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• A numerical demonstration that in phase-field models for brittle fracture

the smeared crack length does not necessarily converge to the discrete

crack length upon mesh refinement.

• A demonstration that the numerical results of boundary value problems

that use the phase-field model for brittle fracture are very sensitive to how

the boundary conditions are applied.

• A proof that the phase-field model for cohesive fracture does not satisfy

a two-dimensional patch test, even when the interpolation orders of the

displacement field, the phase field and the crack-opening field are balanced.
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A numerical assessment of phase-field models for brittle
and cohesive fracture:Γ-convergence and stress oscillations

Stefan Maya, Julien Vignolleta, René de Borsta,∗

aUniversity of Glasgow, School of Engineering, Rankine Building, Oakfield Avenue, Glasgow G12 8LT, UK.

Abstract

Recently, phase-field approaches have gained popularity asa versatile tool for simulat-
ing fracture in a smeared manner. In this paper we give a numerical assessment of two
types of phase-field models. For the case of brittle fracturewe focus on the question
whether the functional that describes the smeared crack surface approaches the func-
tional for the discrete crack in the limiting case that the internal length scale parameter
vanishes. By a one-dimensional example we will show thatΓ-convergence is not neces-
sarily attained numerically. Next, we turn attention to cohesive fracture. The necessity
to have the crack opening explicitly available as input for the cohesive traction-relative
displacement relation requires the independent interpolation of this quantity. The re-
sulting three-field problem can be solved accurately on structured meshes when using
a balanced interpolation of the field variables: displacements, phase field, and crack
opening. A simple patch test shows that this observation does not necessarily extend to
unstructured meshes.

Keywords: phase-field model, brittle fracture, cohesive fracture,Γ-convergence,
stress oscillations

1. Introduction

Ever since the first application of the finite element method to fracture there has
been a debate between two competing schools. In the discreteapproaches the physical
phenomenon of separation is mimicked and a geometric discontinuity is created. Orig-
inally, this approach restricted crack propagation to occur along element boundaries,
i.e. between elements (Ngo and Scordelis, 1967). With the advent of automatic mesh
generators, remeshing has alleviated the restriction thatcracks could only propagate
along the element boundaries of theinitial discretisation (Wawrzynek and Ingraffea,
1987; Camacho and Ortiz, 1996). The extended finite element method has, in prin-
ciple, fully decoupled the crack propagation path from the underlying mesh lay-out,
see (Belytschko and Black, 1999; Moës et al., 1999), who applied the method to brit-
tle fracture, andWells and Sluys(2001); Moës and Belytschko(2002); Remmers et al.
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(2003), who used a cohesive fracture model. More recently, the fact that knot inser-
tion lowers the order of continuity in isogeometric finite element analysis has pro-
vided a novel way to introduce cracks in solids and structures (Verhoosel et al., 2011;
Hosseini et al., 2014).

Although discrete crack approaches provide a physically appealing way to intro-
duce fracture in finite element models, the complications that ensue when describing
phenomena like crack branching, coalescence, and curved crack boundaries in three
dimensions tend to favour the use of smeared crack approaches. Early smeared crack
approaches consist of simply modifying the linear-elasticstress-strain relation at in-
tegration point level into orthotropic elasticity (Rashid, 1968). Subsequent improve-
ments include the replacement of a sudden stress drop to zeroby a gradual soften-
ing relation (Bažant and Oh, 1983), and the use of damage mechanics as a frame-
work to describe smeared cracking. A major step forward was the removal of the
ill-posedness of the boundary value problem that is caused by smearing out the de-
cohesion over a finite domain. Regularisation can be obtained by means of non-local
approaches (Pijaudier-Cabot and Bažant, 1987), and more effectively in a finite ele-
ment context, by gradient approaches (Peerlings et al., 1996), see alsode Borst et al.
(2004) andPham and Marigo(2013).

Closely related to gradient damage models are the phase-field models which have
become en vogue recently. Motivated by the work ofAmbrosio and Tortorelli(1990),
who approximated the Mumford-Shah potential (Mumford and Shah, 1989) by elliptic
functionals,Francfort and Marigo(1998) have developed the variational approach to
brittle fracture, which minimises the energy of the bulk andthe energy of the surface
associated to the crack. Based on this,Bourdin et al.(2000) developed a numerical so-
lution strategy, in which an auxiliary field – the phase field,in which a control variable
d ranges from zero to one – was introduced, which distributes the fracture energy over
the volume of the solid.

x

d(x)

0

1

(a)

x

d(x)

0

1

4ℓ

(b)

Figure 1: (a) sharp crack, and (b) smeared crack modelled with the length scale parameterℓ

An important issue in the phase-field approach to brittle fracture is whether the
functionalΠℓ that describes the distributed or smeared crack surface, approaches the
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functionalΠ for the discrete crack in the limiting caseℓ → 0, with ℓ the length scale
parameter that governs the width over which the crack is distributed, Fig.1. Note that
Πℓ → Π for ℓ → 0 implies that the smeared crack lengthΓℓ converges to the discrete
crack lengthΓ. Chambolle(2004) has proven that for continuous media this is the
case, so that the functionalΠℓ for the smeared crack surfaceΓ-converges to that for the
discrete crack surface for a vanishing length scale parameter, that isℓ → 0. Bellettini
(1994) considered theΓ-convergence of the discretised versionΠℓ,h of Πℓ and showed
thatΠℓ,h Γ-converges toΠ for ℓ → 0 under the condition thath ≪ ℓ, h denoting
the mesh spacing. However, this has been done in the context of image segmentation
and few, if any,numericalinvestigations have been published that address the question
whetherΓ-convergence can be demonstrated in actual boundary value problems for
the phase field model for brittle fracture. The present investigations suggest that there
is a discrepancy between the theoretical and the numerical results with respect to the
Γ-convergence ofΠℓ,h toΠ.

