)

e A numerical demonstration that in phase-field models for brittle fracture
the smeared crack length does not necessarily converge to the discrete
crack length upon mesh refinement.

e A demonstration that the numerical results of boundary value problems
that use the phase-field model for brittle fracture are very sensitive to how
the boundary conditions are applied.

e A proof that the phase-field model for cohesive fracture does not satisfy
a two-dimensional patch test, even when the interpolation orders of the
displacement field, the phase field and the crack-opening field are balanced.



A numerical assessment of phase-field models for brittle
and cohesive fracturd’-convergence and stress oscillations

Stefan May, Julien Vignollet, René de Borst

aUniversity of Glasgow, School of Engineering, Rankinedng, Oakfield Avenue, Glasgow G12 8LT, UK.

Abstract

Recently, phase-field approaches have gained popularityessatile tool for simulat-
ing fracture in a smeared manner. In this paper we give a noat@ssessment of two
types of phase-field models. For the case of brittle fracteedocus on the question
whether the functional that describes the smeared crac¢kcsuapproaches the func-
tional for the discrete crack in the limiting case that thieinal length scale parameter
vanishes. By a one-dimensional example we will showkhetnvergence is not neces-
sarily attained numerically. Next, we turn attention to esifie fracture. The necessity
to have the crack opening explicitly available as input far tohesive traction-relative
displacement relation requires the independent intetipol®f this quantity. The re-
sulting three-field problem can be solved accurately orciired meshes when using
a balanced interpolation of the field variables: displacasiephase field, and crack
opening. A simple patch test shows that this observatios doenecessarily extend to
unstructured meshes.

Keywords: phase-field model, brittle fracture, cohesive fractlirepnvergence,
stress oscillations

1. Introduction

Ever since the first application of the finite element mettmffacture there has
been a debate between two competing schools. In the disgpteaches the physical
phenomenon of separation is mimicked and a geometric diseaty is created. Orig-
inally, this approach restricted crack propagation to o@tang element boundaries,
i.e. between elementdlgo and Scordelisl967). With the advent of automatic mesh
generators, remeshing has alleviated the restrictionctzaks could only propagate
along the element boundaries of timitial discretisation \WVawrzynek and Ingiéea
1987 Camacho and OrtjzZ1996. The extended finite element method has, in prin-
ciple, fully decoupled the crack propagation path from theerlying mesh lay-out,
see Belytschko and Black1999 Moeés et al. 1999, who applied the method to brit-
tle fracture, andVells and Sluy$2001); Moés and Belytschk(002; Remmers et al.
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(2003, who used a cohesive fracture model. More recently, thetfed knot inser-
tion lowers the order of continuity in isogeometric finiteelent analysis has pro-
vided a novel way to introduce cracks in solids and strust(verhoosel et a].2011
Hosseini et a.2014.

Although discrete crack approaches provide a physicalpealing way to intro-
duce fracture in finite element models, the complicatiols émsue when describing
phenomena like crack branching, coalescence, and curee#t boundaries in three
dimensions tend to favour the use of smeared crack appreaElaely smeared crack
approaches consist of simply modifying the linear-elastiess-strain relation at in-
tegration point level into orthotropic elasticitiR@shid 1968. Subsequent improve-
ments include the replacement of a sudden stress drop tobgeaogradual soften-
ing relation BaZant and Oh1983, and the use of damage mechanics as a frame-
work to describe smeared cracking. A major step forward Weasrémoval of the
ill-posedness of the boundary value problem that is caugeshiearing out the de-
cohesion over a finite domain. Regularisation can be obdaiiyeneans of non-local
approachesRijaudier-Cabot and Bazgrt987, and more ffectively in a finite ele-
ment context, by gradient approach@gérlings et al.1996, see alsale Borst et al.
(2009 andPham and Marig@2013.

Closely related to gradient damage models are the phasdesi@dels which have
become en vogue recently. Motivated by the worldafbrosio and Tortorell{1990,
who approximated the Murorp-Suan potential Mumford and Shahl989 by elliptic
functionals,Francfort and Marigqd1998 have developed the variational approach to
brittle fracture, which minimises the energy of the bulk d@he energy of the surface
associated to the crack. Based on tBisyrdin et al (2000 developed a numerical so-
lution strategy, in which an auxiliary field — the phase fiéhdwhich a control variable
d ranges from zero to one — was introduced, which distribitesracture energy over
the volume of the solid.
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Figure 1: (a) sharp crack, and (b) smeared crack modellddthgtlength scale parameter

An important issue in the phase-field approach to brittletfree is whether the
functionalIl, that describes the distributed or smeared crack surfapepaphes the



functionalll for the discrete crack in the limiting cage— 0, with ¢ the length scale
parameter that governs the width over which the crack isidiged, Fig.1. Note that
I, — II for ¢ — O implies that the smeared crack lengthconverges to the discrete
crack lengthl”. Chambolle(2004 has proven that for continuous media this is the
case, so that the functiond} for the smeared crack surfateconverges to that for the
discrete crack surface for a vanishing length scale paemtbtat is — 0. Bellettini
(1994) considered thie-convergence of the discretised verslds, of IT, and showed
that I, I'-converges tdl for £ — 0 under the condition thdt <« ¢, h denoting
the mesh spacing. However, this has been done in the coritemage segmentation
and few, if anynumericalinvestigations have been published that address the quoesti
whetherT-convergence can be demonstrated in actual boundary vatldems for
the phase field model for brittle fracture. The present itigaions suggest that there
is a discrepancy between the theoretical and the numessalts with respect to the
I'-convergence ol , to I1.

