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In this study, we report the first discovery of microdiamond inclusions in kyanite–garnet schists from the Central
Rhodope Mountains in Bulgaria. These inclusions occur in garnets from metapelites that are part of a meta-
igneous and meta-sedimentary mélange hosted by Variscan (Hercynian) orthogneiss. Ultra-high-pressure
(UHP) conditions are further supported by the presence of exsolved needles of quartz and rutile in the garnet
and by geothermobarometry estimates that suggest peak metamorphic temperatures of 750–800 °C and
pressures in excess of 4 GPa. The discovery of UHP conditions in the Central Rhodopes of Bulgaria compliments
the well-documented evidence for such conditions in the southernmost (Greek) part of the Rhodope Massif.
Dating of garnets from these UHP metapelites (Chepelare Shear Zone) using Sm–Nd geochronology indicates a
Late Cretaceous age (70.5–92.7Ma) for the UHPmetamorphic event. This is significantly younger than previously
reported ages and suggests that the UHP conditions are associated with the Late Mesozoic subduction of the
Vardar Ocean northward beneath the Moesian platform (Europe). The present-day structure of the RM is the
result of a series of subduction–exhumation events that span the Cenozoic, alongside subsequent post-orogenic
extension and metamorphic core complex formation.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

It is now widely accepted that in convergent margin settings, rocks
can be subducted to depths exceeding 150 km and then returned to
the surface. Recognition of this deep subduction–exhumation cycle
followed the discovery of coesite in rocks from the Dora Massif in
the Western Alps (Chopin, 1984) and discovery of microdiamonds in
the Kokchetav Massif of Kazakhstan (Sobolev and Shatsky, 1990).
Although rare, in recent years, further discoveries of ultra-high-pressure
(UHP) indicators (diamond, coesite) have been made worldwide
(Dobrzhinetskaya, 2012). Ultra-high-pressure rocks have proven to
be of great importance as natural archives of the mineralogy and
conditions (temperature, pressure, % volatiles, among others) of the
deeply subducted lithosphere that complement prior insights from
high-pressure experimental petrology.

This study investigates metapelitic kyanite–garnet schists from the
Rhodope Massif (RM) in Bulgaria. The RM is a crustal-scale duplex
complex that straddles the Bulgarian–Greek border and represents the
manifestation of the Alpine Orogeny in southeastern Europe (Burg,
. This is an open access article under
2012; Ricou et al., 1998). The RM is composed of a series of mountain
ranges (Western, Central, and Eastern Rhodope Mountains see Fig. 1)
that record a multi-stage, post-Proterozoic tectonic evolution (Burg,
2012; Haydoutov et al., 2004; Ivanov et al., 1985; Ricou et al., 1998),
although themajority of the subduction and/or collisional events record
Jurassic to Eocene closure of the Paleotethys and/or the Tethys Ocean
(Bonev and Stampfli, 2011; Ricou et al., 1998). Three discoveries of
microdiamonds have now been reported from the southern rim of the
RM, establishing the massif as a globally important UHP locality
(Mposkos and Kostopoulos, 2001; Perraki et al., 2006; Schmidt et al.,
2010). All three examples of microdiamonds are found as inclusions in
garnets from metapelitic units in Greece, leaving the full extent of
UHP conditions in the remaining parts of the RM (N3/4 of which are
in Bulgaria) as unknown.

Here, for the first time, we report the composition andmetamorphic
evolution of UHP units from the Bulgarian part of the RM.We report the
timing of the UHP event on the basis of new high quality Sm–Nd garnet
geochronology. The relationship of the metamorphic rocks recording
the UHP conditions with other known high-pressure (including UHP)
localities in the region, as well as the host gneisses and melange rocks,
are also considered, and the implications of this discovery on the tectonic
evolution of the RM and the adjacent terrains are discussed.
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Summarymap of the geology of the RhodopeMassif (after Bonev et al., 2006 and Bonev and Stampfli, 2008). ER: Eastern RhodopeMountains; CR: Central RhodopeMountains;WR:
Western Rhodope Mountains; NSZ: Nestos Shear Zone; CSZ: Chepelare Shear Zone.
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2. Geological setting

2.1. Regional geology

The RM forms the innermost part of the Hellenides, extending over
large areas of Southern Bulgaria and NE Greece (Fig. 1). It is bounded
to the north by the Sredna Gora Zone, a Late Cretaceous volcanic arc
chain of granite–monzodiorite intrusions (Von Quadt et al., 2005),
which is separated from the RM by the Maritza dextral strike-slip fault
(Naydenov et al., 2009). To the west, it is bounded by the Serbo-
Macedonian Massif (SMM)/Vardar Suture Zone (Ricou et al., 1998), and
the eastern boundary is covered by the large, late Paleogene–Neogene
Thrace-Maritza sedimentary basin and the Circum Rhodope belt.

The RM was originally considered a Precambrian crustal entity
sandwiched between two branches of the Alpine–Himalayan orogenic
belt with the Balkan belt to the north and the Dinarides–Hellenides
belt to the south (Hsu et al., 1977). Subsequent work instead indicates
a more complex evolution, with Precambrian, Variscan, and Alpine
metamorphic and igneous activity (Bonev and Stampfli, 2008, 2010;
Burchfiel, 1980; Carrigan et al., 2003; Haydoutov et al., 2004; Ivanov
et al., 1985) followed by extensive Alpine deformation and complex ex-
tensional tectonics (Baziotis et al., 2008; Bonev et al., 2006; Burg, 2012;
Burg et al., 1996; Ivanov et al., 1985; Ricou et al., 1998). The current
interpretation indicates that the RM is a south directed nappe complex
formed as a result of a north dipping Cretaceous subduction zone
associated with the closure of the Vardar Ocean (Ricou et al., 1998). By
the Late Eocene-Miocene, the RM experienced post-orogenic extension,
which led to the emplacement of a series of large-scale metamorphic
domes (core complexes) that dominate the regional geology (Bonev
et al., 2006, 2010; Burg et al., 1996; Ivanov et al., 1985).

2.2. Stratigraphy and lithotectonic structure of the Rhodope Massif

A number of different classifications have been used for lithological
units across the RM,which often precludes direct comparisons between
regions/mountain ranges. In recent years, two simplifications of the
geology have been proposed to group units that share a common forma-
tion history and/or lithology. The first scheme, as proposed by Bonev
et al. (2006), divides the metamorphic basement into two units: an
upper high-grade basement and a lower high-grade basement, whereas
the second scheme divides the metamorphic basement into four dis-
tinct units: the lowermost, middle, upper, and uppermost allochthons
(Jahn-Awe et al., 2010).

The lower high-grade basement unit and lower allochthon are the
same in both classification schemes and are predominantly orthogneiss
with associated metasediments, metamafic, and ultramafic rocks
(Bonev et al., 2006; Jahn-Awe et al., 2010). The largest exposures of
the lower allochthon are in the Pangeon–Pirin complex, outcropping
south of the Netsos Shear Zone in Northern Greece/Southern Bulgaria,
as well as in the cores of the three large extensional gneiss domes
(Arda, Byala-Reka, and Kesebir-Kardamos; see Fig. 1) that shape the
present-day topography and tectonic structure of the RM.
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The next stratigraphic level in the RM is an extensive heterogeneous
unit of meta-igneous and meta-sedimentary rocks (mélange) of
currently unresolved age and origin. This suite is the focus of this
study. Ricou et al. (1998) and Bonev et al. (2006) both grouped all
lithological units at this level together into the Rhodope Terrane and
upper high-grade basement unit, respectively, whereas Jahn-Awe
et al. (2010) subdivided it further into a middle and upper allochthon
on the basis of contrasting protolith ages and tectono-metamorphic
histories.

The middle allochthon is composed of intermingled amphibolites,
marbles, eclogites, metapelites, variously serpentinized ultramafics,
and ortho- and para-gneisses that have experienced upper amphibo-
lite/eclogite facies metamorphism. Late Jurassic–Early Cretaceous
protolith ages have been reported for orthogneiss in the middle
allochthon from both above the Nestos Shear Zone (Turpaud and
Reischmann, 2010) and the eastern extent of the Arda dome
(Ovtcharova et al., 2004). The upper allochthon is petrologically similar
but is proposed to represent a higher stratigraphic level in the RM, con-
taining all of the previously reported examples of UHP metamorphism
in the RM (Jahn-Awe et al., 2010). The timing of metamorphism in
this allochthon is poorly constrained. The exact criteria for inclusion of
a rock assemblage in either the middle or upper allochthon is not clear
in the literature, but the mélange zone found along the Nestos and
Chepelare Shear Zones and the Kimi complex of the Eastern Rhodope
Mountains have all been assigned to the upper allochthon (Jahn-Awe
et al., 2010; Jahn-Awe et al., 2012; Nagel et al., 2011). For the purpose
of this study, both units, the middle and the upper allochthons, will be
referred to as the Variegated Formation (VF), a term used locally in
the Bulgarian Rhodope Mountains (Haydoutov et al., 2004).

