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Prediction and Tracking of Moving Objects in Image

Sequences

Adrian G. Borş and Ioannis Pitas

Abstract—We employ a prediction model for moving object velocity and

location estimation derived from Bayesian theory. The optical flow of a cer-
tain moving object depends on the history of its previous values. A joint op-

tical flow estimation and moving object segmentation algorithm is used for
the initialization of the tracking algorithm. The segmentation of the moving
objects is determined by appropriately classifying the unlabeled and the

occluding regions. Segmentation and optical flow tracking is used for pre-
dicting future frames.

Index Terms—Bayes procedures, image sequence analysis, tracking.

I. INTRODUCTION

Tracking of moving objects is important for video surveillance while

future frame prediction is used in video coding. A Bayesian approach

shows that we can estimate the location of moving objects and their as-

sociated velocity based on a set of initial estimates. Occluding and un-

labeled regions are identified and classified in the context of a tracking

algorithm. A few approaches have been adopted for solving these prob-

lems. In [1] an occlusion adaptive mesh is used for tracking moving

features over several frames. In other approaches, features are extracted

from a set of frames and afterwards they are tracked over the sequence.

Kalman filters have been used for tracking in [2]–[4]. Objects are seg-

mented based on clustering in [3] and [5]. Simultaneous optical flow

estimation and moving object segmentation has been employed in [6].

In this approach, the moving scene is modeled based on the median ra-

dial basis function (MRBF) network [8]. Each output unit of the neural

network corresponds to a moving object. The results provided by the

MRBF modeling are used for the initialization of a tracking algorithm.

The unlabeled regions in each frame are identified and classified ap-

propriately based on the MRBF model. When new objects enter in the

scene or when some objects leave the scene, retraining is necessary.

In between two MRBF retraining stages, tracking is employed for fol-

lowing object movement. Using tracking we predict the moving object

optical flow and segmentation. A future frame is represented as the

union of its predicted moving objects.

The Bayesian model for motion and segmentation estimation over

the entire image sequence is provided in Section II. Tracking the

moving objects over a set of frames is described in Section III and

frame reconstruction based on estimating the moving object location

and optical flow is described in Section IV. Simulation results are

presented in Section V and the conclusions are drawn in Section VI.

II. MOTION AND SEGMENTATION ESTIMATION

Let us consider that each frame of an image sequence f(t); t =
1; . . . ; K is made up of a set of moving regions fXi(t); i = 1; . . . ; Ng
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with the properties

f(t) = [Ni=1Xi(t) (1)

Xj(t) \Xk(t) = 0; 8j 6= k: (2)

A subset Xk(t) is associated to a five-dimensional representative

vector �k = [Sk;Mk], describing the optical flow Mk and segmen-

tation information Sk of a certain moving region [6]. The still image

feature vector Sk contains the location and the characteristic graylevel

of the moving region. Sk is directly related to the segmentation label

of the moving region k, while Mk = [Mk;x;Mk;y] is the velocity

vector of the respective moving region. The classification of the image

sequence in moving objects is done according to the maximization of

the a posteriori probability

P (�̂k(t); t = 1; . . . ; K � 1 j f(t); t = 1; . . . ; K)

> P (�̂j(t); t = 1; . . . ; K � 1 j f(t); t = 1; . . . ; K) (3)

where each probability corresponds to the segmentation of a moving

object and its optical flow in the entire image sequence. After repeat-

edly applying the Bayes theorem and after expressing the probabilities

from one frame with respect to those corresponding to the previous

frames, we obtain

P (�̂k(t); t = 1; . . . ; K � 1 j f(t); t = 1; . . . ; K)

= �K�1
t=p [P (f(t+ 1) j �̂k(j); f(j); j = 1; . . . ; t)]

� �K�1
t=p [P (�̂k(t) j �̂k(j); f(j); j = 1; . . . ; t� 1; f(t))]

�
P (�̂k(j); j = 1; . . . ; p� 1 j f(j); j = 1; . . . ; p)

�K�1
t=p P (f(t+ 1) j f(j); j = 1; . . . ; t)

(4)

whereK is the number of frames and p is a given frame p < K . A com-

ponent of the first probability product from the right side of this rela-

tionship is associated to the reconstruction of a frame from the previous

frames using the moving object feature vectors. A component of the

second probability product corresponds to the feature vector tracking

over several frames. The third probability factor models the moving

object characteristics derived from the first p frames. The probabilities

from the denominator denote the dependence of a frame on the pre-

vious ones and it can be neglected in the following considerations.

In the following, we show how to initialize the algorithm which esti-

mates the probabilities from (4). The first two frames are split in blocks

and a feature vector denoted as uIJ = [I; J; l] containing the site loca-

tion [I; J ], the graylevel l and the motion vector is associated with each

block. For p = 2, after using the Bayesian theorem, the third proba-

bility factor in (4), can be further described as

P (M̂j ; Ŝj j f(2); f(1)) = P (f(2) j M̂j ; Ŝj ; f(1))

�
P (M̂j j Ŝj ; f(1))P(Ŝj j f(1))

P (f(2) j f(1))
(5)

where P (Ŝj j f(1)) represents the a priori probability of the segmen-

tation and P (M̂j j Ŝj ; f(1)) is the probability of the optical flow es-

timation depending on the segmentation map and image [7]. After ex-

pressing each probability as an energy function, we model them with

Gaussian functions. The Gaussian function associated with a moving

region and implemented by a hidden unit of the MRBF network is given

by

�j(uIJ) = exp �(uIJ � �̂j)
T
�̂
�1

j (uIJ � �̂j)

� WDFD(M̂j) (6)

1057–7149/00$10.00 © 2000 IEEE
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where �̂j and �̂j are the center vector and covariance matrix estimates

and WDFD(M̂j) represents the weighted displaced frame difference

(a measure of confidence in the motion estimation algorithm) [6]. An

unsupervised training algorithm provides the estimates of the MRBF

network parameters while modeling the probabilities from (5) [6], [8].