When extending the phase-field approach to cohesive fcausecond auxiliary
field must be introduced that captures the displacement jMemmoosel and de Borst
2013. A three-field problem ensues which entails some comjdinatwith respect
to the interpolation of the constituent fields. In a one-disienal study it was found
that in order to avoid stress oscillations the linear intéapons for the phase field
and the smeared displacement jump had to be complementedubjiainterpolation
of the displacements in order to avoid stress oscillatioimsVignollet et al. (2014
this issue was pursued further and also for a balanced ofdatespolations stress
oscillations were found for two-dimensional, unstructuneeshes. Herein, the issue
will be addressed rigorously by numerically investigatingvo-dimensional patch test.

In the next section the phase-field approach will be recktéd briefly. This is
followed by a concise description of the phase-field modebfittle fracture, a nu-
merical assessment bfconvergence for a one-dimensional boundary value prablem
and an investigation of the sensitivity of phase-field medelthe precise imposition
of boundary conditions in a two-dimensional boundary vadteblem. Then, the co-
hesive phase-field model will be summarised and be used im-@imensional patch
test. Concluding remarks finalise the paper.

2. Phase field representation of a crack

The basic idea of phase-field models is to approximate a wiiszaty I' by a
smeared surfadé,. In a one-dimensional setting the exponential function

d(x) = e (1)

is used to approximate the discontinuous function of Kig). As noted beford,is the
internal length scale parameter. The phase-field varhkl¢0, 1] describes the phase
field. Hereind is defined such that = O characterises the intact state of the material,
while d = 1 represents the fully broken material, similar to the d&ééinicommonly
adopted in damage mechanics. For the one-dimensionalEgsg) is the solution to
the diferential equation

d—4¢%d,x = 0, (2)



where a comma denotesfidirentiation, and which is subject to the boundary condi-
tions:

d(0)=1, 3)
d(0) = 0. (4)

This can be demonstrated simply by applying the Ansatz fanat = e™X, which
satisfies the boundary condition of E),(to Eq. @), solving forA and subsequently
using Eq. B) to determine the constant parameter.

Using Eq. @) the functional” can be approximated by the functiomal

— 1 2 24 2
rg_fgﬁ(d +4£%d,7) dV, (5)
[ S ——
Ye
with y, the crack surface density function, 9dehe et al.(2010h for details. For the
one-dimensional case the approximation is exact, so that

r= f dA =T,. (6)
r
In a multi-dimensional setting, can be expanded as follows:
1
V=2 (02 + 4£%d;d,). @)

While the discontinuity has been distributed over the erdiomainQ, as can be ob-
served from Eq.5), the rapid decay of the exponential function in E).Would enable
that a cut-df can be applied at a finite distance of the centre of the smelisedntinu-

ity.

3. Phase field model for brittle fracture

Bourdin et al.(2000 have proposed to model fracture using expression Eq. (
for the phase fieldl. With minor modifications this approach has been adopted by,
e.g.,Amor et al.(2009; Kuhn and Muller(2010; Miehe et al.(20100; Borden et al.
(2012. More recently, a fourth-order phase-field model has bagnfgrward by
Borden et al.(2019, exploiting the higher-order continuity of spline furatis. In
Vignollet et al. (2014 concerns have been expressed that the correct crack length
not necessarily retrieved for a vanishing length scalematar{ by numerically con-
sidering the example of a one-dimensional bar in tensiomeidgthe study of this bar
with respect to thi¥-convergence is checked numerically.

3.1. Continuum formulation of the phase-field model fortleriracture

In the following, a brief outline of the model ourdin et al (2000 is given. The
potential for a solid with a discrete crack reads:

n:flpe'dwfgch, (8)
Q r
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where the first term denotes the elastic energy in the bulklamdecond term repre-
sents the fracture energy which is created upon crack petipey The elastic energy
densityy® can be expressed byobike's law:

1
Yo = SAsij + peij ij 9)

as a function of the infinitesimal strain tensor
1
gij = é (Ui,j + Uj,i) (10)

with 1 andu the Lamg constants, while; denotes the displacement. In Ef),(G. is
the fracture energy, i.e. the amount of energy needed tdeceeanit area of fracture
surface. Using Eq.5) the fracture energy necessary to createffusive crack can be

expressed as:
[[6eaa= [ Geneav. (12)
r Q

At this point, the elastic energy densit§' is split into two parts — a damaged part
w9 on which a degradation functiag{d) acts, and an intact payt:

v =y (eij, d) = g(d)y(eij) + ' (&) (12)

This split is often motivated by the observation that thestierstrain components con-
tribute to the damage process that results in fracture pwthd compression strain com-
ponents do not. Various forms of a split in the energy dengithave been investigated
by Amor et al.(2009.