Overlying the VF are a series of Mesozoic greenschist–blueschist
grade metasediments and metavolcanics, thought to be a continuation
of the Circum Rhodope belt from the Athos–Volvi zone, Greece
(Boyanov and Russeva, 1989; Papanikolaou, 1997). This upper high-
grade basement unit, or uppermost allochthon, is composed of
greenschists and phyllites overlain by arc tholeiitic and boninitic lavas,
which are in turn overlain by meta-pyroclastic rocks, turbidites, and
carbonates (Bonev et al., 2010). The entire sequence is overlain by a
series of syn- and post-tectonic sequences. These supracrustal units
consist of clastic, carbonaceous, and volcanic materials with ages
ranging from Paleocene to Miocene (Boyanov and Goranov, 2001).
The widespread post-metamorphic magmatic activity has been related
to post-orogenic extensional collapse (Harkovska et al., 1989; Jones
et al., 1992), likely a result of slab rollback due to a change in composi-
tion of the subducting crust (Georgiev et al., 2012; Jolivet and Brun,
2010).

This study focuses on the metamorphic history of the VF in the
vicinity of the town of Chepelare, on the edge of the large Arda gneiss
dome (25 × 25 km) in the Central Rhodope Mountains Here, the
Variscan orthogneisses from the lower high-grade units can be divided
into two distinct sub-units—“Arda 1” and “Arda 2”, with the boundary
between these units interpreted as a high strain shear zone or syn-
metamorphic thrust fault (Ivanov et al., 1985; Ricou et al., 1998; Burg,
2012; this study, see Fig. 2). There is little field evidence to differentiate
the two sub-units, with the exception of a series ofmeter-scale elongate
eclogite boudins that occur throughout the upper parts of the Arda
2 subunit. Beneath the syn-metamorphic thrust fault, the VF is
represented by a heterogeneous sequence of meta-igneous and meta-
sedimentary rocks hosted by the Variscan Arda 1 gneiss (Cherneva
and Georgieva, 2005). The VF has an irregular outcrop pattern in a
zone of intense deformation wrapping around the Arda 1 unit (Fig. 2).
Marble is the most abundant lithology within the VF, followed by
amphibolites and kyanite–garnet schists, the subject of this study.

The RM has been tectonically active since at least the Carboniferous/
Permian times, when the area experienced widespread igneous activity
(Burg, 2012; Cherneva and Georgieva, 2005; Liati, 2005; Liati et al.,
2011; Turpaud and Reischmann, 2010). Granites emplaced during this
period formed the orthogneiss protolith of the lower high-grade RM
basement. Metagabbro and eclogite included in the Variscan gneiss as
lenses and boudins also yield Precambrian and Early Paleozoic protolith
formation ages (generally N500 Ma; Savov et al., 2007) and evidence
for a metamorphic overprint ca. 350 Ma (Carrigan et al., 2003). The
size and extent of this Variscanmetamorphic event and the relationship
with the rest of the RM remains enigmatic (Burg, 2012), although
segments of a Precambrian-Paleozoic (Variscan) suture have already
been identified in the Eastern RM near the Bulgarian–Greek–Turkey
border (Haydoutov et al., 2004).

2.3. UHP metamorphism in the Rhodope Massif

In the last decade, the RM has been the focus of extensive research
due to the discovery of microdiamond inclusions in garnets from
kyanite–garnet gneiss/schist of the Kimi Complex, part of the upper
high-grade basement in the Greek part of the RM (Mposkos and
Kostopoulos, 2001). Two additional diamond localities have since
been identified along the Nestos Shear Zone in the South of the RM
(Fig. 1) and in the Sidironero Complex (Perraki et al., 2006; Schmidt
et al., 2010). These discoveries have established the region as a globally
important UHP province. Microdiamond inclusions are restricted to
almandine-rich garnets from kyanite–garnet gneiss/schist units that
are part of theVF/Upper allochthon (mélange) that is common through-
out the upper high-grade basement unit of the RM (Haydoutov et al.,
2004). Kyanite–garnet gneiss/schist is the only lithology found to pre-
serve evidence of UHP conditions. Pressure and temperature estimates
for the Greek UHP localities range between 3.1 and 3.9 GPa and 600–
900 °C for the Greek Central Rhodope Mountains and N4 GPa and at
least 1100 °C for the Greek Eastern Rhodope Mountains (Liati et al.,
2011). Thermobarometric studies of eclogites from the westernmost
segments of the RM in Bulgaria (i.e. Pirin Mountains; Janak et al.,
2011) and the coesite from the neighboring Ograzden Mountains of
the Serbo-Macedonian Massif (Savov et al., 2007; Zidarov et al., 1995)
suggest that other parts of the RM and its surroundings may have
experienced UHP conditions.

2.4. Timing of UHP metamorphism

In recent years, a large number of geochronological studies have
been conducted across the RM, utilizing a variety of dating techniques.
A summary of all publishedmetamorphic ages from theRM is presented
in Table 1. Given the pulsed nature of the metamorphic record and the
comparatively few geochronological studies that have been performed
on UHP metapelitic units, a number of uncertainties remain surround-
ing the timing of the UHP metamorphic events(s). A recent review
paper by Liati et al. (2011) suggested 4 HP events at ca. 150 Ma, ca.
73 Ma, ca. 51 Ma, and ca. 42 Ma, all of which could have attained UHP
metamorphic conditions. In the Liati et al. (2011) study, the Jurassic
(ca. 150 Ma ) was favored as the most likely time for UHP metamor-
phism due to the lack of extensive recrystallization of the ca. 150 Ma
zircon domain, which would be expected with subsequent UHP
metamorphism. However, Liati et al. (2011) noted that a Jurassic UHP
event fails to explain the preservation of microdiamond inclusions and
exsolution textures within garnets in the same samples. Therefore, all
four previously mentioned pulses (ca. 150 Ma, ca. 73 Ma, ca. 51 Ma
and ca. 42 Ma) remain strong candidates for the timing of the UHP
metamorphism.

Garnet dating has not been widely used to constrain the timing of
UHP metamorphism in the RM. Only one study dated garnets from a
UHP metapelite (Reischmann and Kostopoulos, 2002), yielding an age
of 140 ± 4 Ma. Dating of associated metabasic samples produced
Neoproterozoic and Carboniferous ages, interpreted as remnants of
the Pan African and/or the Variscan orogeny (Carrigan et al., 2005;
Savov et al., 2007) unrelated to the UHP metamorphic event.



Fig. 2. Simplified geological map for the vicinity of the town of Chepelare in the Central Rhodope Mountains, Bulgaria, and schematic cross-section running N–S through the Arda Dome
(redrawn from Sarov, 2004).
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2.5. Petrography of kyanite–garnet schists from the Variegated Formation

In the vicinity of the town of Chepelare, kyanite–garnet schists out-
crop as decimeter to meter sized packages found in close association
with marbles, amphibolites, and gneisses, although contacts are often
masked by vegetation or erosion. Where observed, the pervasive
foliation of the kyanite–garnet schist follows that of the host Variscan
gneisses. Alteration is widespread and many of the best specimens
originate from abandoned exploration trenching or riverbeds. Five
kyanite–garnet schist samples were collected for analysis from within
the VF in the vicinity of Chepelare (for GPS locations see supplementary
information).

Widespread textural and mineralogical variation is seen between
individual samples—specimens can be grouped by garnet size, color,
or relative abundance of key index minerals. A group of samples form
a phaneritic end member with no visible matrix, containing only large,
deep purple colored garnets, and elongated (up to 8 cm long) kyanite
crystals (Fig. 3A, C), whereas another group are dominated by platy
biotites that define a well-developed foliation alongside plagioclase,
rutile, K-feldpsar, white mica, apatite, and pyrite (Fig. 3D). Other
samples appear more migmatitic, with a weak foliation and a larger
proportion of felsicminerals (Fig. 3B, E). Sillimanite is rare, but observed
in some samples.

Among all samples, garnet color ranges from light pink to deep
purple and size varies from b1 mm to N2 cm in diameter. Inclusions
of quartz, rutile, and biotite are abundant in all samples, although
inclusions are often restricted to distinct zones within a crystal. Rarer
inclusions of muscovite, apatite, zircon, monazite, chlorite, and carbon
can be found in the majority of the garnet samples (Fig. 3F, G). Oriented
needles of rutile and biotite alongside rods of quartz are also not uncom-
mon (Fig. 3 G).

Kyanite ranges from small, hard to distinguish needles b1cm in
length to large porphyroblastic crystals up to 7 cm long. Crystals are
commonly deformed, exhibiting both kink-banding and undulose ex-
tinction alongside retrogression to sericite along crystal rims. Inclusions
of zircon, rutile, biotite, and muscovite are common within kyanite
(Fig. 3H).

Two samples (3-1-10 and 38-1-11) have a matrix dominated by
platy biotite crystals that define a well-developed foliation. Biotite
is seen to wrap around garnet and kyanite porphyroblasts and is
commonly retrogressed to chlorite and kaolinite, and in places fibrous
sillimanite. Samples 27-1-10 and 2-1-11 have a matrix dominated by



Table 1
Summary of all available published metamorphic ages for the Rhodope Massif. E-RM: Eastern Rhodope Mountains; C-RM: Central Rhodope Mountains; GC: Greece; BG: Bulgaria; OMP:
omphacite; Grt: Garnet.

