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Abstract Metal layers in the upper mesosphere and lower thermosphere are created through meteoric
ablation. They are important for understanding the temperature structure, dynamics, and chemistry of this
atmospheric region. Recent lidar observations have shown a regular downward extension of the Fe layer
bottomside which correlates with solar radiation. In this study we combine lidar observations, quantum
chemical calculations, and model simulations to show that this bottomside extension is primarily caused
by photolysis of FeOH. We determine the photolysis rate to be J(FeOH)= (6 ± 3)×10−3 s−1. We also show
that the reaction FeOH + H → FeO + H2 is slower at mesospheric temperatures than previous estimates.
With these updated rate coefficients, we are able to significantly improve the modeling of the Fe layer
bottomside. The calculations further show the nearly complete depletion of FeOH during sunlit periods.
This may have implications for cloud nuclei in the middle atmosphere.

1. Introduction

Layers of metal atoms are created in the region of the upper mesosphere and lower thermosphere
(MLT, ∼70–110 km) through meteoric ablation. These layers are important for understanding the tempera-
ture structure dynamics and chemistry of this atmospheric region [e.g., Lübken et al., 2015; Feng et al., 2015;
Yu et al., 2012], the influx of cosmic material [e.g., Plane, 2012; Gardner et al., 2014; Huang et al., 2015], and
the occurrence of thermospheric and sporadic metal layers and their relation to sporadic E layers which can
influence radio wave propagation [e.g., Chu et al., 2011; Delgado et al., 2012]. Furthermore, meteoric metals
are the source of meteoric smoke particles (MSPs) which most likely act as nuclei for ice particles in the meso-
sphere [e.g., Gumbel and Megner, 2009; Megner and Gumbel, 2009] and may also interact with sulphuric and
nitric acid in the stratosphere [Saunders et al., 2012; Frankland et al., 2015]. A recent review on the chemistry
of metals in the MLT region summarizes the current understanding and highlights open questions [Plane
et al., 2015]. It shows the importance of understanding all chemical reactions, the metals and their molecular
species undergo, so that atmospheric chemistry models can correctly describe the dynamical behavior of the
metal layers to give insights into some of the topics mentioned above. Laboratory studies have provided a
broad insight into many of the important reactions dominating the MLT metal layers. However, some impor-
tant chemical reactions with metal-containing species do not have a suitable electronic transition for probing
by laser-induced fluorescence and could so far not be investigated directly.

The atomic Fe layer at polar latitudes has a mean centroid altitude of around 88 km. Recent lidar observations
at polar latitudes show a downward extension of the layer below 80 km during sunlit periods [Yu et al., 2012].
Self and Plane [2003] and Plane [2003] have shown that FeOH should be the dominant reservoir for atomic Fe
below 95 km. As Plane et al. [1999] have illustrated, one way to dissociate FeOH at sunrise is via reaction with
atomic H which is produced by photolysis of H2O in sunlit periods. However, during nighttime the concentra-
tion of this radical decreases rapidly below∼82 km, so that FeOH becomes a stable reservoir for Fe. Within the
current understanding, atmospheric chemistry models such as Whole Atmosphere Chemistry Climate Model
(WACCM)-Fe [Feng et al., 2013] have so far been unable to correctly reproduce the bottomside extension of
the Fe layer. Here we present a study combining atmospheric lidar observations, quantum chemical calcula-
tions, and atmospheric modeling to derive the photolysis rate of FeOH, J (FeOH), which so far has not been
measured. We show that only the direct photolysis of FeOH can be fast enough to explain the bottomside
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extension of the mesospheric Fe layer at sunrise. The combination of methods described here also allows us
to place upper limits to the rate coefficients under mesospheric conditions for the reactions

FeOH + H → Fe + H2O (1a)

→ FeO + H2 (1b)

2. Atmospheric Observations
2.1. Instrument and Data Set
The Leibniz-Institute of Atmospheric Physics operates a mobile Fe lidar based on a frequency-doubled
alexandrite laser scanning the Doppler broadened Fe resonance line at 386 nm [von Zahn and Höffner, 1996;
Höffner and Lautenbach, 2009]. The system is capable of nearly background free single photon detection and
can determine mesospheric Fe densities in full daylight. Typical measurement uncertainties are on the order
of 2–5% at 1 km resolution and 15 min integration.