The substitution of the expression for the smeared fradnergy, Eq. 11), into
Eq. 8) must be complemented by a relation between the elastiggdensityy® and
the phase-field variabl® This link is inspired by damage models where a degradation
functiong(d) reduces the dtiness of the bulk of the solid. The degradation function
has to fulfil the following properties

g(0) = 1, since ford = 0 no damage occurs;

g(1) = 0, since ford = 1 the damaged payt® has to vanish;

g'(0) # 0, since the damage has to be initiated at the onset;

g'(1) = 0, since the energy must converge to a finite value for thg farbken
state,

seeBraides(1998; Pham et al(2011); Pham and Marigq2013 for a general dis-
cussion. For the degradation functigfd) use has often been made of the quadratic
function Miehe et al, 20108:

g(d) = (1~ d)*. (13)

Borden (2012 has introduced a cubic degradation function, which resultforce-
displacement curves which better reflect the behaviouritifdomaterials, as less dam-
age occurs before reaching the peak load, see\édgmllet et al.(20149.



It is important to note that, while the crack has been smeiargd,. (11) on purely
mathematical grounds, the introduction of the degraddtiontiong(d) in Eq. (12) is
heuristic, inspired by a phenomenological concept thabimroonly used in damage
mechanics. This detracts from the original mathematicagahce and purity of the
formulation.

We now substitute Eq4.(), (12) and @3) into Eq. @) to yield the potentiall, for
a solid with a smeared crack:

I, = fg ((@-dy?y?+yl) dv+ fg GeyedV. (14)

I'-convergence (withy = ¢® andy' = 0) is then defined such that the functional
I1, for the smeared crack converges to the discrete crack turadiil in Eq. 8) when
¢ —0,i.e.

1|, , = ( f 1 -d)Z®dv + f gcwdv) |€ .= f Yo dV + f GcdA =T1. (15)
Q Q - Q r
According toChambollg2009

I (ug, d) = L((l —d)? + )y (up) AV + Lgm(d) dv, (16)

with the stabilisation parametgyI'-converges for; — 0 and¢ — 0 (7 < ¢) to:

II(u) = fg Y(u) dV + fr G.dA (17)

if the global minimisersu, of I1, converge to the global minimisewsof I1. Further-
more, thd -convergence result dellettini and Coscig1994 reads in the mechanical
context: The discretised versidh , of I1,,

Tlon(Uen ch) = fQ (1 )2 + )0 (g AV + fg Gadydv  (18)

I'-convergestdl forn — 0,¢£ — 0 andh — 0 (7 < ¢, h < £). Itis noted that in the
simulations we have set= 0, similar toBorden et al(2012.

For a discrete medium, i.e. when the solid is discretisallinear finite elements,
Bourdin et al.(2008 have argued that a correction factor must be applied thap-is
proximately equal to % %, so that the fracture energy in EQ4j is replaced by the

expression:
h
Gec — (1+ E)Qc, (19)

see alsdBorden et al(2014 where this correction has been considered in numerical
studies off-convergence for second and fourth-order phase-field rsottethat study
I'-convergence was obtained numerically for prescribedatisment fields, which is
different from the present study, where the displacement fielolse=from compu-
tations of a non-linear problem, and are thus fully compatibith the equilibrium
equations, the kinematic equations, and the constitutixmadlation.



We note that in practical computations the strict conditica ¢ can be difficult to
fulfill, especially since the length scale parametaiready needs to be small in order
to resolve the crack properly. In numerical simulations wesaker conditiorh < |
is often adoptedRiero et al. 2007 Bourdin, 2007 Bourdin et al, 2008 Amor et al,
2009 Miehe et al, 2010a Kuhn and Muller 201Q Borden et al.2012 2014.

For a given equilibrium configuration we minimisge and require the variation of
Eq. (14) to be zero:

o o
T, = —L68i) + —

o1,
——6d +
a |J

i 3q, 0% =0, (20)

SincesIl, = 0 must hold for all admissiblés;j and dd this leads to the following
system of equations:

iji = 0, (21)
Ge 2 a9,
2g(d 4€Ad)+6d7{_0 (22)
where the history parameter
H = maxy? (23)

ensures irreversibility in the sense that cracks can ondygd > 0) (Miehe et al,
20103 for y¥ — co. Alternatively, in Bourdinet al. (2008), irreversibility has been
enforced by settingl = 1 whend becomes close to one. The teggﬂ{ in Eg. 22
can be interpreted as the driving force for damage evolaiwhensures that— 1 for
¥® — co. From Eq. 21) the stressr; is defined as:

- we| al//d al/ll
agij = ( )68” agl] (24)
The system Eq.A1) — Eq. £2) is complemented by the boundary conditions:
agijnj = tTOI’] 0, (25)
U = Uy on oYy, (26)
din = 0 ondQ (27)

with 9Q; N dQy = 0, 8O, U 8Q, = 99, the prescribed surface tractiomand prescribed
displacement.”