Age (Ma) Error (±Ma) Rock type Location Dating technique Reference

567 Eclogite C-RM BG Lu–Hf Grt–Omp Savov et al. (2007)
~300 Metagabbro E-RM BG U–Pb zircon Carrigan et al. (2003)
~300 Eclogite C-RM BG Lu–Hf Grt–Omp Savov et al. (2007)
~186 Metapelite C-RM GC U–Pb Monazite Reischmann and Kostopoulos (2002)
171 1 Metapelite E-RM GC U–Pb zircon Bauer et al. (2007)
~160 Eclogite E-RM GC U–Pb zircon Bauer et al. (2007)
160 1 Metapelite E-RM GC U–Pb zircon Bauer et al. (2007)
153 13 Amphibolite C-RM GC Sm–Nd Grt Kostopolous, in Burg (2011)
~150 Garnet gneiss E-RM GC U–Pb zircon Liati et al. (2011)
~150 Metapelite C-RM BG U–Pb Monazite Didier et al. (2014)
148.8 2.2 Paragneiss C-RM GC U–Pb zircon Liati (2005)
147.2 4.7 Paragneiss C-RM GC U–Pb zircon Liati (2005)
143.4 3.3 Eclogite C-RM GC U–Pb zircon Liati (2005)
~140 Metapelite C-RM BG U–Pb monazite Bosse et al. (2010)
140 4 Metapelite C-RM GC Sm–Nd Grt Reischmann and Kostopoulos (2002)
~130 Metapelite C-RM GC U–Pb zircon Krenn et al. (2010)
126 0.7 Eclogite C-RM BG Lu–Hf Grt Kirchenbaur et al. (2012)
119 3.5 Garnet–pyroxenite E-RM GC Sm–Nd Grt Wawrzenitz and Mposkos (1997)
117 1.9 Garnet amphibolite E-RM GC U–Pb zircon Liati et al. (2002)
~115 Eclogite E-RM GC U–Pb zircon Bauer et al. (2007)
82.8 1.3 Paragneiss C-RM GC U–Pb zircon Liati (2005)
79 3 Eclogite E-RM GC U–Pb zircon Bauer et al. (2007)
~77 Pegmatites C-RM GC U–Pb zircon Bosse et al. (2009)
73.9 0.8 Garnet gneiss E-RM GC U–Pb zircon Liati et al. (2011)
73.5 3.4 Grt amphibolite E-RM GC U–Pb zircon Liati et al. (2002)
72.9 1.1 Pyroxenite E-RM GC U–Pb zircon Liati et al. (2002)
71.4 1.1 Orthogneiss E-RM GC U–Pb zircon Liati et al. (2011)
55.9 7.2 Orthogneiss C-RM BG U–Pb zircon von Quadt et al. (2006)
51 1 Garnet amphibolite C-RM GC U–Pb zircon Liati and Fanning (2005)
~50 Metapelite C-RM BG U–Pb monazite Didier et al. (2014)
49.1 6 Metagabbro E-RM BG U–Pb zircon Bonev et al. (2010)
~43 Eclogite C-RM BG Lu–Hf Grt Kirchenbaur et al. (2012)
42.4 1.4 Pyroxenite C-RM GC U–Pb zircon Liati et al. (2011)
42.2 0.9 Amp eclogite C-RM GC U–Pb zircon Liati et al. (2002)
42.1 1.2 Pegmatites C-RM BG U–Pb Monazite Bosse et al. (2009)
~40 Leucosome C-RM GC U–Pb zircon Liati et al. (2002)
~40 Metapelite C-RM BG U–Pb Monazite Bosse et al. (2010)
39.7 1.2 Lecuosome C-RM GC U–Pb zircon Liati (2005)
38.1 0.8 Garnet amphibolite C-RM GC U–Pb zircon Liati (2005)
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quartz, occurring in two forms. The most widespread samples are
interlocking quartz grains (100–500 μm in diameter) that exhibit
undulose extinction, grain boundary migration, and bulging, with the
remainder being recrystallized quartz with a granoblastic mortar
texture, often found in close associationwith biotte and chlorite. Finally,
sample 47-1-11 has no clear matrix, with only small pockets of fine-
grained aggregates of quarts and decussate biotite forming between
the larger porphyroblasts.

The original high-pressure assemblage was likely garnet +
kyanite + phengite + quartz + rutile, which has been later overprinted
by the post-peak assemblage (biotite + plagioclase + K-feldspar +
chlorite + white mica) (Collings, 2014).
3. Analytical techniques

3.1. Petrology and mineral chemistry

Mineral-scale textures and particularly small mineral inclusions
(b50 μm) were investigated at the University of Leeds on a FEI Quanta
650 FEG-ESEM. The chemical compositions of the major rock-forming
minerals were determined via electron microprobe analysis at the
University of Leeds, using a JEOL 8230 electron microprobe analyzer
(EMPA). A range of analytical conditions were used, optimized for indi-
vidual mineral targets. An accelerating voltage of 15 kV was used, with
spot sizes ranging between 2 μmand 5 μm. For Zr in rutile thermometry,
the EPMA was optimized for analysis of trace amounts of Zr, with Zr
analyses performed simultaneously on three spectrometers. A 50-nA
beam with an accelerating voltage of 15 kV, and a count time of 60
seconds was used for each analysis.

3.2. Laser Raman spectroscopy

In order to identify possible diamond grains, a Renishaw 2000
Raman microscope with a HeNe laser operating at 633nm was used at
the University of Leeds Laser Raman Spectroscopy Facility. The laser
was focused using the ×50 objective lens to a 2- to 3-μm spot and was
operated at 100% power.

3.3. Garnet geochronology

3.3.1. Sample preparation
Sm–Nd garnet geochronology was performed on five samples at the

Boston University TIMS facility. Samples were crushed using a steel
hammer and anvil, followed by handpicking of approximately 0.1 g of
garnet. After further crushing in a tungsten carbide pestle and mortar
to a grain size between 106 μmand 63 μm, separation by Frantzmagnetic
separator, and a final stage of handpicking, samples underwent a three-
stage partial dissolution technique using hydrofluoric, perchloric, and
nitric acids to remove any remaining matrix minerals besides garnet
andmineral inclusions within the garnet. The partial dissolution pro-
cedure followed Baxter et al. (2002) and subsequent modifications
by Pollington and Baxter (2011) and Dragovic et al. (2012). Once
clean, garnet samples underwent full dissolution following the
steps outlined in Harvey and Baxter (2009). Whole rock samples
were first digested using Parr 4749 general-purpose acid digestion



A B

C D

E F

G H

Fig. 3. (A) Photograph of a phaneritic kyanite–garnet schist sample from the vicinity of Chepelarewith no visiblematrix. (B) Photograph ofmagmatic samplewith a quartz richmatric and
large garnet porphyroblasts. (C) Interlocking kyanite crystals in phaneritic end member kyanite–garnet schist (sample 47-1-11). (D) Intact garnet with exsolved needles of rutile, with
platy biotite matrix wrapping around garnet crystal (sample 3-1-10). (E) Quartz and biotite matrix in migmatitic sample (35-1-11). (F) Retrogressed garnet and kyanite, with quartz
lens in matrix (sample 27-1-10). (G) Oriented rutile needles exsolved within a garnet crystal (sample 27-1-10). (H) Matrix kyanite crystal breaking down to form sillimanite/sericite
(sample 27-1-10).
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bombs then dissolved using the same full dissolution procedure as
the garnet with extended time in acid to ensure full dissolution of
each sample. All samples were spiked with a mixed 147Sm–150Nd
spike and underwent chromatographic separation on a series
of three columns: a column containing cation exchange resin
(AG50w-X4) to remove Fe, a Teflon microcolumn containing
Eichrom TRU-spec resin to isolate the rare earth elements, and a Tef-
lon column containing cation exchange resin and using 2-methyl-
lactic acid (MLA) column to separate Sm and Nd.
In addition to aggregate garnet analysis, four large garnet
porphyroblasts were extracted from kyanite–garnet schist samples
from the Central Rhodope Mountains. These were cut through the geo-
metric centre of the crystal and polished to form a 2-mm thick polished
wafer. Samples were mapped for Ca, Mg, Fe, and Mn via EPMA at the
University of Leeds (Fig. 4). A grid spacing of 250 μm was used for all
samples. The probe was operated at an accelerating voltage of 15KV, a
probe current of 150 nA, and a counting time of 5s for each of the 4
major cations.