When extending the phase-field approach to cohesive fracture, a second auxiliary
field must be introduced that captures the displacement jump(Verhoosel and de Borst,
2013). A three-field problem ensues which entails some complications with respect
to the interpolation of the constituent fields. In a one-dimensional study it was found
that in order to avoid stress oscillations the linear interpolations for the phase field
and the smeared displacement jump had to be complemented by acubic interpolation
of the displacements in order to avoid stress oscillations.In Vignollet et al. (2014)
this issue was pursued further and also for a balanced order of interpolations stress
oscillations were found for two-dimensional, unstructured meshes. Herein, the issue
will be addressed rigorously by numerically investigatinga two-dimensional patch test.

In the next section the phase-field approach will be recapitulated briefly. This is
followed by a concise description of the phase-field model for brittle fracture, a nu-
merical assessment ofΓ-convergence for a one-dimensional boundary value problem,
and an investigation of the sensitivity of phase-field models to the precise imposition
of boundary conditions in a two-dimensional boundary valueproblem. Then, the co-
hesive phase-field model will be summarised and be used in a two-dimensional patch
test. Concluding remarks finalise the paper.

2. Phase field representation of a crack

The basic idea of phase-field models is to approximate a discontinuity Γ by a
smeared surfaceΓℓ. In a one-dimensional setting the exponential function

d(x) = e−
|x|
2ℓ (1)

is used to approximate the discontinuous function of Fig.1(a). As noted before,ℓ is the
internal length scale parameter. The phase-field variabled ∈ [0, 1] describes the phase
field. Herein,d is defined such thatd = 0 characterises the intact state of the material,
while d = 1 represents the fully broken material, similar to the definition commonly
adopted in damage mechanics. For the one-dimensional case,Eq. (1) is the solution to
the differential equation

d − 4ℓ2d,xx = 0, (2)

3
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where a comma denotes differentiation, and which is subject to the boundary condi-
tions:

d(0) = 1, (3)

d(±∞) = 0. (4)

This can be demonstrated simply by applying the Ansatz function d = e−|λ||x|, which
satisfies the boundary condition of Eq. (4), to Eq. (2), solving forλ and subsequently
using Eq. (3) to determine the constant parameter.

Using Eq. (2) the functionalΓ can be approximated by the functionalΓℓ

Γℓ =

∫

Ω

1
4ℓ

(

d2
+ 4ℓ2d,x

2
)

︸               ︷︷               ︸

γℓ

dV, (5)

with γℓ the crack surface density function, seeMiehe et al.(2010b) for details. For the
one-dimensional case the approximation is exact, so that

Γ =

∫

Γ

dA = Γℓ. (6)

In a multi-dimensional settingγℓ can be expanded as follows:

γℓ =
1
4ℓ

(

d2
+ 4ℓ2d,id,i

)

. (7)

While the discontinuity has been distributed over the entire domainΩ, as can be ob-
served from Eq. (5), the rapid decay of the exponential function in Eq. (2) would enable
that a cut-off can be applied at a finite distance of the centre of the smeareddiscontinu-
ity.

3. Phase field model for brittle fracture

Bourdin et al.(2000) have proposed to model fracture using expression Eq. (1)
for the phase fieldd. With minor modifications this approach has been adopted by,
e.g.,Amor et al.(2009); Kuhn and Müller(2010); Miehe et al.(2010b); Borden et al.
(2012). More recently, a fourth-order phase-field model has been put forward by
Borden et al.(2014), exploiting the higher-order continuity of spline functions. In
Vignollet et al. (2014) concerns have been expressed that the correct crack lengthis
not necessarily retrieved for a vanishing length scale parameterℓ by numerically con-
sidering the example of a one-dimensional bar in tension. Herein, the study of this bar
with respect to thisΓ-convergence is checked numerically.

3.1. Continuum formulation of the phase-field model for brittle fracture

In the following, a brief outline of the model byBourdin et al.(2000) is given. The
potential for a solid with a discrete crack reads:

Π =

∫

Ω

ψel dV +
∫

Γ

Gc dA, (8)

4
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where the first term denotes the elastic energy in the bulk andthe second term repre-
sents the fracture energy which is created upon crack propagation. The elastic energy
densityψel can be expressed by Hooke’s law:

ψel
=

1
2
λεiiε j j + µεi jεi j (9)

as a function of the infinitesimal strain tensor

εi j =
1
2

(

ui, j + u j,i

)

(10)

with λ andµ the Lamé constants, whileui denotes the displacement. In Eq. (8), Gc is
the fracture energy, i.e. the amount of energy needed to create a unit area of fracture
surface. Using Eq. (5) the fracture energy necessary to create a diffusive crack can be
expressed as:

∫

Γ

Gc dA =
∫

Ω

Gcγℓ dV. (11)

At this point, the elastic energy densityψel is split into two parts – a damaged part
ψd on which a degradation functiong(d) acts, and an intact partψi :

ψel
= ψel(εi j , d) = g(d)ψd(εi j ) + ψi(εi j ). (12)

This split is often motivated by the observation that the tensile strain components con-
tribute to the damage process that results in fracture, while the compression strain com-
ponents do not. Various forms of a split in the energy densityψel have been investigated
by Amor et al.(2009).

The substitution of the expression for the smeared fractureenergy, Eq. (11), into
Eq. (8) must be complemented by a relation between the elastic energy densityψel and
the phase-field variabled. This link is inspired by damage models where a degradation
functiong(d) reduces the stiffness of the bulk of the solid. The degradation functiong
has to fulfil the following properties

• g(0) = 1, since ford = 0 no damage occurs;

• g(1) = 0, since ford = 1 the damaged partψd has to vanish;

• g′(0) , 0, since the damage has to be initiated at the onset;

• g′(1) = 0, since the energy must converge to a finite value for the fully broken
state,

seeBraides(1998); Pham et al.(2011); Pham and Marigo(2013) for a general dis-
cussion. For the degradation functiong(d) use has often been made of the quadratic
function (Miehe et al., 2010b):

g(d) = (1− d)2. (13)

Borden(2012) has introduced a cubic degradation function, which results in force-
displacement curves which better reflect the behaviour of brittle materials, as less dam-
age occurs before reaching the peak load, see alsoVignollet et al.(2014).