3.2. Finite element formulation for the phase-field modebfittle fracture

We discretise the domai@ into E elementsQ = U'él Q°f, and approximate the
field variables and their derivatives,

d®=Njd, od®=Ngéd, dS=Bqud, odS=Bgsd, (28)

=N, o6u®=Nyu, &°=Byu, 6&°=Byu, (29)



whereN, and N contain the interpolation functions of the phase field ared dfs-
placement field, respecuvely, aB:i andB contain their derivatives. Then, the weak
forms in Eqs 21) and @2) result in the foIIowmg matrix-vector equation:

NItda-ou | Bl(eg"+ LBV =0, (30)
=T
'fext fint(g H)
5ngQg° (NTN +MZBTBd)d+NT 9ygrdv =0 (31)
fi(d, v

Wheregd corresponds to the damaged part of the elasticity ma@ixt,o the intact

part of the elasticity matrix, ancﬂg“(g,g) is the internal force vector related to the
phase field. Introducing an arc-length method to controlltia&ling process as in
Verhoosel et aI(2009 andMay et al. (2014, we can parameterise the external load
vector asf = Af, with f a normalised external force vector, ahd load parameter.
Requiring Eq 80) to hold for any kinematically admissibléu, this equation then
transforms into: o

af - £(d,u) =0, (32)
with f(d, u) the internal force vector related to the mechanical fielobggm. In
the examples presented in the remainder of this paper thiermgth technique intro-
duced inMay et al.(2014 has been used to trace the equilibrium path. This arcdengt
function switches automatically between the rate of iraemergyZ/ and the rate of
dissipated energg®, depending on which measure is the more appropriate foptrat
of the equilibrium path. Denoting the arc-length functigndthe following system of
equations must be solved:

flnt(_ _)
h(d,u, ) = {f'“t(_ u) - Aj} = (33)
¢(u, 1)
Linearisation of Eq.%3) yields the solution at iteratioin+ 1 in the increment:
g n g n N flnt(d U)
ul ={u| -k f'”t(_ u) - Af (34)
=T i —
Al 4] e(u, )
with ) )
(0f™(d.u) af™(du)
od ou =
int int
K (g’g’ /l) = aiu (g?g) aiu (g’g) _f . (35)
=T ad du -
or dp(u, ) dp(u, )
- ou 04
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Figure 2: Results for a simple tensile test with a brittlegghéield model for a varying length scale

3.3. Phase field models for brittle fracture: a numericalessmnent

We first summarise the main results frafignollet et al.(2014 for a one-dimensional
bar under tension using the phase-field model for brittleténa:

¢ A decreasing length scale parameteesults in a higher peak force, Figy. Fur-
thermore, a smaller length scale paramétersults in a more pronounced snap-
back behaviourPham et al(2011); Borden et al(2012 andPham and Marigo
(2013 also state that the length scale paraméiarthe model byBourdin et al.
(2000 can be interpreted as a material parameter since it infasethe critical
stress. This makes it less straightforward to decide Asthould be handled in
phase-field models for brittle fracture. While the paraméteas originally been
introduced mathematically for the (smeared) approxinmatba sharp crack,
numerical experiments show that it attains the charactamoéterial parameter.

e When using a cubic degradation functidarden(2012 a more linear behaviour
is obtained at the beginning of loading, and the snap-babk\ieur becomes
sharper. However, the cubic degradation function comekeatxpense of the
introduction of an additional parametewhich again influences the behaviour
of the force-displacement curve.

e A staggered approach as hiehe et al.(20108, which does not invoke an it-
eration loop between both fields for each step, is not ablapbuce snap-back
behaviour since it essentially uses a displacement confrbé staggered ap-
proach is robust in the sense that a solution is always addalout this solution
does not necesarily represent an equilibrium state. The rigdbrous manner
to obtain a converged equilibrium solution is to use a mdhiglischeme, or a
staggered scheme with an iteration loop in each step betha@térfields.

In view of the above observations, the phase-field modelritttdfracture should
rather be treated as a damage model: the degradation foigétipis motivated from
damage mechanics and thdfediential equation in Eq.2Q) is, in fact, an equation



which describes the evolution af very similar to the dierential equation for the
damage variable in gradient damage modeksflings et al.1996.

In the following,I'-convergence will be checked numerically by examininditia
crack length for the bar. We will also show that for a plateenshear loading ¢ierent
solutions can be obtained depending on how the boundaryitemmalare precisely
imposed. In all examples the relatiér h, with ¢ the length scale parameter amthe
mesh size has been adheredfbghe et al, 20108, which in view of Fig.1 implies
that we have at least four linear elements over the centrabpthe smeared crack.

ol
oot~

Figure 3: Bar with a reduced cross section subject to a tehd A f

3.3.1. A one-dimensional bar with a reduced cross sectiateutension

We consider the one-dimensional bar depicted in BigThe bar has a reduced
cross section in the centre part and the lo&ds applied to the right edge. The material
parameters arg = 10 MPa for the Yunc's modulus G. =0.1 Nmnt? for the fracture
toughnessl. = 1 mm for the length of the bafA =1 mn?. Since only tensile stresses
exist in this case, we can sgt = 0, while the quadratic degradation functigfd) =
(1- d)? acts directly on the ¥uxc’s modulusE, sincey® = Es?.