Fig. 4. Elemental Mn map of large garnet crystal from sample 27-1-10. Trenches for
micromilling alongside points used for micromilling are also shown. Length of yellow
line is 2.5 cm.
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One of these large garnets was selected for microsampling at Boston
University, following the procedures outlined in Pollington and Baxter
(2011) and Dragovic et al. (2012). Using the Mn elemental map
(Fig. 4), five zones were defined and drilled using a NewWave
MicroMill. The garnet wafer was attached to a graphite block using
Crystal Bond, allowing easy removal with acetone with minimal risk
of Nd contamination due to the very low concentrations of Nd in Crystal
Bond. The block was surrounded by a water-tight Teflon ring, and the
sample was submerged in milli-Q water during drilling. Multiple tra-
verseswere performed along pre-defined paths to drill out the trenches,
with each pass drilling 50 μmdeep. Five trenches were drilled to isolate
the five garnet zones (Fig. 4). Once extracted, each zone underwent the
same hand-crushing, magnetic separation, partial dissolution, and
chemical separation techniques previously described for the aggregate
garnet samples.
3.3.2. Sample analysis
All samples were analyzed using a Thermo Finnigan TRITON TIMS

instrument at the Boston University TIMS facility. Nd separates were
loaded onto single Re filaments using 1 μl of 2 M HNO3 with 2 μl of
H3PO4 and Ta2O5 activator slurry, as described in Harvey and Baxter
(2009). The mass spectrometer was run in static mode with amplifier
rotation, and Nd was measured as NdO+. Repeat 4-ng analyses of our
in-house Nd standard solution (Ames metal) during the course of anal-
ysis yielded a mean of 143Nd/144Nd=0.512132 ± 0.000016 (31 ppm, 2
RSD, n = 35).

The reproducibility in 147Sm/144Nd is 0.023% (2 RSD) based on
repeat analyses of a mixed gravimetric normal solution with our
calibrated in-house spike. Whole procedural blanks ranged between
13 and 26 pg for Nd, and around 3 pg for Sm. The Nd blank value for
the bombed whole rock sample was 171 pg, which although high is
insignificant in comparison to the large amount of Nd in the whole
rock solution. Three column blanks ranged between 12 and 20 pg for
Nd and between 1.5 and 1.6 pg for Sm.
4. Results

4.1. Mineral chemistry

The major element chemistry of garnets from four garnet–kyanite
(metapelitic) samples are presented in Table 2. All garnets are alman-
dine rich (Alm68–80) and display variable grossular (Grs0.7–7.4), pyrope
(Prp6.8–22.9), and spessartine (Sps0.8–6.6) contents. The compositional
range within individual samples is small compared to that observed
between samples. Individual garnet crystals preserve prograde Mn
and Ca zonation (Fig. 4), although this is more pronounced in larger
garnet crystals.

White mica analyses from two metapelites are presented in Table 3.
All analyzed crystals are muscovite/phengite, with small amounts of
paragonite and negligible margarite. Paragonite content varies, and
although no trends are recognized between individual subgroups,
two distinct populations of white mica can be identified on the basis of
Na/(Na+K) ratios. Si content ranges from 3.03 to 3.63 a/fu, suggesting
a variable phengite component.

Representative biotite analyses are shown in Table 4. Large variation
(between 35 and 60) is seen in theMg# of the biotite crystals. Biotite in-
clusions within garnet grains have particularly high Mg#, which likely
reflects retrograde exchange reactions. Titanium content in biotite has
previously been shown to increase as a function of metamorphic grade
(Guidotti, 1984). Although little within-sample variation in titanium
content is seen, biotite from samples 25-1-10 have both higher Ti
and higher Mg# when compared with biotite from samples 3-1-10,
indicating possible formation at higher metamorphic grades.

4.2. P-T history

4.2.1. Petrological constraints on P-T conditions
Todate, there has beenno reporteddirect evidenceof UHP conditions

(either coesite or microdiamond inclusions) in the Bulgarian part of the
Rhodope Mountains Previous studies of Chepelare metapelites have
suggested HP/UHP conditions (Georgieva et al., 2007; Kostopoulos
et al., 2003) on the basis of observed exsolution of rutile and polyphase
inclusions in garnet. These markers have also been recognized in this
study (Fig. 3G), but additional microdiamond inclusions have been
found in garnet, establishing the occurrence of UHPmetamorphic condi-
tions in the area.

A carbon inclusionwas identified on the SEM (Fig. 5a), confirmed as
carbon using EDS spectroscopy, and fluorescence was observed using
the cathodoluminescence detector. Further, laser Raman spectroscopic
investigation identified the inclusion as diamond, with the characteris-
tic Raman spectra peak at 1333.2 cm−1 (Fig. 5d). Two methods were
employed to ensure that the microdiamond was not an artifact from
the polishing process. First, a study of the diamond polishing paste
was conducted on the SEM. This revealed that the shape of the synthetic
diamonds used in the polishing pastewas euhedral, without the distinc-
tive stepped cleavage observed in the diamond inclusion (Fig. 5c).
Additionally, diamond pastes containing only 10 μm, 3 μm, and 1 μm
diamonds were used in the polishing process i.e. the diamond inclusion
of interest is not any of those sizes.

Second, an additional polished block of garnet separates from
the same sample was prepared and polished with 0.3 μm alumina
rather than diamond paste. A small carbon inclusion (Fig. 5b) (b1 μm)
fluoresced under cathodoluminescence, revealing that it is not
graphite. The texture of this inclusion resembles partially graphitized
microdiamonds from the Kokchetav massif (Korsakov et al., 2010b)
and the results of experimental studies on UHP diamond crystallisation
performed by Dobrzhinetskaya (2012). The small size of the inclusion,
however, rendered it unsuitable for confirmation by laser Raman
spectroscopy. These observations suggest that kyanite–garnet schist
from the Chepelare area experienced pressures of at least 4 GPa and
reached depths in the crust in excess of 100 km.



Table 2
Summary of EPMA analyses of garnet from kyanite–garnet schist from the vicinity of Chepelare. Prp: pyrope content; Grs: grossular content; Alm: almandine content; Sps: spessartine
content.

3-1-10 2-1-10 25-1-10 47-1-11

Core Middle Rim Core Middle Rim Core Rim Core Rim

SiO2 37.09 37.13 37.02 37.68 37.6 37.5 37.55 37.54 37.59 37.36
TiO2 0.01 0.01 0.02 0.01 0.01 0.01 0.03 0.06 0 0.01
Al2O3 21.02 21.1 21.05 21.05 20.95 21.03 21.32 21.26 21.26 21.2
Cr2O3 0.01 0.01 0.03 0.02 0 0.01 0.01 0.02 0.02 0.02
Fe2O3 0.22 0.06 0.01 0.51 0.6 0.36 0.74 0.68 0.41 0.52
FeO 35.88 35.93 36.01 35.32 35.47 35.91 32.53 32.96 31.18 32.14
MnO 1.69 1.72 2.36 0.46 0.49 0.56 0.74 0.83 0.69 0.89
MgO 2.73 2.66 2.18 4.35 4.04 3.63 5.28 4.77 5.78 5.04
CaO 1.73 1.77 1.7 1.25 1.46 1.51 2.15 2.39 2.58 2.67
Total 100.35 100.48 100.39 100.65 100.63 100.52 100.35 100.52 99.52 99.86
Si 2.99 2.99 2.99 3 3 3 2.97 2.97 2.98 2.97
Ti 0 0 0 0 0 0 0 0 0 0
Al 2 2 2 1.97 1.97 1.98 1.99 1.99 0.02 0.03
Cr 0 0 0 0 0 0 0 0 0 0
Fe3+ 0.01 0 0 0.03 0.04 0.02 0.04 0.04 0.02 0.03
Fe2+ 2.42 2.42 2.43 2.35 2.36 2.4 2.15 2.18 2.07 2.14
Mn 0.12 0.12 0.16 0.03 0.03 0.04 0.05 0.06 0.05 0.06
Mg 0.33 0.32 0.26 0.52 0.48 0.43 0.62 0.56 0.68 0.6
Ca 0.15 0.15 0.15 0.11 0.12 0.13 0.18 0.2 0.22 0.23
Total 8.01 8.01 8 8 8 8 8.01 8.01 8.01 8.02
Mg# 11.88 11.65 9.73 17.96 16.87 15.27 22.44 20.5 24.62 21.59
prp 10.97 10.69 8.77 17.22 16.04 14.47 20.96 18.94 22.93 20.1
grs 4.36 4.63 4.77 3.03 3.34 3.87 4.53 5.34 6.03 6
alm 80.19 80.27 80.91 78.19 78.7 79.93 71.24 72.35 68.16 70.22
Sps 3.86 3.93 5.4 1.03 1.11 1.27 1.66 1.88 2.0275 1.5628
n 18 14 34 5 4 11 18 33 11 7
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4.2.2. Geothermometry

4.2.2.1. Zr-in-rutile thermometry. Peak temperatures experienced by the
kyanite–garnet schists have been determined using the Zr-in-rutile
thermometer of Tomkins et al. (2007). This thermometer is based
upon the empirical relationship between Zr concentration in rutile
and temperature of metamorphism, as identified by Zack et al. (2004)
and takes into account the effect of pressure on this relationship.
For the purposes of this study, a pressure of 40 kbar was assumed
for all calculations. Rutile exsolved from garnet was ignored, as this
rutile will not have equilibrated with quartz and zircon. Analysis was
Table 3
Summary of EPMA data for white mica from Chepelare metapelites.