5
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It is important to note that, while the crack has been smearedin Eq. (11) on purely
mathematical grounds, the introduction of the degradationfunctiong(d) in Eq. (12) is
heuristic, inspired by a phenomenological concept that is commonly used in damage
mechanics. This detracts from the original mathematical elegance and purity of the
formulation.

We now substitute Eqs (11), (12) and (13) into Eq. (8) to yield the potentialΠℓ for
a solid with a smeared crack:

Πℓ =

∫

Ω

(

(1− d)2ψd
+ ψi

)

dV +
∫

Ω

Gcγℓ dV. (14)

Γ-convergence (withψd
= ψel andψi

= 0) is then defined such that the functional
Πℓ for the smeared crack converges to the discrete crack functionalΠ in Eq. (8) when
ℓ → 0, i.e.

Πℓ

∣
∣
∣
ℓ→0
=

(∫

Ω

(1− d)2ψel dV +
∫

Ω

Gcγℓ dV

)
∣
∣
∣
∣
ℓ→0
=

∫

Ω

ψel dV +
∫

Γ

Gc dA = Π. (15)

According toChambolle(2004)

Πℓ(uℓ, d) =
∫

Ω

((1− d)2
+ η)ψel(uℓ) dV +

∫

Ω

Gcγℓ(d) dV, (16)

with the stabilisation parameterη, Γ-converges forη→ 0 andℓ → 0 (η ≪ ℓ) to:

Π(u) =
∫

Ω

ψel(u) dV +
∫

Γ

Gc dA (17)

if the global minimisersuℓ of Πℓ converge to the global minimisersu of Π. Further-
more, theΓ-convergence result ofBellettini and Coscia(1994) reads in the mechanical
context: The discretised versionΠℓ,h of Πℓ,

Πℓ,h(uℓ,h, dh) =
∫

Ω

((1− dh)
2
+ η)ψel(uℓ,h) dV +

∫

Ω

Gcγℓ(dh) dV (18)

Γ-converges toΠ for η → 0, ℓ → 0 andh→ 0 (η ≪ ℓ, h≪ ℓ). It is noted that in the
simulations we have setη = 0, similar toBorden et al.(2012).

For a discrete medium, i.e. when the solid is discretised into linear finite elements,
Bourdin et al.(2008) have argued that a correction factor must be applied that isap-
proximately equal to 1+ h

4ℓ , so that the fracture energy in Eq. (14) is replaced by the
expression:

Gc →

(

1+
h
4ℓ

)

Gc, (19)

see alsoBorden et al.(2014) where this correction has been considered in numerical
studies ofΓ-convergence for second and fourth-order phase-field models. In that study
Γ-convergence was obtained numerically for prescribed displacement fields, which is
different from the present study, where the displacement fields evolve from compu-
tations of a non-linear problem, and are thus fully compatible with the equilibrium
equations, the kinematic equations, and the constitutive formulation.

6
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We note that in practical computations the strict conditionh≪ ℓ can be difficult to
fulfill, especially since the length scale parameterℓ already needs to be small in order
to resolve the crack properly. In numerical simulations theweaker conditionh < l
is often adopted (Piero et al., 2007; Bourdin, 2007; Bourdin et al., 2008; Amor et al.,
2009; Miehe et al., 2010a; Kuhn and Müller, 2010; Borden et al., 2012, 2014).

For a given equilibrium configuration we minimiseΠℓ and require the variation of
Eq. (14) to be zero:

δΠℓ =
∂Πℓ

∂εi j
δεi j +

∂Πℓ

∂d
δd+

∂Πℓ

∂d,i
δd,i = 0. (20)

SinceδΠℓ = 0 must hold for all admissibleδεi j and δd this leads to the following
system of equations:

σi j,i = 0, (21)

Gc

2ℓ
(d− 4ℓ2

∆d) +
∂g
∂d
H = 0 (22)

where the history parameter
H = maxψd (23)

ensures irreversibility in the sense that cracks can only grow (ḋ ≥ 0) (Miehe et al.,
2010a) for ψd → ∞. Alternatively, in Bourdinet al. (2008), irreversibility has been
enforced by settingd = 1 whend becomes close to one. The term∂g

∂dH in Eq. (22)
can be interpreted as the driving force for damage evolutionand ensures thatd→ 1 for
ψd→ ∞. From Eq. (21) the stressσi j is defined as:

σi j =
∂ψel

∂εi j
= g(d)

∂ψd

∂εi j
+
∂ψi

∂εi j
. (24)

The system Eq. (21) – Eq. (22) is complemented by the boundary conditions:

σi j n j = t̄i on∂Ωt, (25)

ui = ūi on∂Ωu, (26)

d,ini = 0 on∂Ω (27)

with ∂Ωt ∩ ∂Ωu = ∅, ∂Ωt ∪ ∂Ωu = ∂Ω, the prescribed surface tractiont̄ and prescribed
displacement ¯u.