Now, a convergence study with respect to timal crack surfacd’, is carried out
for this one-dimensional structure. The purpose is to chdwkther’, converges ta
in a non-linear computation. The theoretiiakl crack surface for the bar of Fig.is
I'=A/2, which is equal to the cross section of the segment in theecehthe bar. The
numerically obtainedinal crack surfacé&’, can be calculated using Ed)(

1
I, = fg E(d2+452d,xz) dv,

Ye
with T, evaluated when made-0.99, and the errorg is defined according to:
I,-T
re = | [r ) (36)

Fig. 4 gives the convergence study of tfieal crack surfacd’, when using the
quadratic degradation functiagfd) = (1 — d)? for different values of the length scale
parametef. Three diferent mesh sizashave been used. Fig.shows that all results
for I'; give a rather poor approximation of the theoretitaél crack surfacd, since
invariably the errofg > 0.1. Below a certain value of the ratiigh, a furtherdecrease
results in arincreaseof the errode. Fig. 5 shows that this also holds when the correc-
tion of Eq. (L9) for the fracture energy proposed Bgpurdin et al. (2009 is taken into
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— 60 Elements, h = 1.67 x 1072 mm
— 600 Elements, h = 1.67 x 1073 mm
— 6000 Elements, h = 1.67 x 10~% mm

0.8 |-

0.2 |

Error I'g for the final crack surface

O I I I
10° 10! 10? 10?
l/h

Figure 4: Convergence study for tfieal crack surfacé’, for a one-dimensional bar. The squares correspond
to £ = 0.05 mm.

— 60 Elements, h = 1.67 x 10~2 mm
— 600 Elements, h = 1.67 x 1073 mm
— 6000 Elements, h = 1.67 x 10~% mm
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Figure 5: Convergence study for tfieal crack surfacd’, for a one-dimensional bar taking into account
the correction Eg.19) to the fracture energy proposed Byurdin et al.(2008. The squares correspond to
¢ =0.05mm.

account. The minimum occurs for the same values of the iatégngth scalef= 0.05
mm). It is remarkable that for finer meshes the efigdoes not decrease.

Fig. 6 shows the evolution of the phase field in the course of theithggprocess
for the mesh with 600 elements. The distribution seems teorebly approximate the

11



Phase field d

Figure 6: Evolution of the phase field variall@t various stages in the loading process (dashed black). The
solid black curve represents the distributiondavhend = 1 is prescribed in the centre of the bar. The mesh
size ish = 1.67 x 10-3mm for 600 elements and the length scale paramete«i8.00625.

theoretical profile. However, the phase-field variable beeslarger than the optimal
profile, and the final profile is ffierent from the optimal profile, rendering the energies
associated with both profilesftirent.

The present numerical results indicate that, when therintéength scal¢ — 0,
the smeared crack length ceases to converge towards therdclelength in the phase-
field models for brittle fracture. Indeed, it seems thatffes O:

Mep|,_,# T since Ty|,_, #T, (37)

andI'-convergence is not attained. Considering Big.seems that for each discretisa-
tion, there is a range df/h-values for whicH'e becomes minimal.
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Figure 7: Plate under shear; the initial notch is modelled discrete crack
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Figure 8: Force-displacement curve for the plate underrshiban the initial notch is modelled as a discrete
crack; the mesh consists of 180100 elements, so that the mesh sizénis 0.01 mm; the length scale
parameter ig=0.01 mm

@) (b) ©

Figure 9: Propagation of the variabtefor the plate under shear when the initial notch is modelled a
discrete crack; plots correspond to the squares in&ig.

3.3.2. Influence of the boundary conditions

The phase-field model for brittle fracture can givéfelient results depending on
how the boundary conditions are imposed. We consider the pfaFig. 7, subjected
to a shear load. For this reasasf. contains contributions that stem from the tensile
strains:

1
vt = SAe) + e, (38)

andy' contains those from the compressive strains:
i1 2 - -
Vo= E/l(gii) + #Sijgij , (39)

with gﬁ & the positive and negative strain components that resuth fospectral
decomposition o. The bottom edge is fixed in thedirection. All edges are fixed in
they-direction.
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Figure 10: Plate under shear; the initial notch is modellét d=1
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Figure 11: Force-displacement curve for the plate undearsiveen the initial notch modelled witth=1;
the mesh consists of 100100 elements, so that the mesh sizh40.01 mm); the length scale parameter is
¢=0.01 mm

The notch is first modelled in a discrete sense, by applyiagpiundary conditions
shown in Fig.7. The shear loadf is applied at the top edge in the positielirection.
The length scale parameterfis 0.01 mm and the mesh size= 0.01 mm for a mesh
with 100x 100 elements. The force-displacement curve and the ewalafithe phase-
field variabled are depicted in Fig8 and Fig.9, respectively.

Next, the initial notch is introduced by prescribidg- 1, cf. Fig.10. This should
give the same results, sinde= 1 represents the centre of the smeared notch. With
this boundary condition, the force-displacement curveigf El is obtained. The cor-
responding patterns for the propagation of the phase-fizdhbbled are depicted in
Fig. 12, and are very dierent from those in Fig.