3-1-10

Inclusion (n = 89)

Avg Max Min

Oxide wt % SiO2 47.11 50.88 44.66
TiO2 0.54 1.38 0
Al2O3 34.03 37.49 31.52
FeO 2.64 6.03 1.42
MnO 0.05 0.15 0
MgO 0.62 1.12 0.29
CaO 0.14 0.89 0
Na2O 0.56 1.26 0.1
K2O 9.29 10.23 7.37
H2O 4.5 4.62 4.38
Total 99.48

Cations to 12 O, OH Si 3.14 3.34 3.03
Al 0.86 0.97 0.66
Al 1.81 1.95 1.73
Ti 0.03 0.07 0
Cr 0 0 0
Fe2+ 0.15 0.34 0.08
Mn 0 0.01 0
Mg 0.06 0.11 0.03
Ca 0.01 0.06 0
Na 0.07 0.16 0.01
K 0.79 0.87 0.62
performed on two samples (3-1-10 and 25-1-10), and a summary of re-
sults can be found in the Supplementarymaterial. Resultswere grouped
in terms of textural setting. In sample 3-1-10, the Zr content of rutile
ranges between 210 and 778 ppm, equating to temperatures between
723 and 849 °C, although average analyses of each textural setting
have a narrower range of Zr content (353–437) equating to temper-
atures of 769–890 °C. In sample 25-1-10 the Zr content of rutile
ranges between 250 and 1270 ppm, equating to temperatures of
738 and 905 °C. Again, average analyses from each textural setting
have a narrower range of Zr content (352–564 ppm) equating to
temperatures of 769–815 °C. No distinction can be made between
25-1-10

Matrix (n = 186) Matrix (n = 17)

Avg Max Min Avg Max Min

48.53 56.47 44.27 48.7 51.85 47.07
0.37 1.41 0 0.06 0.2 0

33.43 36.53 28.29 34.05 35.66 31.76
1.68 2.85 0.49 1.85 2.97 1.08
0.02 0.09 0 0.02 0.06 0
0.73 1.26 0.22 1.26 1.88 0.85
0.16 0.97 0 0.04 0.24 0
0.3 1.65 0.02 0.29 0.48 0.05
9.58 11.08 6.08 10.43 10.99 9.53
4.52 4.69 4.36 4.58 4.65 4.49

99.31 101.27
3.22 3.63 3.04 3.19 3.35 3.12
0.78 0.96 0.37 0.81 0.88 0.65
1.83 1.94 1.75 1.81 1.88 1.73
0.02 0.07 0 0 0.01 0
0 0 0 0 0 0
0.09 0.16 0.03 0.1 0.16 0.06
0 0.01 0 0 0 0
0.07 0.13 0.02 0.12 0.19 0.08
0.01 0.07 0 0 0.02 0
0.04 0.21 0 0.04 0.06 0.01
0.81 0.96 0.51 0.87 0.93 0.78



Table 4
Summary of biotite EPMA analyses from Chepelare metapelites.

2-1-10 47-1-11 3-1-10

Matrix (n = 38) Inclusion (n = 6) Matrix (n = 4) Matrix (n = 39) Inclusion (n = 18)

Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min

Oxide wt% SiO2 35.86 36.89 32.86 36.22 37.06 35.28 35.9 36.06 35.8 34.66 35.74 33.62 35.06 37.86 34.38
TiO2 3.82 4.61 2.59 3.31 4.49 2.71 2.37 2.45 2.3 2.15 3.02 1.4 2.07 2.44 1.56
Al2O3 17.95 19.26 16.11 18.33 18.63 18.14 17.89 18.24 17.7 20.18 22.19 19.16 20.61 24.08 19.74
Cr2O3 0.02 0.06 0 0.02 0.05 0 – – – 0.02 0.06 0 0.02 0.05 0
FeO 17.12 19.59 14.74 17.12 18.44 16.32 16.54 16.8 16.32 23.05 24.64 19.82 21.72 23.63 17.69
MnO 0.03 0.08 0 0.03 0.06 0 0.03 0.04 0.01 0.08 0.33 0.01 0.08 0.13 0.02
MgO 11.37 12.52 10.28 11.96 12.24 11.6 12.27 12.41 12.17 7.11 7.55 6.13 7.73 9.04 5.81
CaO 0.07 1.83 0 0 0.01 0 −0.01 0.01 −0.03 0.03 0.66 0 0.03 0.06 0
Na2O 0.15 0.29 0.08 0.18 0.22 0.14 0.25 0.27 0.22 0.27 0.32 0.2 0.29 0.34 0.2
K2O 7.99 9.23 6.24 7.85 8.32 7.27 8.71 8.8 8.52 8.76 9.06 7.7 8.85 9.04 8.66
H2O 3.96 4.04 3.72 4 4.03 3.96 3.95 3.96 3.94 3.93 3.98 3.86 3.96 4.09 3.91
Total 98.41 100.45 92.75 99.08 99.73 98.27 97.91 98.25 97.65 100.23 101.55 98.09 100.42 101.09 99.11

Cations to 12 O, OH Si 2.68 2.72 2.6 2.68 2.71 2.64 2.72 2.73 2.72 2.65 2.71 2.58 2.65 2.77 2.63
Aliv 1.32 1.4 1.28 1.32 1.36 1.29 1.28 1.28 1.27 1.35 1.42 1.29 1.35 1.37 1.23
Alvi 0.26 0.33 0.17 0.27 0.29 0.24 0.33 0.35 0.31 0.46 0.7 0.4 0.49 0.85 0.42
Ti 0.21 0.26 0.15 0.18 0.25 0.15 0.14 0.14 0.13 0.12 0.17 0.08 0.12 0.14 0.09
Cr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Fe2+ 1.07 1.25 0.91 1.06 1.15 1 1.05 1.06 1.04 1.47 1.57 1.26 1.38 1.51 1.08
Mn 0 0.01 0 0 0 0 0 0 0 0.01 0.02 0 0 0.01 0
Mg 1.27 1.38 1.15 1.32 1.36 1.27 1.39 1.4 1.38 0.81 0.86 0.7 0.87 1.02 0.63
Ca 0.01 0.15 0 0 0 0 0 0 0 0 0.05 0 0 0 0
Na 0.02 0.04 0.01 0.03 0.03 0.02 0.04 0.04 0.03 0.04 0.05 0.03 0.04 0.05 0.03
K 0.77 0.88 0.6 0.75 0.79 0.7 0.84 0.85 0.82 0.85 0.88 0.75 0.85 0.87 0.83
OH 1.99 2 1.97 1.99 1.99 1.99 2 2 2 2 2 2 2 2 2
Mg# 54 60 48 55 56 54 57 57 56 35 37 32 39 44 35
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temperatures calculated from rutile inclusions and matrix rutile in
either sample.

4.2.2.2. Garnet–biotite thermometry. The garnet–biotite Fe–Mg exchange
thermometer was also used to constrain metamorphic temperatures.
3 m

A

C

10 m

Dia

Grt

Fig. 5. (A) SEM image of microdiamond inclusion from sample 3-1-10. (B) SEM image of carbo
polishing paste. (D) Laser Raman spectra from microdiamond.
The relationship between temperature and Fe–Mg content of coexisting
garnet and biotite was first recognized by Kretz (1959), and the first ex-
perimental thermometer was published by Ferry and Spear (1978)
based on the equation: almandine + phlogopite = pyrope + annite.
Subsequent work has refined this thermometer by expanding the
600 nm

B

D

n inclusion that fluoresced under CL light from sample 3-1-10. (C) SEM image of diamond
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effective temperature range of the thermometer and taking into account
the effect of elements such as Ti and AlVI in biotite and Ca and Mn in
garnet. Accordingly, a number of different calibrations now exist for
this thermometer and have been used to calculate temperatures.
Temperatures have been calculated at pressures of both 1 and 4 GPa
for samples 25-1-10 and 3-1-10 and are presented in the supplementa-
ry material. The calibration by Bhattacharya et al. (1992) has been
shown to be less affected by pressure variations than other calibrations
and is therefore the favoured for this study.

Analyses of garnets rims paired with matrix biotite calculated at
4 GPa in sample 25-1-10 yield temperatures between 630 and 740 °C,
with an average of 671 °C. In sample 3-1-10, the average from
the same setting is 608 °C, with a narrower range of 563–628 °C. In
both samples, calculations using inclusions of biotite within garnet
yield lower temperatures than garnet rim analyses paired with matrix
biotite, likely due to diffusion between biotite inclusions and adjacent
garnets.

Calculated temperatures using garnet rim-biotite pairs are likely
blocking temperatures, owing to the effects of retrograde diffusion at
the garnet rims. Accordingly, the average core composition of the garnet
and matrix biotite not in contact with garnet was used to calculate
temperatures for sample 3-1-10. This calculation yielded higher tem-
peratures (average = 684 °C), closer to the range of values determined
using the Zr-in-rutile thermometer. This calculation was not possible in
sample 25-1-10, owing to the lack of matrix biotite in equilibriumwith
garnet.