The Fe lidar was set up at Davis, Antarctica (68∘34′S, 77∘58′E), in 2010 and was in operation from 15 December
2010 until 31 December 2012 [e.g., Lübken et al., 2011; Viehl et al., 2015; Lübken et al., 2015]. The data set
obtained in Antarctica includes 2900 h of Fe density measurements. In the years 2008–2009 and since July
2014, the system has been in operation at the Arctic Lidar Observatory for Middle Atmosphere Research
(ALOMAR) on the Norwegian Island of Andøya (69∘16′N, 16∘00′E). The observations in the Arctic have so far
produced more than 1200 h of Fe density measurements.

2.2. Observation and Analysis of the Fe Layer Bottomside
Figure 1 shows two examples of mesospheric Fe layer observations in the summer of the Southern Hemi-
sphere and the winter of the Northern Hemisphere. The pronounced change in the Fe layer below 80–85 km
is regularly observed in both hemispheres and all seasons whenever the solar elevation passes a critical level
around −5∘; i.e., the MLT experiences sunrise or sunset. Yu et al. [2012] investigated the diurnal behavior of
the mesospheric Fe layer at McMurdo, Antarctica (78∘), and defined the “bottomside” as the lower 300 cm−3

contour. That study analyzed the time-dependent altitude change Δz
Δt

of the defined contour and found a
dependence on the time of the season, caused by the change of solar elevation.

In this study, we analyze the rate of change of Fe density, Δ[Fe]
Δt

, over an altitude interval of 1 km, thereby quan-
tifying the rate of increase of Fe at each altitude’s time of apparent sunrise. The rate of increase is described
by direct photolysis (FeOH+h𝜈) and chemical reactions (1a) and (1b) producing Fe. We note that although
reaction channel (1b) produces FeO, this will mostly be reduced to Fe by subsequent reaction of FeO with
atomic O in the sunlit MLT. Further reactions cannot contribute significantly, as other reservoirs are less
abundant by 2–4 orders of magnitude [Feng et al., 2013] and additional reaction pathways from FeOH to Fe
are not known. As a first approximation, the time-dependent Fe concentration [Fe]t produced by photolysis
of FeOH is given by

[Fe]t = [FeOH]0 (1 − exp(−Jt)) (2)

where J = J (FeOH) is the photolysis rate of FeOH and [FeOH]0 is the concentration just before sunrise. Since
the resulting Fe will be oxidized via a sequence of reactions involving O3, O2, and H2O to reform FeOH [Plane
et al., 2015], the observed rate of increase of Fe at sunrise provides a lower limit to J (FeOH).

Figure 2 shows an example of a single day where we have analyzed the rate of increase at sunrise. Figure 2a
shows the bottomside extension between 5 and 9 local solar time (LST). The main Fe layer with densities
higher than 6000 cm−3 is observed above about 82 km. The bottomside extension of the Fe layer builds up
below 80 km from 7 LST, extending down to 70 km by 8 LST. The cutoff for Fe densities in Figure 2a is 100 cm−3.
Figure 2b shows the analysis of a single altitude. Densities at 76 km are below the cutoff during the night and
quickly increase at sunrise. The time to reach [Fe]t1∕2 = 0.5 × [Fe]tmax can be used to determine a lower limit
for J (FeOH) when setting [FeOH]0 = [Fe]tmax in equation (2), assuming a full conversion of FeOH to Fe.

We have analyzed all available cases of the bottomside extension at various altitudes for both hemispheres
(Davis, 69∘S and ALOMAR, 69∘N). We averaged the photolysis coefficients determined using equation (2) for
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Figure 1. The mesospheric Fe layer at (top) Davis, Antarctica (69∘S), and (bottom) ALOMAR, Norway (69∘N) during three
consecutive cycles of sunset and sunrise. An extension of the metal layer’s bottomside is observed whenever sunlight
reaches the MLT region.

all days and altitudes to remove the distortions caused by gravity waves (which are observable in Figure 1).
The difference between the hemispheres is much smaller than the variability given as the standard deviation.
The combined average first-order coefficient observed by lidar is (1.2 ± 0.4) × 10−3 s−1. We will show that this
corresponds to a photolysis coefficient, setting a lower limit to J (FeOH).