It is recognised that the applied boundary conditiba- 1 derives from the as-
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Figure 12: Propagation of the variabiefor the plate under shear when the initial notch is modelléith w
d=1,; plots correspond to the squares in Hig.
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Figure 13: Force-displacement curve for the plate undearsivaen for the left half of the plagd = 3
is set. The mesh consists of 10100 elements, so that the mesh sizéris 0.01 mm; the length scale
parameter i€ = 0.01 mm. Squares correspond to the phase field distributiorgifoFig. 14.
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Figure 14: Propagation of the varialidor the plate under shear; plots correspond to the squaréig.in3
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Figure 15: Force-displacement curve for the plate undearshiben for the top left edge of the plate= 0 is
prescribed. The mesh consists of 20000 elements, so that the mesh sizh4s0.01 mm; the length scale
parameter ig = 0.01 mm. Squares correspond to the phase field distributiangifoFig. 16.

Figure 16: Propagation of the variabdefor the plate under shear. The plots correspond to the ssjirare
Fig. 15

sumptiony? = z,//d(si*j). Different results are obtained, for instance, when assuming
that: ¢ = ¢, ¥/ = 0 in the left part of the plate. The resulting force-displaeat
curves and the crack path are then in better agreement vetfirgt calculation, i.e.
when the notch is applied in a discrete sense, seelBignd Fig.14, respectively.
However, a secondary crack starts to propagate at a cetéaje 81 the loading pro-
cess. Moreover, it is not clear whepé = ¢, ' = 0 should be prescribed, since the
crack is smeared and also extends into the right part of #ite pA further calculation
was carried out by prescribirdy= 0 on the top left edge as suggestediimor et al.
(2009. The resulting force-displacement curve and crack palagain diferent from
the case where the notch is modelled in a discrete senseigdbnd16. As in the
previous case, a secondary crack emerges. Apparenthyhtsedield model for brittle
fracture is sensitive to the exact form of the applied bowpdanditions, and boundary
conditions which intuitively should give identical resjltlo not.
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4. Phase field model for cohesive fracture

Verhoosel and de Borg2013 have introduced a phase-field model for cohesive
fracture. Promising results were obtained for decohedimmgaa predefined, straight
interface. However, it appeared that care had to be exereaiik respect to the proper
interpolation of the independent variables, the displaa#@suy;, the phase-field vari-
abled, and the crack opening field. For one-dimensional examples it appeared that
a cubic interpolation fot; together with a linear interpolation for the other variable
were stficient to obtain a non-oscillatory stress field.Mignollet et al.(2014) it was
found that this observation did not carry over to unstrustumeshes. After a brief
recapitulation of the model, we will demonstrate the emecgeof such stress oscilla-
tions for a simple, two-dimensional patch test, even for@pprly balanced order of
interpolation of the dferent independent variables.

G(fud) to(fu])
A

(@ (b)

Figure 17: (a) Energy releagg[ ux]) and (b) tractionty([ ux]) in the cohesive zone for the one-dimensional
case

4.1. Continuum formulation for the phase-field model foresite fracture

For cohesive zone models the fracture engrgis released gradually and governed
by the fracture energy function

G = g([uD. (40)

The fracture energy functiog depends on crack openingi] at the interface and
equals the fracture energy at full crack opening, cf. Figl7(a) The tractiort; in the
cohesive zone is evaluated as:

9G([u;l)
tul) = ——=— 41
@b = =55 (41)
see Figl7(b)
Inthe phase-field model for cohesive fracture, the craclstsiduted over the solid,

again by employing Eq5):
[6aunan- [ aupyav. @2)
r Q
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The spatial distribution in Eq4@) should not &ectG([u]) in the direction normal to
the crack since, for any quantisy,

f BdA = f By, dv. (43)
r Q

The crack openingy], and thereforgz([ui]), only exists at the crack surfade For
this reason, an auxiliary field is introduced when distributing the crack, which is
defined over the volum®. In view of Eq. @3), G(v;) must not change in the direc-
tion normal to the crack, which requirement is satisfied wieforcing the following
constraint on the auxiliary fielq:

o _
on

Evidently,v; being constant in the direction normal to the crack impliest &(v;) is
constant as well. The expression for E4R)(thus becomes:

(44)

f G([u]) dA = f G(vi)ycdV subject tod! = 0. (45)

It is noted that for brittle fracturg([ui]) = G: = constant, and the requirement that
fQ GeyedV, see Eq.11), remains constant in the direction normal to the crack ie-au
matically satisfied.

The phase-field model for cohesive fracture assumes a $fie strain tensor into
an elastic component and a component that accounts for gamag

&ij = siejl + gidj (46)

such that in Eq.9) &;j needs to be replaced Ia;‘f

v =y (ef) = 0% (e5(d) = v(ei - ) (47)

and
6we| al//el agel al//el 6we|

8 = —.
agi] 6sk| agl] 65&' kel asiejl

(48)

oij =

The tensosid. that accounts for damage can be derived from thermodynhaotinaid-
erations. The second law of thermodynamics giasiéek and Bazaj2001):

z')zai,-;gij_¢e'=aij(éﬁ'+.'gﬂ)— & = oyj(e + &) — oqjéf = o] 2 0. (49)

The dissipatiorD for the distributed form in Eq4®) can be evaluated explicitly from