4.2.3. Geobarometry
The diverse mineral assemblage and uncertainty surrounding

coexisting mineral phases makes the applicability of continuous net
transfer equilibria barometers, such as GASP (garnet–Al2SiO5-quartz-
plagioclase) and GRAIL (garnet–rutile–Al2SiO5–ilmenite–quartz), to
the Chepelare garnet–kyanite metapelites questionable. Previous stud-
ies have reported pressures of 1.2-1.4 GPa for Chepelare metapelite
samples (Georgieva, et al., 2007), significantly below the peak pressures
suggested by the microdiamond inclusion.

The Si content of phengite has been shown to increase with increas-
ing pressure (Konrad-Schmolke et al., 2011; Massonne and Szpurka,
1997), although absolute values are dependent on both the composition
of the sample and the equilibrium assemblage. Models produced for the
assemblage, garnet + kyanite + phengite + quartz (the peak assem-
blage inferred from petrological observations), suggest that phengite
with Si a/fu N3.5 formed at pressures N30 kbar (Massonne and
Szpurka, 1997). Accordingly, the Si content of phengite in sample 3-1-
10 (up to 3.63 a/fu) could indicate UHP conditions. The Ti content of
phengite has been proposed as a single element barometer suitable
for samples that experienced UHP conditions based on the equilibrium
VITiIVAl–VIAlIVSi exchange in muscovite and phengite occurring in
equilibrium with rutile and quartz/coesite (Auzanneau et al., 2010).
The pressure dependence of this exchange has since been questioned
(Chambers and Kohn, 2012), and results of this study indicate that the
Table 5
Sm–Nd isotope data collected for both whole rock samples and garnet separates. BG: bulk garn

Sample Sm (ppm) Nd (ppm) ng Nd loaded

38-1-11 Grt 1.026 0.367 13.1
27-1-10 Grt 1.749 0.498 6.7
3-1-10 Grt 1 0.457 0.208 4.4
3-1-10 Grt 2 0.537 0.309 9.6
2-1-11 Grt 0.837 0.375 10.3
47-1-11 Grt 1 1.006 1.005 18.9
47-1-11 Grt 2 0.792 1.065 16.9
38-1-11 WR 17.392 94.458 72.99
27-1-10 WR 10.822 70.294 69.36
3-1-10 WR 8.304 45.382 49.21
2-1-11 WR 11.95 64.308 78.35
47-1-11 WR 2.538 11.294 48.4
most phengitic muscovite crystals do not contain enough Ti to be suit-
able for geobarometry using the Auzanneau et al. (2010) calibration.

4.3. Garnet geochronology

4.3.1. Age of garnet separates
The isotopic compositions of five bulk garnet separates are presented

in Table 5. Multiple repeat analyses were conducted on samples 47-1-11
and 3-1-10, the diamond-bearing sample. With the exception of sample
47-1-11, all samples yielded high 147Sm/144Nd (N1.0) and low Nd
concentrations (b0.5 ppm), indicative of the successful removal of
contaminating inclusions during partial dissolution (e.g. Baxter and
Scherer, 2013). Each garnet analysis was paired with its respective
whole rock to determine a two-point isochron age. All calculated garnet
ages are Late Cretaceous, with calculated values ranging from 70.3 to
99.6 Ma (Table 6). All isochron ages were calculated using the Isoplot
Program (Ludwig, 2003). For age error determination,we used the poorer
(higher) of the reported internal analytical precision for each analysis
(Table 5) or the external precision of the standard. Since multiple garnet
separateswereprocessed for samples 3-1-10 and47-1-11,multipoint iso-
chrons were also calculated for those samples yielding more robust age
constraints of 70.5 ± 2.7 (MSWD = 0.07) and 92.7 ± 7.1 (MSWD =
2.8) (Fig. 6).

4.3.2. Age of single zoned garnet crystal
Isotopic data from the five drilled garnet zones in sample 27-1-10

are shown in Fig. 7 and Table 7, and a summary of calculated ages
are presented in Table 8. Included in these data are the whole rock
encapsulating the garnet, the original “bulk” garnet analysis, as well as
two analyses of intentionally uncleaned garnet powders derived from
zones 1 and 5. Note that the two uncleaned garnet powders fall signifi-
cantly off of any garnet–WR isochron, reflecting an inherited compo-
nent within garnet inclusions. Such inclusion-contaminated garnets
should not be included in any garnet isochron. Note also the difference
between the uncleaned “garnet” powders and the acid-cleaned garnets
with much higher 147Sm/144Nd and much lower [Nd], indicative of the
success and importance of inclusion removal.

Among the acid-cleaned garnet zones, zone 1 (the core) stands as a
clear outlier well below (i.e. apparently younger than) any garnet–WR
isochron, especially as the core should be older than the rim. Reasons
for this outlier zone 1 data will be addressed below, but if it is removed
from consideration, the remaining analyses (Zones, 2,3,4,5, and bulk
garnet; Fig. 7b) fall on a near isochron with the whole rock yielding
87±12Ma (MSWD=3). Closer inspection reveals that zone2 is slight-
ly below (younger) than the isochron, perhaps for reasons similar to
zone 1. Eliminating zone 2 reveals a statistically robust isochron (e.g.
Wendt and Carl, 1991), including the WR, zones 3, 4, 5, and the bulk
garnet of 83.6 ± 2.9 (MSWD= 1.9). For the present purpose, we con-
sider the 83.6 ± 2.9-Ma age to be an accurate measure of the majority
of garnet growth spanning at least zones 3,4, and 5. This indicates that
et separate; WR: whole rock.

147Sm/144Nd ±2 SE (ppm) 143Nd/144Nd ±2 SE (ppm)

1.690875 0.000389 0.512771 0.00003
2.122316 0.000788 0.51315 0.000079
1.331532 0.000306 0.512441 0.000017
1.049758 0.000085 0.512314 0.000015
1.351216 0.00043 0.512598 0.000013
0.605892 0.000207 0.512212 0.000012
0.449974 0.00005 0.512135 0.000008
0.111374 0.000026 0.511938 0.000007
0.093124 0.000021 0.511965 0.000006
0.110683 0.000012 0.511879 0.000008
0.112403 0.000026 0.511871 0.000014
0.135933 0.000031 0.51193 0.000008



Table 6
Summaryof ages calculated for garnet separate–whole rockpairs. Ages highlighted in bold
are the preferred ages calculated for samples.

Sample Age (Ma) Error (Ma) MSWD

38-1-11 Grt 80.6 3.2 N/A
27-1-10 Grt 89.3 5.9 N/A
3-1-10 Grt 1 70.4 2.9 N/A
3-1-10 Grt 2 70.8 3.6 N/A
2-1-11 Grt 89.7 2.7 N/A
47-1-11 Grt 1 91.7 7.2 N/A
47-1-11 Grt 2 100 11 N/A
3-1-10 MULTI-PT 70.5 2.7 0.067
47-1-11 MULTI-PT 92.7 7.1 2.8
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the majority of the garnet in this sample grew rapidly at this time
(~83.6Ma).

5. Discussion

In this work, we have presented the first discovery of microdiamond
inclusions from the central (Bulgarian) portion of the RM, which pro-
vides further evidence for widespread UHP conditions in this region.
The petrological insights and the thermobarometric estimates suggest
that the kyanite–garnet schists from the VF melange units around the
town of Chepelare have experienced pressures in excess of 4 GPa. This
new discovery complements the well-studied microdiamond localities
A) Sample 3-1-10

B) Sample 47-1-11

Fig. 6. (A) Three-point isochron calculated for sample 3-1-10, the diamond-bearing
sample from Chepelare, Central Rhodope Mountains. (B) Three-point isochron
calculated for sample 47-1-11, the phaneritic “museum” sample, also from Chepelare.
from the Greek part of the RM, and Sm–Nd dating performed in this
study indicates a Late Cretaceous ages of the UHP metamorphism.

5.1. Interpretation of the Late Cretaceous (UHP) metamorphic ages

In light of the high temperatures experienced by the metapelitic
samples in the vicinity of Chepelare, as calculated by Zr in rutile
thermometry, and the variable degrees of partial melting observed
(Cherneva and Georgieva, 2005), the potential for thermal resetting
of the Sm–Nd system in the kyanite–garnet schist samples must be
considered before discussing the implications of a Late Cretaceous
UHP metamorphic event.

Little variation is seen in calculated Zr in rutile temperatures,
irrespective of petrographic location. All are consistently in the range
of 775–800 °C, and as such, it is not possible to link different rutile
temperatures with periods of garnet growth. Owing to the known
complex subduction–exhumation history associated with these sam-
ples, it is difficult to relate with any certainty current textural relation-
ships and the UHP event. The calculated Zr in rutile temperatures for
rutile crystals included within garnet does however suggest that the
garnet experienced temperatures in among those proposed for the clo-
sure of the Sm–Nd system (Smit et al., 2013). Thermal re-equilibration
of the garnet chemistry could explain the observed spread in ages
(20 Ma) for the five aggregate garnet samples. However, thermal re-
equilibration is not supported due to the preservation of prograde Mn
and Ca growth zones in samples–elements that should be mobile
above the closure temperature of the Sm–Nd system (Carlson, 2012;
Mezger et al., 1992). If the garnet ages had been reset, correlation be-
tween the measured Sm–Nd ages and the garnet size would be expect-
ed, owing to the diffusion behaviour of REE in garnet (Duth and Hand,
2010). This relationship is not seen, and dating of individual zones
from the large garnet crystal (sample 27-1-10) yields broadly similar
ages to all of the other samples. As such, the calculated ages are
interpreted to represent the timing of garnet growth rather than a ther-
mal resetting event or cooling.