3. Theoretical Considerations

To separate the influence of the photolysis and the reactions of FeOH with H and to compare with the observed
rate of increase, we have performed quantum chemical calculations and revisited previous laboratory studies.
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Figure 2. The rate of increase of Fe at sunrise is analyzed at different altitudes for all available days of lidar observations
in the Arctic and Antarctica. Analysis of all available days yields a mean rate of (1.2 ± 0.4)×10−3 s−1, which is a lower
limit to J (FeOH) because of recycling of Fe to FeOH (see text). Of the available reactions, only the direct photolysis of
FeOH can be fast enough to explain such a rapid increase.

3.1. Photolysis of FeOH
To calculate the absorption cross section of FeOH, the molecular geometry was first optimized using the
range-separated CAM-B3LYP functional [Yanai et al., 2004] and the 6-311+g(2d,p) basis set in the Gaussian
09 suite of programs [Frisch et al., 2009]. The equilibrium structure of the ground state (X6A’) is bent with
re (Fe–O) = 1.793 Å, re (O–H) = 0.957 Å, and ∠e (Fe–O–H)=142.0∘. The energies and transition oscillator
strengths for vertical transitions to the first 30 excited states were then computed using the time-dependent
(TD) density functional method [Scalmani et al., 2006]. The long-range correction in the TD/CAM-B3LYP
functional makes it suitable for modeling electron excitations to high-lying orbitals.

Figure 3 illustrates the calculated photolysis cross section as a function of wavelength (𝜎(𝜆)) for FeOH. The
bond energy of FeOH at 0 K is 323±16 kJ mol−1 [Schröder, 2008], which corresponds to a thermodynamic

Figure 3. Absorption cross section for FeOH calculated at the TD/CAM-B3LYP/6-311+g(sd,p) level of theory. Wavelengths
shorter than ∼305 nm lead to photolysis.
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threshold for photolysis of 370 nm (vertical arrow in Figure 3). However, absorption in the large band between
300 and 400 nm does most likely not lead to photolysis. Two pieces of evidence support this.

First, FeOH is electronically analogous to FeCl. Our calculations show that FeCl has a very similar absorption
spectrum to FeOH, and absorption between 315 and 370 nm produces fluorescence in FeCl rather than disso-
ciation [Delaval et al., 1980; Lei and Dagdigian, 2000]. Second, inspection of the Mulliken electron populations
of the excited states of FeOH shows that these remain ionic like the ground state up to the seventh state. Only
the eighth and higher states are covalent and hence more likely to dissociate to Fe + OH. The transition to
the eighth state is calculated to occur at 300 nm, so the threshold for photolysis should be slightly red shifted
(allowing for internal excitation).

The photolysis coefficient is then computed from the relation

J = ∫
𝜆2

𝜆1

𝜎(𝜆)Φ(𝜆)d𝜆

whereΦ(𝜆) is the solar actinic flux by the semiempirical model SOLAR2000 averaged over a solar cycle [Tobiska
et al., 2000]. The integration is performed from 305 to 150 nm, yielding J(FeOH)=6.2 × 10−3 s−1. The slight
uncertainty in the exact transition from fluorescence to photolysis results in an uncertainty of the photolysis
rate of about 50%. The order of magnitude of the photolysis, however, is not affected by this. Note that this
value of J (FeOH) is about 5 times larger than the lower limit determined from the analysis of lidar observations
in section 2.2. As we show in section 4, this value of J (FeOH)=(3 − 9) × 10−3 s−1 compares well with the rate
required to match the observed increase of Fe below 80 km.