0G(vj) .
Ye

) dye
6vi Vi

(w(d)Q(V.)) G

= g d 7[t| V| (50)

The first term in Eq.%0) corresponds to the energy that is dissipated when advancin
the cohesive zone Iy Assuming that the smeared jumps initially zero in the newly
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created cohesive zone, the first term does not contributissipdtion of energy, since
G(0)=0, Fig.17(a) The second term in Eq5() represents the energy dissipation as
the result of further crack opening by Substituting Eq.%0) into Eq. @9)

vctivi = aijyesymfing) = O'ijéic} (51)

yieldsed, the contribution of the strain tensor that accounts for aigen

ij?
&} = yesymgin;). (52)

It has been taken into account in E§I) that the traction; in the smeared crack zone
I'; is also distributed over the solid and therefeeo;n;. The potential of the phase-
field model for cohesive fracture now reads:

I, f (we'dV+g(v.m+ 5 Z"'

) dv (53)

where the last term has been introduced in order to enfoeerteared jump; to
remain constant in the direction normal to the crack, cf. @¢). Minimising I1,
yields

61'[ 5H| 5H| 6Vi 6H| (3H|
I, = el 4 ——6|—|+—06d;+ —6d=0 54
oll, = ael(S 6|6V+6(%) ( n)+6d,i6’l+6d5 ( )
on
and the following equations result:
aiji = 0 inQ, (55)
0%V .
yelti(vj) — oijnj] = “aTzl inT, (56)
subject to the boundary conditions
aijn;j =Eon6£2h, (57)
U = Uy on oYy, (58)
OV
n 0 ondry,. (59)

4.2. Finite element formulation for the phase-field modetfihesive fracture

The finite element formulation for the weak form of E§5( and Eq. 56) is ob-
tained after discretisatio@ = Uil QF and approximation of the field variables and
their derivatives,

u®=Nyu, o6u®=Nyu, &£°=Buu, Jc°=Budy, (60)

V=N, 6V =Nwy, [symi®n)®=Bw, (61)
ov]® AN

mevent®=Bov. |zl <ow || <o @
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the following vector-matrix equation is obtained:

ou’ LQZD dA —ou’ ng(gguﬁ -yCBWdV=0 (63)
f )
ov' L ~7(BV(CBuW - 7.CBW) + yNjt + 2GJGwdV =0, (64)
LAY

with C the elasticity matrix. In the numerical cases studies ofiSed.3it is sufficient

to consider a single loading step under displacement don€onsidering that the
system of Eqs@3) — (64) must hold for anydu, 6v), and that the external forces vanish,
t = Oyields:

H | 0 65
_(\_/,H) - ilL:]t(\_/,H) - X ( )
Linearisation of Eq.§5) yields the solution for iteratioi+1:
v [v] el (W
[u T [u] K [f}f‘t(v u) (66)
—=li+1 =li Ly @ i
with the tangent sfiness matrix:
atM™v.u) A"y, u)
_| v ou
SO amuy aimww| 7
ov ou

4.3. Numerical examples for the phase-field model for cokdshcture

In what follows, a constant phase figlds considered, i. e. an interface is modelled.
For this purpose a one-dimensional bar is considered witlastic interface, Figl8.
First, the bar is modelled with one-dimensional bar elemefibe Young’'s modulus
is E = 10 MPa, the sffness of the interfack= 10 Nmnt3, the lengthL = 1 mm and
the length scale parameterfis- L/10. The penalty parameter is set 1, andd =1
is prescribed at the elastic interface, i. e. at the nodearcéntre of the bar. Herent
from Verhoosel and de Bor$2013 d =1 is not prescribed at theAGss points, since
this can lead tad > 1 at the nodes\{ignollet et al, 2014. The bar consists of 10
elements with 5 elements in each segment, so that the meskssiz 0.1 mm. The
prescribed displacementig=0.1 mm.

Application of linear shape functions for the displacemagptthe smeared jump
vx and the phase field results in stress oscillations, Fit9(a) as was also observed
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Figure 18: Bar with an elastic interfagg= %k[ux]l = %k\/z>< in the centre; with Eq.41) the cohesive traction
becomesgy =k ux] =k
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Figure 19: Stress distribution along the bar in Rigfor (a) linear shape functions fak, v, d and (b) cubic
shape functions fany and linear shape functions feg, d; the dashed lines mark element boundaries
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Figure 20: Bar from Fig18in a two-dimensional setting with=0 and allvy =0
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Figure 21: For the structured mesh in (a) no stress osoiflatare observed along the lige- 0.51 mm in
(b). Dashed lines mark element boundaries.
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Figure 22: For the unstructured mesh in (a) stress osoiflattan be observed along the line0.51 mm in
(b). Dashed lines correspond to element boundaries.

by Verhoosel and de Borg2013. In one dimension, Eq46) can be rewritten using
Eq. 6) as follows:

3 4 duy du
Exx = Exx T Exx =

T~ Y= d—xx - %(ol2 + 40%d 2)Vy. (68)
Sincevy is enforced to be constant, the straji; that accounts for damage has a
guadratic distribution when linear shape functions areldeed. Therefore, the to-
tal straineyx must have a quadratic distribution as well. This can be aekigvhen
cubic shape functions are used for the displacemgrig. 19(b)shows that this is a
successful remedy.