The spread in calculated ages could be related to the partial dissolu-
tion cleansing technique used to clean the garnet crystals prior to full
dissolution. While it is possible that the spread in ages is an artifact of
remaining inclusions influencing the garnet analysis, that effect is un-
likely to be significant in well-cleaned garnet samples with Sm/Nd
N1.0 (e.g. Baxter and Scherer, 2013) and thus only potentially impacts
sample 47-1-11. More likely, the recorded ages are accurate and
reflect growth in the different rocks of the study area over a period of
approximately 20 Ma. This agrees with the large spread in ages of the
calc-alkaline magmatic rocks found in the Sredna Gora magmatic zone
to the north of the RM associated with the northward subduction of
the Neotethys ocean. Subduction-related deposits (including Cu-Au
mineralizations) in this area have ages raging between 92 and 69 Ma,
with a general younging from N–S associated with slab retreat
(Georgiev et al., 2012; Peytcheva et al., 2008; Von Quadt et al., 2005).

Although clearly anomalous, the apparently younger age for the gar-
net core (zone 1, and perhaps part of zone 2) merits further discussion.
Diffusional resetting of an older core age before subsequent growth is
unlikely to have been a factor given the preservation of clear Mn
zonation in the dated garnet (Fig. 4). Divalent cation diffusivity is faster
than REE diffusivity in garnet, so preservation of the former indicates
preservation of the latter (Carlson, 2012). Often, artificially young ages
in Sm/Nd garnet geochronology are the result of incomplete removal
of Nd-rich inclusions during partial dissolution. As the two inner zones
underwent the same partial dissolution procedure as the three outer
zones and all 5 zones have similarly high 147Sm/144Nd values and low
[Nd] ppm, this explanation seems unlikely. A resistant retrograde
mineral unique to the garnet core, such as allanite, could alternatively
explain the anomaly, but no suitable inclusion candidate has been iden-
tified in garnet cores from the thin section of this sample. Resorption
and recrystallization of the core during retrograde metamorphism,



Fig. 7. TL: Overview of all isotope data collected from the zoned garnet crystal. Z1P and Z5P: Uncleaned powders of garnet zones Z1 and Z5, respectively. TR: five-point isochron calculated
using the values for whole rock (WR), bulk garnet (BG), and garnet zones Z3, Z4, and Z5. BL: six-point isochron calculated using the WR, BG, and Z2, Z3, Z4, and Z5 values.
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akin to formation of atoll garnets, would explain the age profile but is
not reflected in thin section textures or in keeping with the prograde
zonation generally preserved in garnet crystals.

A recent study by Gatewood, et al. (2015) also reported garnet cores
apparently younger than rim ages in certain porphyroblasts from the
same rock and attributed the age difference to local matrix heterogene-
ity, possibly including open systemmatrix evolution during/after garnet
growth. A shift in the whole rock 143Nd/144Nd or 147Sm/144Nd that
occurred between growth of the core and the outer zones could explain
an anomalously young core age since pairing the current volume-
averaged whole rock with the garnet core would violate isochron
assumptions. It is possible that the core overgrew an area of isotopically
different matrix, not at all unlikely in a layered heterogeneous sedimen-
tary protolith, beforemore intensemetamorphism served to homogenize
matrix composition at the mm to cm scale as later garnet continued to
grow. Alternatively, the partial melting and subsequent open system
Table 7
Sm–Nd isotope data for single zoned garnet crystal from Chepelare regionmetapelites. Z1–Z5 co
crushing of zones 1 and 5.

Sample Sm (ppm) Nd (ppm) ng Nd loaded

27-1-10 Z1 1.184 0.483 6.52
27-1-10 Z3 0.818 0.412 3.28
27-1-10 Z4 0.927 0.629 10.22
27-1-10 Z5 1.046 0.598 3.34
27-1-10 WR 10.822 70.294 69.36
27-1-10 P1 3.632 14.675 5.12
27-1-10 P5 36.791 220.6 158.4
behavior experienced by the Chepelare metapelites could facilitate such
a shift in matrix Sm/Nd, assuming melting and new garnet growth
occurred simultaneously. The core (zone 1) may have initiated growth
at some earlier (older) time than the outer zones but that age record ap-
pears to have been compromised by subsequent open system processes.
Themajority of garnet growth (zones 3, 4, and5) in this samples occurred
at 83.6 ± 2.9 Ma.

Despite being widespread across the RM, Late Cretaceous ages have
not previously been reported from metamorphic units in the Central
Rhodope Mountains (Bulgaria). The only exception was from zircon
rims from Cenozoic pegmatite bodies (Bosse et al., 2009). One interpre-
tation of the bulk garnet separate ages could be that the Late Cretaceous
timing represent some kind of an averaging of the ~150Ma and ~ 40Ma
domains recorded in the monazite record (Bosse et al., 2010; Didier
et al., 2014). However, the dating of individual zones from within a
garnet crystal in this study demonstrates that this is not possible given
rrespond to zones 1–5 defined in Fig. 4, P1 and P5: Garnet powders collected during hand-

147Sm/144Nd ±2 SE (ppm) 143Nd/144Nd ±2 SE (ppm)

1.482306 0.000547 0.512406 0.000011
1.201346 0.000313 0.512556 0.000021
0.891774 0.000307 0.512405 0.000017
1.058207 0.000243 0.51249 0.000021
0.093124 0.000021 0.511965 0.000006
0.149733 0.000042 0.511899 0.000013
0.100879 0.000023 0.511846 0.000005



Table 8
Summary of ages calculated for individual zones and multi zone isochrons for sample
27-1-10. The age highlighted in bold is the preferred age of this sample.

Sample Age (Ma) Error (Ma) MSWD

27-1-10 Z1 48.5 2.4 N/A
27-1-10 Z2 75 6.9 N/A
27-1-10 Z3 81.5 3.6 N/A
27-1-10 Z4 84.2 4.4 N/A
27-1-10 Z5 83.2 4.1 N/A
27-1-10 WR,blk, Z2-5 87 12 3
27-1-10 WR,blk, Z3-5 83.6 2.9 1.9
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that most of the garnet volume (zones 3, 4, 5) grew rapidly at 83.6 ±
2.9 Ma. The garnets in this study reveal for the first time a Late Creta-
ceous UHP metamorphic event in the Central Rhodope Mountains.

Although rare in the vicinity of Chepelare (and anywhere within the
Central Rhodopes Mountains), Late Cretaceous metamorphic ages have
beenwidely reported from other parts of the RM in HP zircon rims from
both garnet-rich mafic rocks and their surrounding orthogneiss in the
diamond-containing Kimi Complex in Greece (Liati et al., 2002; Liati
et al., 2011). The robust nature of zircon means that grains may survive
multiple metamorphic events and be recycled in more recent processes
than their preserved “age” might suggest (Lee et al., 1997). This is
demonstrated by age zonation in individual zircon grains. In recent
years, this has been combated with trace element analysis, which can
distinguish magmatic and metamorphic zones within individual crys-
tals. Zircon that formed under high-pressure conditions has a flatter
REE profile and a smaller negative Eu anomaly than their magmatic
counterparts (Rubatto, 2002). Zircons from all four of the proposed
UHP age-groups (ca. 150 Ma, ca. 73 Ma, ca. 51 Ma, and ca. 42 Ma)
have these HP indicators, and as such constraining the UHP event solely
based on zircon geochronology remains problematic (Liati et al., 2011).

With all microdiamond discoveries from the RM occurring as inclu-
sions within garnet alongside exsolution textures indicative of HP
conditions, Liati et al. (2011) questioned how this evidence could have
survived numerous (3?) subsequent HP/HT metamorphic events if the
UHP event was Jurassic, or even older. A Late Cretaceous age for UHP
metamorphism eliminates this problem. As such, the new Sm–Nd
garnet ages from Chepelare reported in this study compliments well
the existing (largely U–Pb zircon) geochronological data set for the
RM (Fig. 8), and acts as a new link between the Central and the Eastern
Rhodope Mountains.
Fig. 8. Histogram of published metamorphic ages (Table 1) from across the RhodopeMassif. Gr
presented in this study. Bin size: 5 Ma. (For interpretation of the references to color in this figu
5.2. Tectonic implications of a Late Cretaceous age of the UHP
metamorphism in the Rhodopes

The restriction of upper allochthon (VF/UHP) units in the Bulgarian
and Greek Central Rhodope Mountains to a melange zone along the
Chepelare and Nestos Shear Zones has been used to place constraints
on the geodynamic evolution of the RM. The Nestos Shear Zone was
originally believed to mark a suture between the Variscan granite of
the lower high-grade basement units and the VF. In this scenario, UHP
units were believed to form in a Jurassic subduction zone, with samples
experiencing a prolonged single subduction–exhumation cycle, with
accretion ages ranging from the Jurassic through Eocene (Krenn et al.,
2010; Ricou et al., 1998; Turpaud and Reischmann, 2010). This model
is, however, difficult to reconcile with the current geochronological
data from the RM. There is no way to explain a pulsed metamorphic
history with a Late Cretaceous UHP metamorphic event.