3.2. Finite element formulation for the phase-field model for brittle fracture

We discretise the domainΩ into E elements,Ω =
⋃E

e=1Ω
e, and approximate the

field variables and their derivatives,

de
= NT

d d, δde
= NT

dδd, de
,i = Bdd, δde

,i = Bdδd, (28)

ue
= Nuu, δue

= Nuδu, εe
= Buu, δεe

= Buδu, (29)

7



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

whereNd andN
u

contain the interpolation functions of the phase field and the dis-

placement field, respectively, andB
d

andB
u

contain their derivatives. Then, the weak
forms in Eqs (21) and (22) result in the following matrix-vector equation:

δuT
∫

Γ

NT
u t dA

︸      ︷︷      ︸

f̃ ext
u

−δuT
∫

Ω

BT
u (gCd

+ Ci)Buu dV
︸                          ︷︷                          ︸

f int
u (d, u)

= 0, (30)

δdT
∫

Ω

Gc

2ℓ

(

NT
d Nd + 4ℓ2BT

d Bd

)

d + NT
d

∂g
∂d
H dV

︸                                                    ︷︷                                                    ︸

f int
d (d, u)

= 0 (31)

whereCd corresponds to the damaged part of the elasticity matrix,Ci to the intact

part of the elasticity matrix, andf int
d (d, u) is the internal force vector related to the

phase field. Introducing an arc-length method to control theloading process as in
Verhoosel et al.(2009) andMay et al.(2014), we can parameterise the external load
vector asf̃

ext

u
= λ f̂ , with f̂ a normalised external force vector, andλ a load parameter.

Requiring Eq. (30) to hold for any kinematically admissibleδu, this equation then
transforms into:

λ f̂ − f int
u (d, u) = 0, (32)

with f int
u (d, u) the internal force vector related to the mechanical field problem. In

the examples presented in the remainder of this paper the arc-length technique intro-
duced inMay et al.(2014) has been used to trace the equilibrium path. This arc-length
function switches automatically between the rate of internal energyU̇ and the rate of
dissipated energẏED, depending on which measure is the more appropriate for thatpart
of the equilibrium path. Denoting the arc-length function by ϕ the following system of
equations must be solved:

h(d, u, λ) =





f int
d

(d, u)

f int
u

(d, u) − λ f̂
ϕ(u, λ)





= 0. (33)

Linearisation of Eq. (33) yields the solution at iterationi+1 in the incrementn:




d
u
λ





n

i+1

=





d
u
λ





n

i

− K−1

T

∣
∣
∣
∣
∣

n

i
·





f int
d

(d, u)

f int
u

(d, u) − λ f̂
ϕ(u, λ)





n

i

(34)

with

K
T
(d, u, λ) =





∂ f int
d

(d, u)

∂d

∂ f int
d

(d, u)

∂u
0

∂ f int
u

(d, u)

∂d

∂ f int
u

(d, u)

∂u
− f̂

0T ∂ϕ(u, λ)

∂u

∂ϕ(u, λ)

∂λ





. (35)
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Figure 2: Results for a simple tensile test with a brittle phase-field model for a varying length scaleℓ

3.3. Phase field models for brittle fracture: a numerical assessment

We first summarise the main results fromVignollet et al.(2014) for a one-dimensional
bar under tension using the phase-field model for brittle fracture:

• A decreasing length scale parameterℓ results in a higher peak force, Fig.2. Fur-
thermore, a smaller length scale parameterℓ results in a more pronounced snap-
back behaviour.Pham et al.(2011); Borden et al.(2012) andPham and Marigo
(2013) also state that the length scale parameterℓ in the model byBourdin et al.
(2000) can be interpreted as a material parameter since it influences the critical
stress. This makes it less straightforward to decide howℓ should be handled in
phase-field models for brittle fracture. While the parameter ℓ has originally been
introduced mathematically for the (smeared) approximation of a sharp crack,
numerical experiments show that it attains the character ofa material parameter.

• When using a cubic degradation functionBorden(2012) a more linear behaviour
is obtained at the beginning of loading, and the snap-back behaviour becomes
sharper. However, the cubic degradation function comes at the expense of the
introduction of an additional parameters which again influences the behaviour
of the force-displacement curve.

• A staggered approach as inMiehe et al.(2010b), which does not invoke an it-
eration loop between both fields for each step, is not able to capture snap-back
behaviour since it essentially uses a displacement control. The staggered ap-
proach is robust in the sense that a solution is always obtained, but this solution
does not necesarily represent an equilibrium state. The only rigorous manner
to obtain a converged equilibrium solution is to use a monolithic scheme, or a
staggered scheme with an iteration loop in each step betweenboth fields.

In view of the above observations, the phase-field model for brittle fracture should
rather be treated as a damage model: the degradation function g(d) is motivated from
damage mechanics and the differential equation in Eq. (22) is, in fact, an equation
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which describes the evolution ofd, very similar to the differential equation for the
damage variable in gradient damage models (Peerlings et al., 1996).

In the following,Γ-convergence will be checked numerically by examining thefinal
crack length for the bar. We will also show that for a plate under shear loading different
solutions can be obtained depending on how the boundary conditions are precisely
imposed. In all examples the relationℓ≥h, with ℓ the length scale parameter andh the
mesh size has been adhered to (Miehe et al., 2010b), which in view of Fig.1 implies
that we have at least four linear elements over the central part of the smeared crack.

λf̂

A
A

2
A

L
3

L
3

L
3

x

Figure 3: Bar with a reduced cross section subject to a tensile loadλ f̂

3.3.1. A one-dimensional bar with a reduced cross section under tension
We consider the one-dimensional bar depicted in Fig.3. The bar has a reduced

cross section in the centre part and the loadλ f̂ is applied to the right edge. The material
parameters areE=10 MPa for the Young’s modulus,Gc=0.1 Nmm−1 for the fracture
toughness,L= 1 mm for the length of the bar,A= 1 mm2. Since only tensile stresses
exist in this case, we can setψi

= 0, while the quadratic degradation functiong(d) =
(1− d)2 acts directly on the Young’s modulusE, sinceψd

=
1
2Eε2.