3.2. Reaction of FeOH With H
The reaction between FeOH and H can proceed via the exothermic channels of reactions (1a) and (1b), where
ΔH°(0K) =−171±16 and −92±21 kJ mol−1, respectively [Schröder, 2008]. Note that H can also react with
FeOH to form HFeOH, but this is not important under mesospheric conditions [Self and Plane, 2003]. The rate
constants for reactions (1a) and (1b) have been determined in studies of Fe-seeded flames at temperatures
in excess of 2000 K, indicating that reaction (1b) is the dominant channel even though it is less exothermic
[Jensen and Jones, 1974; Rumminger et al., 1999]. However, in a subsequent experimental and theoretical study
of the FeOH + H reaction, Self and Plane [2003] showed that there are significant uncertainties regarding both
the relative and absolute rate coefficients for these reactions when extrapolated to around 300 K. Theory
indicated that reaction (1a) might be the dominant channel, and so Feng et al. [2013] adopted a value of
k1a =3 × 10−10 exp(−1264∕T) cm3 molecule−1 s−1 and ignored (1b) for atmospheric modeling purposes. We
now reexamine this assumption.

When modeling the underside of the mesospheric Fe layer, a further test of this chemistry is the observed
disappearance of Fe between 70 and 80 km at night. Although the atomic H concentration at 70–80 km
decreases substantially at night [Plane et al., 2015], sufficient H remains to place upper limits on reactions
(1a) and (1b). The rate constant for reaction (1a) from the flame work k1a =2 × 10−12 exp(−600∕T) cm3

molecule−1 s−1 is slow enough at mesospheric temperatures. However, k1b = 5 × 10−11 exp(−800∕T) cm3

molecule−1 s−1 [Jensen and Jones, 1974] is too fast by around a factor of 5 when extrapolated to 200 K, where
k1b needs to be less than 2 × 10−13 cm3 molecule−1 s−1. In order to reproduce the nighttime disappearance
of Fe below 80 km in the model, the activation energy and preexponential factor can be increased slightly
to k1b = 6×10−11 exp(−1200∕T) cm3 molecule−1 s−1, which still gives the rate constant at 2400 K required
for flame modeling. These changes are modest bearing in mind the enormous temperature range being
extrapolated over.

At typical MLT temperatures of less than 230 K and [H] ∼1 × 108 cm−3, the rates of reactions (1a) and (1b) are
on the order of k1a [H] ∼1.5×10−5 s−1 and k1b [H] ∼3×10−5 s−1, respectively. Comparison with the value
of J (FeOH) determined in section 2.2 shows that these pathways cannot compete with the direct photolysis
of FeOH to explain the rate of increase at sunrise. However, at night reactions (1a) and (1b) are probably of
similar significance in defining the Fe layer bottomside.

4. Atmospheric Modeling

A series of models for MLT metal chemistry has recently been developed on the basis of the Whole Atmosphere
Community Climate Model (WACCM) [Marsh et al., 2013a, 2013b; Feng et al., 2013; Plane et al., 2014;
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Figure 4. Comparison of the bottomside extension of the Fe layer at Davis, Antarctica, measured by resonance lidar
and simulated with WACCM-Fe. Included are four model runs for Fe and two runs for FeOH. The previously existing
model run (Alpha) underestimated the increase of Fe observed by lidar at sunrise but overestimated densities during
dark periods. New model simulations with higher resolution as well as new rate coefficients for the photolysis of FeOH
and the reactions of FeOH capture the observed behavior, in particular the crucial rate of increase at sunrise and low
nighttime densities (Beta to Delta). The latest model runs show a strong depletion of FeOH. See text for more details.

Langowski et al., 2015]. WACCM is a comprehensive “high top” chemistry climate model extending from the
surface to 5.96 × 10−6 hPa (∼140 km). The background chemistry scheme is based on that of Kinnison et al.
[2007], which contains 59 species and 217 gas phase chemical reactions. Over 120 gas phase reactions of
metallic species are then added [Plane et al., 2015]. The model also includes the meteoric input function which
is calculated by combining a cosmic dust astronomical model with a chemical ablation model [e.g., Fentzke
and Janches, 2008; Vondrak et al., 2008].