Keeping the interpolation of the displacement of the thirdlo while those for the
phase field and the crack opening remain linear, the bar israocensidered in a two-
dimensional setting by puttingoRson’s ratio v = 0 and by prescribing ally = 0, see
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Fig. 20. A structured mesh with 18 10 elements is used. The widthds- 1 mm and
d=1 is prescribed at all nodes for whief= L/2. The other parameters are the same
as in the purely one-dimensional case. Along the¥ia®.51 mm the same results are
obtained for the stress distributioni as in case of the purely one-dimensional study,
see Fig21. No stress oscillations are observed.

Next, the nodes are slightly displaced in a patch of four elets, Fig.22(a) and
stress oscillations result along the lipe 0.51 mm, see Fig22(b) This is in agree-
ment with the results obtained Yignollet et al.(2014, where the use of unstructured
meshes for a peel test also resulted in stress oscillafidrespresent simulation can be
considered as a patch test, since a homogeneous stresshetale be obtained when
prescribing a uniform traction or displacement at the baupdrrespective of the mesh
lay-out. Unfortunately, this is not obtained for the pregaree-field formulation of the
cohesive phase-field fracture model.

Uy ()

Figure 23: Non-constant jum(X)

There are some possible explanations for the tractionlasoits. First, we con-
sider the total straigyy from Eq. @6) in a one-dimensional format:

du dug
Exx = d_>: =&+l = d—; + Y ¢Vx. (69)
with the elastic displacemen§'. Integrating Eq.§9) with a constant smeared jump in

the normal direction% =0, yields:

X

) = W0+ [ 7R d (70)

—00

=
U(¥)

The integral in Eq. 70) can be interpreted as a smeareghtkie step functionH
which is used in partition of unity approaches

Ux(X) = US(X) + Hvx(X). (71)

It has been derived in Eg49) that the smeared jump fiel needs to be constant
in the normal direction to the crack in order to have a cortgiwn,) in the direction
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normal to the crack. However, when the second tegnm™Eq. (70) is interpreted
as the jump for the smeared model, it is observed that this terot constant in
the normal direction to the crack, see also F2§. Hence, there are two ftierent
interpretations for the smeared jump in the phase field mmdelohesive fractureyy
andvy. Both interpretations cannot hold simultaneously, andothese field model for
cohesive fracture seems to embody a contradiction.

The diferent orders of the polynomials may also contribute to tteillasory re-
sults. The distribution for the stress

Oxx = Esi'x (72)

is quadratic when cubic shape functions are used for théedisment fieldi and linear
shape functions for the smeared jumpnd the phase field in Eq. (68). Since the
cohesive traction is constant,

tx = kl[ ux]l = kw, (73)

due to a constank, it may be that the diierent orders of approximation fgr(constant)
and foroyx (quadratic) in Eq.%6) contribute adversely.

5. Concluding remarks

Phase-field models have recently found widespread popufarisimulating brit-
tle crack propagation in a smeared manner. It has been sh@tva humber of phe-
nomena that are flicult to capture in discrete crack models, like crack bramghi
can evolve naturally in a phase-field framewaogkror et al, 2009 Kuhn and Muller
201Q Miehe et al, 2010gb; Borden et al. 2012 2014. Moreover, an extension to
cohesive fracture has been madferhoosel and de Bors2013. However, concerns
have been raised as well. Wignollet et al. (2019 it has been shown that the load-
displacement curves can depend considerably on the ihterugh scale that defines
the width of the distributed fracture zone, and on the degfiad functiong(d) that
has been introduced in brittle phase-field models to linketastic energy® to the
phase-field variabld. Originally introduced in a mathematical sense as a pedatiob
parameter, it appears that the length sdatekes on the role of a material parame-
ter, quite similar to the internal length scale parametgratdient plasticity or gradient
damage modelglé Borst and Muhlhay4992 Peerlings et al1996. The same holds
for the degradation functiog(d), which turns out to have the physical meaning of a
material degradation function.

Another issue is whether the functioridl, for the discretised phase-field model
for brittle fracture converges til when the internal length parametér— 0. In
Chambolle(2009 mathematical arguments have been given that this is the foas
a continuous medium, anBourdin et al.(2009 have shown that for a discretised
medium a correction factor has to be applied with respedbedfitacture energg..
Herein, we have shown by a one-dimensional exampleltftainvergence is not nec-
essarily attained, since numerically the smeared crackidn does not seem to con-
verge to the discrete crack lendth

Finally, the cohesive fracture phase-field approadesfioosel and de Bor§2013
has been revisited. Following thefiitulties that were encountered in extending this
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approach to arbitrary crack paths and unstructured meshsisnple patch test was
devised, in which boundary conditions were applied to a sgspecimen, such that
a uniform, uniaxial stress state should be obtained. Fauatsred mesh this indeed
appeared the case, but stress oscillations were found wikplacing the nodes in a
patch of four elements. This unfortuntaly renders the curstate of the cohesive
phase-field approach to fracture not applicable to arlyitiGading configurations and
discretisations.
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