Now, a convergence study with respect to thefinal crack surfaceΓℓ is carried out
for this one-dimensional structure. The purpose is to checkwhetherΓℓ converges toΓ
in a non-linear computation. The theoreticalfinal crack surface for the bar of Fig.3 is
Γ=A/2, which is equal to the cross section of the segment in the centre of the bar. The
numerically obtainedfinal crack surfaceΓℓ can be calculated using Eq. (5),

Γℓ =

∫

Ω

1
4ℓ

(

d2
+ 4ℓ2d,x

2
)

︸               ︷︷               ︸

γℓ

dV,

with Γℓ evaluated when maxd>0.99, and the errorΓE is defined according to:

ΓE =
|Γℓ − Γ|

Γ
. (36)

Fig. 4 gives the convergence study of thefinal crack surfaceΓℓ when using the
quadratic degradation functiong(d) = (1 − d)2 for different values of the length scale
parameterℓ. Three different mesh sizesh have been used. Fig.4 shows that all results
for Γℓ give a rather poor approximation of the theoreticalfinal crack surfaceΓ, since
invariably the errorΓE>0.1. Below a certain value of the ratioℓ/h, a furtherdecrease
results in anincreaseof the errorΓE. Fig.5 shows that this also holds when the correc-
tion of Eq. (19) for the fracture energy proposed byBourdin et al.(2008) is taken into

10
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Figure 4: Convergence study for thefinal crack surfaceΓℓ for a one-dimensional bar. The squares correspond
to ℓ = 0.05 mm.
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Figure 5: Convergence study for thefinal crack surfaceΓℓ for a one-dimensional bar taking into account
the correction Eq. (19) to the fracture energy proposed byBourdin et al.(2008). The squares correspond to
ℓ = 0.05 mm.

account. The minimum occurs for the same values of the internal length scale (ℓ = 0.05
mm). It is remarkable that for finer meshes the errorΓE does not decrease.

Fig. 6 shows the evolution of the phase field in the course of the loading process
for the mesh with 600 elements. The distribution seems to reasonably approximate the
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Figure 6: Evolution of the phase field variabled at various stages in the loading process (dashed black). The
solid black curve represents the distribution ford whend = 1 is prescribed in the centre of the bar. The mesh
size ish = 1.67× 10−3mm for 600 elements and the length scale parameter isℓ = 0.00625.

theoretical profile. However, the phase-field variable becomes larger than the optimal
profile, and the final profile is different from the optimal profile, rendering the energies
associated with both profiles different.

The present numerical results indicate that, when the internal length scaleℓ → 0,
the smeared crack length ceases to converge towards the truecrack length in the phase-
field models for brittle fracture. Indeed, it seems that forℓ → 0:

Πℓ,h

∣
∣
∣
ℓ→0
, Π since Γℓ

∣
∣
∣
ℓ→0
, Γ, (37)

andΓ-convergence is not attained. Considering Fig.5 it seems that for each discretisa-
tion, there is a range ofℓ/h-values for whichΓE becomes minimal.

0.5 mm

0.5 mm

λf̂

0.5 mm

0.5 mm

y

x

Figure 7: Plate under shear; the initial notch is modelled asadiscrete crack
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Figure 8: Force-displacement curve for the plate under shear when the initial notch is modelled as a discrete
crack; the mesh consists of 100× 100 elements, so that the mesh size ish = 0.01 mm; the length scale
parameter isℓ=0.01 mm

(a) (b) (c)

Figure 9: Propagation of the variabled for the plate under shear when the initial notch is modelled as a
discrete crack; plots correspond to the squares in Fig.8

3.3.2. Influence of the boundary conditions
The phase-field model for brittle fracture can give different results depending on

how the boundary conditions are imposed. We consider the plate of Fig.7, subjected
to a shear load. For this reason,ψd contains contributions that stem from the tensile
strains:

ψd
=

1
2
λ(ε+ii )

2
+ µε+i jε

+

i j , (38)

andψi contains those from the compressive strains:

ψi
=

1
2
λ(ε−ii )

2
+ µε−i jε

−
i j , (39)

with ε+i j , ε
−
i j the positive and negative strain components that result from a spectral

decomposition ofεεε. The bottom edge is fixed in thex-direction. All edges are fixed in
they-direction.
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Figure 10: Plate under shear; the initial notch is modelled with d=1
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Figure 11: Force-displacement curve for the plate under shear when the initial notch modelled withd= 1;
the mesh consists of 100× 100 elements, so that the mesh size ish=0.01 mm; the length scale parameter is
ℓ=0.01 mm

The notch is first modelled in a discrete sense, by applying the boundary conditions
shown in Fig.7. The shear loadλ f̂ is applied at the top edge in the positivex-direction.
The length scale parameter isℓ = 0.01 mm and the mesh sizeh= 0.01 mm for a mesh
with 100×100 elements. The force-displacement curve and the evolution of the phase-
field variabled are depicted in Fig.8 and Fig.9, respectively.

Next, the initial notch is introduced by prescribingd= 1, cf. Fig.10. This should
give the same results, sinced = 1 represents the centre of the smeared notch. With
this boundary condition, the force-displacement curve of Fig. 11 is obtained. The cor-
responding patterns for the propagation of the phase-field variabled are depicted in
Fig. 12, and are very different from those in Fig.9.

It is recognised that the applied boundary conditiond = 1 derives from the as-
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(a) (b) (c)

Figure 12: Propagation of the variabled for the plate under shear when the initial notch is modelled with
d=1; plots correspond to the squares in Fig.11
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Figure 13: Force-displacement curve for the plate under shear when for the left half of the plateψd
= ψel

is set. The mesh consists of 100× 100 elements, so that the mesh size ish = 0.01 mm; the length scale
parameter isℓ = 0.01 mm. Squares correspond to the phase field distributions for d in Fig. 14.

(a) (b) (c)

Figure 14: Propagation of the variabled for the plate under shear; plots correspond to the squares inFig. 13
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Figure 15: Force-displacement curve for the plate under shear when for the top left edge of the plated = 0 is
prescribed. The mesh consists of 100× 100 elements, so that the mesh size ish=0.01 mm; the length scale
parameter isℓ = 0.01 mm. Squares correspond to the phase field distributions for d in Fig. 16.