For this study, we compare four runs of WACCM-Fe, the Fe variant of the model [Feng et al., 2013]. In contrast
to the existing calculations (run Alpha), the vertical resolution in the MLT region for the new runs (Beta to
Delta) was increased from around 3.5 km to less than 500 m by increasing the hybrid 𝜎 pressure vertical coor-
dinate from 88 to 144 levels, using the same method as Merkel et al. [2009]. This allows for a better resolution
of the highly altitude-dependent distributions of atomic H and O, which are critical for the reactions at the
bottomside of the Fe layer. Run Beta uses same rate coefficients as run Alpha but the higher vertical resolution.
Run Gamma increases the photolysis rate to J(FeOH) = 6 × 10−3 s−1 as determined in section 3.1. Run Delta
additionally changes the rate coefficients for the reaction channels of FeOH + H as described in section 3.2.

Figure 4 compares the results of the different model runs with lidar observations. We use a 24 h composite of
all observations and simulations at Davis, Antarctica (69∘S), for 1 month, thereby averaging out the influence
of gravity waves which is apparent in Figure 1. Both WACCM-Fe and lidar data are calculated for a resolution
of 30 min and integrated to 1 km. The data are smoothed with a Hann filter of 1 h and 2 km. WACCM-Fe
generally simulates the high-latitude Fe layer better during winter than summer, when the model predicts an
“hour glass” shape, whereas lidar observations show an uplift of the layer [Feng et al., 2013; Viehl et al., 2015].
Moreover, during winter the impact of ice particles potentially influencing the bottomside of the layer can be
ruled out. June 2011 is the winter month with most lidar measurement (260 h).

The lidar observations in Figure 4 (solid black) show a pronounced increase of the Fe bottomside density
at sunrise. During the sunlit period, densities at 76 km altitude reach around 2500 cm−3 and show a slight
decline during the day. Densities rapidly fall after sunset and stay below 200 cm−3 during the dark period. Run
Alpha of WACCM-Fe (dashed red) shows an increase in Fe densities during daytime, peaking toward sunset at

VIEHL ET AL. FEOH PHOTOLYSIS AND FE LAYER BOTTOMSIDE 1378



Geophysical Research Letters 10.1002/2015GL067241

around 1750 cm−3 which significantly underestimates the observed Fe density. Also, considerable amounts of
Fe persist during the dark period, which are not observed. Using the higher resolution, run Beta (dash-dotted
orange) shows a more pronounced relative daytime enhancement and lower absolute densities. With the new
estimate of J (FeOH), run Gamma (dash-double-dotted cyan) shows a stronger increase at sunrise. However,
absolute densities are overestimated. Closer inspection of the nighttime densities shows that run Gamma
predicts considerable amounts of Fe during the night, contrary to the lidar observations (see inlay in Figure 4).
Run Delta (dash-triple-dotted blue) additionally uses the revised rate coefficients for reactions (1a) and (1b),
which then reproduces satisfactorily the low nighttime densities. The absolute densities in run Delta peak
around sunset yet are of comparable abundance to the lidar observations. Most strikingly, the timing and rate
of increase at sunrise Δ[Fe]

Δt
in run Delta match the observed behavior very well.

A further result of this comparison is the nearly complete photolysis of FeOH during sunlit periods. Whereas
run Beta shows FeOH densities of more than 3500 cm−3 at this altitude during all hours of the day (dark green),
run Gamma calculates FeOH levels below ∼300 cm−3 for most of the sunlit period (light green). We note that
the sum of [Fe] and [FeOH] is not constant in time as Fe is further oxidized to other species.

5. Discussion and Summary

Analysis of the solar elevation dependence by Yu et al. [2012] demonstrated that the bottomside extension
of the mesospheric Fe layer is a solar phenomenon, and FeOH is the dominant reservoir at this altitude [Self
and Plane, 2003]. Three reactions govern this transition: the direct photolysis of FeOH and the reactions (1a)
and (1b) of FeOH with atomic H. Contrary to the reactions depleting Fe, these reactions producing Fe have
only been studied indirectly in the laboratory [Self and Plane, 2003]. Previously, the photolysis of FeOH was
assumed to be negligible, with J(FeOH) set to a low value of 1×10−5 s−1 [Plane et al., 2015]. Furthermore,
only reaction (1a) had been considered in model simulations by Feng et al. [2013] with a rate coefficient of
k1a =3×10−10exp(−1264∕T) (see section 3.2).