Alternatively, theNestos Shear Zonemay represent a stretching fault
at the base of a collapsing orogenic wedge. This model, suggested by
Nagel et al. (2011) is based on the lower high-grade basement unit
occupying an external position in the Hellenide nappe stack, exposed
beneath an orogenic scale out of sequence thrust (the Nestos Shear
Zone), which extends underneath the Cretaceous nappe pile west of
the RM, reaching the surface between the Pindos Zone and the external
Hellenides. In this scenario, UHP metamorphism in the RM is proposed
to be the result of southward subduction of the Meliata and Malica
oceanic crust during the Jurassic, prior to opening of the Vardar Ocean
and the northward (Cretaceous) subduction under the Eurasianmargin.
Evidence for this Jurassic south dipping convergent plate margin and
associated exhumation of metamorphic rocks is preserved in the low-
grade Mesozoic units of the Circum Rhodope belt (Bonev et al., 2010).
In this model, during subduction of the Vardar Ocean, only units from
the middle and lower allochthons were involved in the Cretaceous–
Eocene northward-dipping subduction event—the UHP units of the
upper allochthon were already exhumed and emplaced in the overrid-
ing plate. If correct, the Kimi complex currently represents the true
stratigraphic position of UHP units in the RM, and the position of UHP
metapelites in the Chepelare and Nestos Shear Zones is the result of
Late Cretaceous slab rollback, which facilitated orogenic wedge collapse
and Cenozoic faulting. Reported Eocene-related HP metamorphism
frommiddle allochthon (not UHP VF) eclogites in the Cetntral Rhodope
Mountains near Chepelare (Kirchenbaur et al., 2012) is used as key
evidence to support this theory.
een bars represent ages dates obtained frommetapelites, orange bars represent new ages
re legend, the reader is referred to the web version of this article.)
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Although this model accounts for a pulsed metamorphic record
across the RM, it is not in keeping with the age results we report here.
Irrespective of whether the Late Cretaceous age is recording garnet
growth or a thermal resetting event, the Late Cretaceous age must be
the result of the Northward subduction of the Vardar/Paleothethys
Ocean. This age is therefore not compatible with the subduction and
exhumation of the VF/Upper Allochthon during the Jurassic prior to a
quiescent period in the overriding plate through the Cretaceous subduc-
tion event. In addition, the genetic link between UHP units and the
southward dipping Jurassic subduction event recorded in Mesozoic
schists of the Circum Rhodope belt is based solely on U–Pb zircon
Fig. 9. Simplified tectonic model for the evolution of the Rhodope Massif incorporating our ne
subduction zone (which has been documented in the Circum Rhodope belt; Bonev et al.,
formation of the Sredna Gora magmatic arc and the UHP metamorphic units found throughou
in the Early Eocene as a result of slab rollback from the subduction of continental crust or c
periods of UHP metamorphism or if the Late Cretaceous event suggested by this study is the o
geochronology, which has the added complication of possible inheri-
tance. No Jurassic Sm–Nd or Lu–Hf garnet ages have been recorded in
(U)HP units anywhere across the RM.

In the vicinity of Chepelare Eocene ages are not simply restricted to
ecogite boudins (Kirchenbaur et al., 2012) but have been reported from
matrix monazite crystals in metapelites (Bosse et al., 2010; Didier et al.,
2014), pegmatites in the host gneiss (Bosse et al., 2009), and discordant
leucosomes in the Arda 2 gniess (Cherneva and Georgieva, 2005). The
recognition of a common Eocene metamorphic event in units proposed
to belong to both the middle and upper allochthon, alongside the
absence of evidence for Eocene metamorphism in the garnets of this
w metamorphic age results. This model accommodates a southward dipping Cretaceous
2011) prior to a Late Cretaceous northward-dipping subduction zone that led to the
t the Variegated Formation of the Rhodope Massif. Final exhumation of samples occurred
hannel flow. It remains unclear whether the Rhodope Massif has experienced multiple
nly UHP metamorphic event.
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study, indicates juxtaposition of all of these units prior to an Eocene
metamorphic event, with temperatures not high enough to rest the
Sm–Nd ages of the garnet crystals. This effectively eliminates the age
populations at 42 and 51 Ma (Fig. 8) as possibilities for the age of the
UHP event.

The increasing evidence for a southern-dipping subduction zone
during the Late Jurassic to Early Cretaceous associated with the
closure of the Meliata–Maliac Ocean (Bonev and Stampfli, 2008;
Bonev et al., 2010) agrees with a Late Cretaceous UHP metamorphic
event. A scenario, as first proposed by Liati et al. (2011), involving
the amalgamation of a series of different microcontinents is
envisioned. This would cohesively explain the pulsed nature of
ages preserved in the metamorphic record and the Late Cretaceous
UHP ages reported in this study.

In this scenario, the UHP units formed part of the subducting slab
dipping North in the Cretaceous, agreeing with models proposed by
Turpaud and Reischmann (2010) and Burg (2012). A Late Cretaceous
UHP metamorphic event also allows sufficient time for a complete
subduction–exhumation cycle related to a prior southward dipping
Jurassic/Early Cretaceous subduction as suggested by Bonev et al.
(2010). As such, a hybrid of the two existing geodynamic models is
envisioned (Fig. 9).

The newmodel allows for a regional southward dipping subduction
zone in the Mid-Jurassic to Early Cretaceous from the Circum Rhodope
belt (Bonev and Stampfli, 2011; Bonev et al., 2010). Zircon geochrono-
logic studies indicate that this subduction event led to at least HP
metamorphism (Liati et al., 2011). Subsequently, a subduction reversal
event occurred. This regional northward-dipping subduction is widely
documented on the territory of Bulgaria and led to the formation of
the Sredna Gora mountain range and magmatic arc (Georgiev et al.,
2012; Peytcheva et al., 2008; Von Quadt et al., 2005). Results of this
study are among the first to indicate that the northward-dipping
Cretaceous subduction zone was indeed the source of the regional
UHP metamorphism in the RM of the SE Europe.

No existing model for exhumation of UHP units is able to account
for a long, protracted exhumation process as suggested bymany propo-
nents of a Jurassic UHP metamorphic event (Burg, 2012; Krenn et al.,
2010; Turpaud and Reischmann, 2010). The Eocene HP metamorphic
event (Kirchenbaur et al., 2012; Nagel et al., 2011) can be explained
through either exhumation via subduction channel flow or slab roll-
back, both of which can account for the restriction of UHP conditions
to metapelitic units within the VF and the widespread of ages observed
across the RM. Slab rollback is consistent with the Late Cretaceous UHP
event documented in this study, with the UHP units forming in a north-
ward-dipping slabs. North to south younging of Late Cretaceous
magmatism in the Sredna Gora volcanic arc can be explained by the
subduction of one of the many buoyant Tethyan microcontinents
(Stampfli and Borel, 2002), and the resultant slab steepening due to
the influx of buoyant material which will slow the subduction rate.
Eocene metamorphic ages can be related to the subsequent regional
extension related to the formation of the metamorphic core complexes
that dominate the geology of the lower allochthon.

The mixing of units with contrasting P-T-t histories in both
the Nestos and the Chepelare shear zones and the restriction of UHP
localities to localized areas also fit well with computational models for
both channel flow (Hacker and Gerya, 2013) and plunger expulsion
(Warren, 2013). These mechanisms are compatible with a Jurassic or a
Late Cretaceous UHP event, although the complex post-peak metamor-
phic history likely inhibits further deductions about the exhumation
history of the UHP rocks.

Further work is required to address both the extent of heterogeneity
within the middle allochthon and the magnitude of the Eocene meta-
morphic event in order to fully understand the Cenozoic evolution of
the RM. It remains unclear whether this is a continuation of the same
Late Cretaceous (U)HP subduction zone or a separate HP subduction–
exhumation event postdating the UHP metamorphism.
6. Conclusion

This study provides compelling evidence for a new UHP locality in
the central part of the RM in Bulgaria. This new discovery extends the
current UHP region of SE Europe and acts as a missing link between
discoveries in the Eastern andWestern parts of themassif, while raising
questions about stratigraphic correlations drawn across the massif, the
subdivision of basement units, and the timing of the peak metamorphic
event. Sm–Nd garnet geochronology on diamondiferous metapelitic
samples suggests a Late Cretaceous UHP metamorphic event, which is
significantly younger than the Jurassic UHP event currently proposed
by monazite and zircon geochronology but in agreement with HP
metamorphic conditions recorded in zircons across the Eastern Rhodo-
peMountains. A Late Cretaceous age indicates that the upper allochthon
formed part of the Vardar Ocean, which was subducting northward
under the Moesian Platform and that the RM has had a varied tectonic
history with multiple subduction–exhumation events spanning the
Jurassic to Eocene.
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