(a) (b) (c)

Figure 16: Propagation of the variabled for the plate under shear. The plots correspond to the squares in
Fig. 15

sumptionψd
= ψd(ε+i j ). Different results are obtained, for instance, when assuming

that: ψd
= ψel, ψi

= 0 in the left part of the plate. The resulting force-displacement
curves and the crack path are then in better agreement with the first calculation, i.e.
when the notch is applied in a discrete sense, see Fig.13 and Fig.14, respectively.
However, a secondary crack starts to propagate at a certain stage in the loading pro-
cess. Moreover, it is not clear whereψd

= ψel, ψi
= 0 should be prescribed, since the

crack is smeared and also extends into the right part of the plate. A further calculation
was carried out by prescribingd = 0 on the top left edge as suggested inAmor et al.
(2009). The resulting force-displacement curve and crack path are again different from
the case where the notch is modelled in a discrete sense, see Fig. 15 and16. As in the
previous case, a secondary crack emerges. Apparently, the phase-field model for brittle
fracture is sensitive to the exact form of the applied boundary conditions, and boundary
conditions which intuitively should give identical results, do not.
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4. Phase field model for cohesive fracture

Verhoosel and de Borst(2013) have introduced a phase-field model for cohesive
fracture. Promising results were obtained for decohesion along a predefined, straight
interface. However, it appeared that care had to be exercised with respect to the proper
interpolation of the independent variables, the displacementsui , the phase-field vari-
abled, and the crack opening fieldvi . For one-dimensional examples it appeared that
a cubic interpolation forui together with a linear interpolation for the other variables
were sufficient to obtain a non-oscillatory stress field. InVignollet et al.(2014) it was
found that this observation did not carry over to unstructured meshes. After a brief
recapitulation of the model, we will demonstrate the emergence of such stress oscilla-
tions for a simple, two-dimensional patch test, even for a properly balanced order of
interpolation of the different independent variables.

[[ux]]

G([[ux]])

0

Gc

(a)

[[ux]]

tx([[ux]])

0

Gc

(b)

Figure 17: (a) Energy releaseG([[ux]]) and (b) tractiontx([[ux]]) in the cohesive zone for the one-dimensional
case

4.1. Continuum formulation for the phase-field model for cohesive fracture
For cohesive zone models the fracture energyGc is released gradually and governed

by the fracture energy function
G = G([[ui]]). (40)

The fracture energy functionG depends on crack opening [[ui]] at the interface and
equals the fracture energyGc at full crack opening, cf. Fig.17(a). The tractionti in the
cohesive zone is evaluated as:

ti([[u j]]) =
∂G([[u j]])

∂[[ui]]
, (41)

see Fig.17(b).
In the phase-field model for cohesive fracture, the crack is distributed over the solid,

again by employing Eq. (5):
∫

Γ

G([[ui]]) dA =
∫

Ω

G([[ui]])γℓ dV. (42)
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The spatial distribution in Eq. (42) should not affectG([[ui]]) in the direction normal to
the crack since, for any quantityB,

∫

Γ

B dA =
∫

Ω

Bγℓ dV. (43)

The crack opening [[ui ]], and thereforeG([[ui]]), only exists at the crack surfaceΓ. For
this reason, an auxiliary fieldvi is introduced when distributing the crack, which is
defined over the volumeΩ. In view of Eq. (43), G(vi) must not change in the direc-
tion normal to the crack, which requirement is satisfied whenenforcing the following
constraint on the auxiliary fieldvi :

∂vi

∂n
= 0. (44)

Evidently,vi being constant in the direction normal to the crack implies thatG(vi) is
constant as well. The expression for Eq. (42) thus becomes:

∫

Γ

G([[ui]]) dA =
∫

Ω

G(vi)γℓ dV subject to∂vi
∂n = 0. (45)

It is noted that for brittle fractureG([[ui]]) = Gc = constant, and the requirement that
∫

Ω
Gcγℓ dV, see Eq. (11), remains constant in the direction normal to the crack is auto-

matically satisfied.
The phase-field model for cohesive fracture assumes a split of the strain tensor into

an elastic component and a component that accounts for damage:

εi j = ε
el
i j + ε

d
i j (46)

such that in Eq. (9) εi j needs to be replaced byεel
i j

ψel
= ψel(εel

i j ) = ψ
el
(

εel
i j (d)

)

= ψel(εi j − ε
d
i j ) (47)

and

σi j =
∂ψel

∂εi j
=
∂ψel

∂εel
kl

∂εel
kl

∂εi j
=
∂ψel

∂εel
kl

δkiδl j =
∂ψel

∂εel
i j

. (48)

The tensorεd
i j that accounts for damage can be derived from thermodynamical consid-

erations. The second law of thermodynamics gives (Jiràsek and Bažant, 2001):

Ḋ = σi j ε̇i j − ψ̇
el
= σi j (ε̇el

i j + ε̇
d
i j ) −

∂ψel

∂εel
i j

ε̇el
i j = σi j (ε̇el

i j + ε̇
d
i j ) − σi j ε̇

el
i j = σi j ε̇

d
i j ≥ 0. (49)

The dissipationḊ for the distributed form in Eq. (45) can be evaluated explicitly from

Ḋ =
d
dt

(

γℓ(d)G(vi)
)

= G
∂γℓ

∂d
ḋ+ γℓ

∂G(v j)

∂vi
v̇i = G

∂γℓ

∂d
ḋ+ γℓti v̇i . (50)

The first term in Eq. (50) corresponds to the energy that is dissipated when advancing
the cohesive zone bẏd. Assuming that the smeared jumpvi is initially zero in the newly
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created cohesive zone, the first term does not contribute to dissipation of energy, since
G(0)= 0, Fig.17(a). The second term in Eq. (50) represents the energy dissipation as
the result of further crack opening by ˙vi . Substituting Eq. (50) into Eq. (49)