In the present study we have compared a new set of high-resolution WACCM-Fe model runs with different
rate coefficients to our lidar observations. The crucial H and O distribution with strong gradients in the lower
MLT region is thereby resolved more precisely. However, the current set of reaction rate coefficients does not
reproduce the marked Fe increase at sunrise observed by lidar. A substantial increase in J (FeOH), supported by
the quantum chemical calculations and consistent with lidar observations, yields a much improved simulation
of the bottomside extension during sunlit hours.

However, with the previously used rate coefficient for (1a), the low nighttime densities observed by lidar
in both hemispheres cannot be reproduced in the model. As section 3.2 shows, the activation energy and
preexponential factor of reaction (1b) can be altered slightly to reduce the rate coefficient at mesospheric
temperatures while being fast enough at high temperatures to account for Fe-catalyzed flame inhibition
[Jensen and Jones, 1974; Rumminger et al., 1999]. As a result, reaction (1a) is slower than previously assumed
and reaction (1b) should not be neglected under MLT conditions. The inclusion of these new rate coefficients
results in a good representation of the diurnal behavior of the Fe layer bottomside and the rate of increase
at sunrise. Nevertheless, discrepancies of the model representation still persist during the afternoon hours.
WACCM-Fe predicts a further increase of Fe density until sunset and a decrease later at night. This may be due
to the fact that reactions (1a) and (1b) are still overestimated, although that would be difficult to reconcile
with Fe combustion chemistry. Future laboratory studies would help to resolve this. Two other possibilities
are that our knowledge of the neutral gas phase chemistry of Fe is incomplete, and that the diurnal variations
of O and H in this altitude range are not properly captured in WACCM, which needs to be further investigated.
A potential low bias of atomic O and H in WACCM would lead to even stronger constraints on reactions (1a)
and (1b). Indeed, the excellent spatial and temporal resolution achievable with a modern Fe lidar provides a
stringent test for a 3-D chemistry model.

We conclude that the direct photolysis of FeOH is the primary cause of the bottomside extension of the meso-
spheric Fe layer during sunlit hours and determine a new photolysis rate J(FeOH) = 6×10−3 s−1 which is more
than 2 orders of magnitude faster than previously assumed. Furthermore, contrary to previous considerations,
reaction (1a) is about an order of magnitude slower and both (1a) and (1b) need to be considered under MLT
conditions. These changes of rate coefficients have a profound effect on the diurnal behavior of the Fe layer at
all altitudes. Tidal signatures in the Fe layer as observed by Lübken et al. [2011] should be strongly influenced
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by this effect below the relative maximum abundance of the main reservoir FeOH at around 90 km. Improved
model analyses with the new rate coefficients determined in this study will allow a deeper understanding of
the dynamical and chemical properties of the MLT.

Our simulations show the strong depletion of FeOH at all altitudes whenever sunlight is present due to the
increased photolysis rate. Through reaction with O3, FeOH may be oxidized to FeOOH. Rietmeijer [2001] has
shown that 𝛼 FeOOH (goethite) is a plausible candidate for MSPs. Alternatively, FeOH can dimerize efficiently
[Feng et al., 2013]. The nearly complete removal of FeOH as predicted by WACCM-Fe with the revised Fe chem-
istry therefore may have implications for an important precursor of MSP formation during sunlit periods, i.e.,
the whole polar summer season. Small amounts of FeOH are still present as Fe is constantly being recycled to
FeOH via the reactions with O3, O2, H2O, and H. Whether these amounts are sufficient to contribute to MSP
formation needs to be investigated in more detail. Other metal compounds and silica might polymerize first
to form embryonic particles; after which iron is added by the uptake of atomic Fe rather than Fe compounds.

We note that it may be misleading to define the bottomside of a metal layer as the 300 cm−3 contour
[Yu et al., 2012]. An analysis of Δz

Δt
shows a dependence not only on the solar elevation but also on the

strongly altitude-dependent abundance of the reservoir FeOH. The slope of the bottomside extension will
vary depending on whether the 300 cm−3 contour or any other level is defined.

In this study we have used a combination of resonance lidar observations, quantum chemical calculations,
and atmospheric model simulations to determine basic physicochemical parameters (photolysis rates and
rate constants) which are very challenging to measure directly. The middle atmosphere has therefore in a
sense provided a natural laboratory.
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