γℓti v̇i = σi jγℓsym(v̇in j) = σi j ε̇
d
i j (51)

yieldsεd
i j , the contribution of the strain tensor that accounts for damage:

εd
i j = γℓsym(vin j). (52)

It has been taken into account in Eq. (51) that the tractionti in the smeared crack zone
Γℓ is also distributed over the solid and thereforeti =σi j n j . The potential of the phase-
field model for cohesive fracture now reads:

Πℓ =

∫

Ω

(

ψel dV + G(vi)γℓ +
α

2

∣
∣
∣
∣
∣

∂vi

∂n

∣
∣
∣
∣
∣

2)

dV (53)

where the last term has been introduced in order to enforce the smeared jumpvi to
remain constant in the direction normal to the crack, cf. Eq.(44). Minimising Πℓ
yields

δΠℓ =
∂Πl

∂εel
i j

δεel
i j +

∂Πl

∂vi
δvi +

∂Πl

∂
(
∂vi
∂n

)δ

(

∂vi

∂n

)

+
∂Πl

∂d,i
δd,i +

∂Πl

∂d
δd = 0 (54)

and the following equations result:

σi j,i = 0 inΩ, (55)

γℓ[ti(v j) − σi j n j] = α
∂2vi

∂n2
in Γℓ (56)

subject to the boundary conditions

σi j n j = t̄i on∂Ωh, (57)

ui = ūi on∂Ωu, (58)

∂vi

∂n
= 0 on∂Γℓ. (59)

4.2. Finite element formulation for the phase-field model for cohesive fracture

The finite element formulation for the weak form of Eq. (55) and Eq. (56) is ob-
tained after discretisationΩ =

⋃E
e=1Ω

e and approximation of the field variables and
their derivatives,

ue
= Nuu, δue

= Nuδu, εe
= Buu, δεe

= Buδu, (60)

ve
= Nvv, δve

= Nvδv, [sym(v ⊗ n)]e
= Bvv, (61)

[sym(δv ⊗ n)]e
= Bvδv,

[
∂v
∂n

]e

= Gvv,

[
∂δv
∂n

]e

= Gvδv, (62)
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the following vector-matrix equation is obtained:

δuT
∫

Ω

NT
u h dA

︸        ︷︷        ︸

f̃ ext
u

−δuT
∫

Ω

BT
u (C Buu − γℓC Bvv) dV

︸                               ︷︷                               ︸

f int
u (v, u)

= 0 (63)

δvT
∫

Ω

−γℓBT
v (C Buu − γℓC Bvv) + γℓNT

v t + αGT
v Gvv dV

︸                                                                 ︷︷                                                                 ︸

f int
v (v, u)

= 0, (64)

with C the elasticity matrix. In the numerical cases studies of Section 4.3it is sufficient
to consider a single loading step under displacement control. Considering that the
system of Eqs (63) – (64) must hold for any (δu, δv), and that the external forces vanish,
t̄ = 0 yields:

H(v, u) =





f int
v

(v, u)

f int
u

(v, u)



 = 0. (65)

Linearisation of Eq. (65) yields the solution for iterationi+1:

[

v
u

]

i+1

=

[

v
u

]

i

− K−1

T

∣
∣
∣
∣
∣
i
·





f int
v

(v, u)

f int
v

(v, u)





i

(66)

with the tangent stiffness matrix:

K
T
(v, u) =





∂ f int
v

(v, u)

∂v

∂ f int
v

(v, u)

∂u
∂ f int

u
(v, u)

∂v

∂ f int
u

(v, u)

∂u





. (67)

4.3. Numerical examples for the phase-field model for cohesive fracture

In what follows, a constant phase fieldd is considered, i. e. an interface is modelled.
For this purpose a one-dimensional bar is considered with anelastic interface, Fig.18.
First, the bar is modelled with one-dimensional bar elements. The Young’s modulus
is E = 10 MPa, the stiffness of the interfacek= 10 Nmm−3, the lengthL = 1 mm and
the length scale parameter isℓ = L/10. The penalty parameter is setα = 1, andd= 1
is prescribed at the elastic interface, i. e. at the node in the centre of the bar. Different
from Verhoosel and de Borst(2013) d= 1 is not prescribed at the Gauss points, since
this can lead tod > 1 at the nodes (Vignollet et al., 2014). The bar consists of 10
elements with 5 elements in each segment, so that the mesh size ish= 0.1 mm. The
prescribed displacement is ¯ux=0.1 mm.

Application of linear shape functions for the displacementux, the smeared jump
vx and the phase fieldd results in stress oscillations, Fig.19(a), as was also observed
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Figure 18: Bar with an elastic interfaceG= 1
2k[[ux]] = 1

2kv2
x in the centre; with Eq. (41) the cohesive traction

becomestx=k[[ux]] =kvx
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Figure 19: Stress distribution along the bar in Fig.18 for (a) linear shape functions forux, vx, d and (b) cubic
shape functions forux and linear shape functions forvx, d; the dashed lines mark element boundaries
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Figure 20: Bar from Fig.18 in a two-dimensional setting withν=0 and allvy=0
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Figure 21: For the structured mesh in (a) no stress oscillations are observed along the liney= 0.51 mm in
(b). Dashed lines mark element boundaries.
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Figure 22: For the unstructured mesh in (a) stress oscillations can be observed along the liney=0.51 mm in
(b). Dashed lines correspond to element boundaries.

by Verhoosel and de Borst(2013). In one dimension, Eq. (46) can be rewritten using
Eq. (5) as follows:

εel
xx = εxx− ε

d
xx =

dux

dx
− γℓvx =

dux

dx
−

1
4ℓ

(d2
+ 4ℓ2d,x

2)vx. (68)

Sincevx is enforced to be constant, the strainεd
xx that accounts for damage has a

quadratic distribution when linear shape functions are used for d. Therefore, the to-
tal strainεxx must have a quadratic distribution as well. This can be achieved when
cubic shape functions are used for the displacementux. Fig. 19(b)shows that this is a
successful remedy.

Keeping the interpolation of the displacement of the third order while those for the
phase field and the crack opening remain linear, the bar is nowreconsidered in a two-
dimensional setting by putting Poisson’s ratio ν = 0 and by prescribing allvy = 0, see

22



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

Fig. 20. A structured mesh with 10× 10 elements is used. The width isc = 1 mm and
d= 1 is prescribed at all nodes for whichx= L/2. The other parameters are the same
as in the purely one-dimensional case. Along the liney=0.51 mm the same results are
obtained for the stress distributionσxx as in case of the purely one-dimensional study,
see Fig.21. No stress oscillations are observed.

Next, the nodes are slightly displaced in a patch of four elements, Fig.22(a), and
stress oscillations result along the liney= 0.51 mm, see Fig.22(b). This is in agree-
ment with the results obtained inVignollet et al.(2014), where the use of unstructured
meshes for a peel test also resulted in stress oscillations.The present simulation can be
considered as a patch test, since a homogeneous stress stateshould be obtained when
prescribing a uniform traction or displacement at the boundary, irrespective of the mesh
lay-out. Unfortunately, this is not obtained for the present three-field formulation of the
cohesive phase-field fracture model.

x

vx

0

ṽx(x)

Figure 23: Non-constant jump ˜vx(x)

There are some possible explanations for the traction oscillations. First, we con-
sider the total strainεxx from Eq. (46) in a one-dimensional format:

εxx =
dux

dx
= εel

xx+ ε
d
xx =

duel
x

dx
+ γℓvx. (69)

with the elastic displacementuel
x . Integrating Eq. (69) with a constant smeared jump in

the normal direction,∂vx
∂x = 0, yields:

ux(x) = uel
x (x) + vx

∫ x

−∞

γℓ(x̃) dx̃
︸             ︷︷             ︸

ṽx(x)

. (70)

The integral in Eq. (70) can be interpreted as a smeared Heaviside step functionH
which is used in partition of unity approaches

ux(x) = uel
x (x) +Hvx(x). (71)

It has been derived in Eq. (45) that the smeared jump fieldvx needs to be constant
in the normal direction to the crack in order to have a constant G(vx) in the direction
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normal to the crack. However, when the second term ˜vx in Eq. (70) is interpreted
as the jump for the smeared model, it is observed that this term is not constant in
the normal direction to the crack, see also Fig.23. Hence, there are two different
interpretations for the smeared jump in the phase field modelfor cohesive fracture,vx

andṽx. Both interpretations cannot hold simultaneously, and thephase field model for
cohesive fracture seems to embody a contradiction.

The different orders of the polynomials may also contribute to the oscillatory re-
sults. The distribution for the stress

σxx = Eεel
xx (72)

is quadratic when cubic shape functions are used for the displacement fieldu and linear
shape functions for the smeared jumpv and the phase fieldd in Eq. (68). Since the
cohesive traction is constant,

tx = k[[ux]] = kvx, (73)

due to a constantvx, it may be that the different orders of approximation fortx (constant)
and forσxx (quadratic) in Eq. (56) contribute adversely.

5. Concluding remarks

Phase-field models have recently found widespread popularity for simulating brit-
tle crack propagation in a smeared manner. It has been shown that a number of phe-
nomena that are difficult to capture in discrete crack models, like crack branching,
can evolve naturally in a phase-field framework (Amor et al., 2009; Kuhn and Müller,
2010; Miehe et al., 2010a,b; Borden et al., 2012, 2014). Moreover, an extension to
cohesive fracture has been made (Verhoosel and de Borst, 2013). However, concerns
have been raised as well. InVignollet et al.(2014) it has been shown that the load-
displacement curves can depend considerably on the internal length scaleℓ that defines
the width of the distributed fracture zone, and on the degradation functiong(d) that
has been introduced in brittle phase-field models to link theelastic energyψel to the
phase-field variabled. Originally introduced in a mathematical sense as a perturbation
parameter, it appears that the length scaleℓ takes on the role of a material parame-
ter, quite similar to the internal length scale parameter ingradient plasticity or gradient
damage models (de Borst and Mühlhaus, 1992; Peerlings et al., 1996). The same holds
for the degradation functiong(d), which turns out to have the physical meaning of a
material degradation function.

Another issue is whether the functionalΠℓ,h for the discretised phase-field model
for brittle fracture converges toΠ when the internal length parameterℓ → 0. In
Chambolle(2004) mathematical arguments have been given that this is the case for
a continuous medium, andBourdin et al.(2008) have shown that for a discretised
medium a correction factor has to be applied with respect to the fracture energyGc.
Herein, we have shown by a one-dimensional example thatΓ-convergence is not nec-
essarily attained, since numerically the smeared crack lengthΓℓ does not seem to con-
verge to the discrete crack lengthΓ.

Finally, the cohesive fracture phase-field approach ofVerhoosel and de Borst(2013)
has been revisited. Following the difficulties that were encountered in extending this
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approach to arbitrary crack paths and unstructured meshes,a simple patch test was
devised, in which boundary conditions were applied to a square specimen, such that
a uniform, uniaxial stress state should be obtained. For a structured mesh this indeed
appeared the case, but stress oscillations were found when displacing the nodes in a
patch of four elements. This unfortuntaly renders the current state of the cohesive
phase-field approach to fracture not applicable to arbitrary loading configurations and
discretisations.
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Moës, N., Belytschko, T., 2002. Extended finite element method for cohesive crack
growth. Engineering Fracture Mechanics 69, 813–833.
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