III. MOVING OBJECT TRACKING

Let us neglect the dependence on all the frames excepting the pre-

vious. In this case we can express each probability in the first product

of (4) as an energy function measuring the accuracy of reconstructing

the frame f(t+1) from the displaced moving objects which had been

segmented in the frame f(t)

P (f(t+ 1) j �̂(t); f(t))

'
1

Z
exp �� [Ni (Xi(t)� M̂i(t)); f(t+ 1) (7)

where Z is a normalizing constant, Xi(t) � M̂i(t) represents the

translation of the moving region Xi(t) resulted from the segmenta-

tion of the frame f(t) with its corresponding motion vector M̂i(t) and

�[f(t); g(t)] represents a function which counts in how many locations

f(t) and g(t) have a different segmentation level. The maximization of

this probability represents the minimization of the difference between

the given frame and its prediction based on the previous frame seg-

mentation and its estimated optical flow. It can be observed that by

displacing the set of pixels Xi(t) representing a moving region in the

frame f(t), certain pixels from Xi(t)�M̂i(t) have uncertain assign-

ment. When regions from one frame do not have a correspondent in the

next frame (uncovered regions), (1) is not respected any more. When

two or more different objects project in the same region of the next

frame (occluding regions), (2) is not valid. Both situations occur in re-

gions located at the margins of the moving objects and can be easily

identified as providing a probability equal or smaller than exp(�1)=Z
in (7). If we have a one-to-one correspondence between the frames f(t)
and g(t) based on the given model then the probability from (7) is equal

to 1=Z . After detecting the unlabeled regions, we estimate their fea-

ture vectors uIJ considering only the likely correlations given by the

motion vectors of the neighboring moving objects. The trained MRBF

network, can be applied in a multiresolution approach where the net-

work parameters obtained from the initial block-based segmentation

are used for image segmentation at pixel resolution [6]. We apply the

already trained MRBF network only in the regions decided as uncer-

tain according to (7).

The components of the second product from the expression (4) rep-

resenting the dependency of a feature vector on the values of the same

feature vector in the previous frames, can be expressed as in max-

imum-likelihood regression estimation [9]

P (�̂k(t) j �̂k(j); f(j); j = 1; . . . ; t� 1; f(t))

=
1

Z
exp � �̂k(t)�

M

i=1

Wi i(�̂k) (8)

where  (�̂k) are a set of functions modeling the variation of the kth

object feature vector in time, Wi are their associated weights, M is

the number of previous frames used for feature estimation, and Z is a

normalizing constant. However, in most of the cases, moving objects

have slow changing motion, which can be modeled by a linear system.

Under this assumption, the model (8) can be simplified

P (�̂k(t) j �̂k(j); f(j); j = 1; . . . ; t� 1; f(t))

=
1

Z
exp � �̂k(t)�Wk�

T
k (9)

where�k consists of the feature vectors from the last M frames

�k = [�̂k(t� 1) �̂k(t� 2) � � � �̂k(t�M)] (10)

and Wk is a matrix of size 5M � 5 whose entries represent the de-

pendency of a feature vector component at time t with respect to all

feature entries in the previous M frames. The features that are tracked

over time correspond to object location, graylevel changes and optical

flow. The components of the matrix Wk can be found by using the

least mean squares (LMS) algorithm [10]. LMS is a fast on-line al-

gorithm which can ensure feature tracking over several frames based

on minimizing the prediction mean square error. Kalman filters can be

seen as an extension of the LMS algorithm which however requires a

much larger computational complexity. Changes in the moving object

representative vectors are reflected in the moving object segmentation.

In order to maximize the probability in (4), we should maximize its

components from (5), (7), and (9). The relationship (5) provides the

initial estimate, while (9) gives an estimate of the moving object fea-

ture vector from its previous values. This estimate must be consistent

with an accurate frame reconstruction as given by (7).

IV. FRAME RECONSTRUCTION FROM MOVING OBJECT PREDICTION

A prediction function provides an estimate of the moving object

segmentation and its corresponding optical flow in a future frame

based on the data extracted from the previous frames. Let us denote by

�t(Xk(t+ 1)) and �t(M̂k(t + 1)) the prediction of the location for

the moving region k and the prediction of its optical flow respectively,

from the frame t into the frame t + 1. The prediction function for the

velocity uses the matrix Wk , derived from the maximization of the

probability from (9). The optical flow for a certain moving object is

predicted for each consecutive frame by using the dependency on its

previous values

�t(M̂k;x(t+ 1)) =WxxM̂k;x +WyxM̂k;y (11)

�t(M̂k;y(t+ 1)) =WxyM̂k;x +WyyM̂k;y (12)

where M̂k;x; M̂k;y represent the motion vector components on

x and y directions associated with the k-th moving object for the

last M frames and Wxy;Wxx;Wyx;Wyy are their corresponding

weighting vectors found by the LMS algorithm [10] as in (9). This

prediction function can easily model complex movements such as

rotation and acceleration. The number of frames M to be taken into

account for the prediction system must be larger when the motion

is smooth and smaller when the motion is fast changing. Similarly

to (11) or (12), we can derive a prediction system for the luminance

by tracking the change in the average graylevel of a certain moving

object.

The location of a moving object in a future frame is given by the

segmentation in the actual frame and the prediction of its associated

optical flow

�t(Xk(t+ 1)) = Xk(t)� �t(M̂k(t+ 1)) (13)

where we consider the displacement for all the pixels composing the

moving object k, and where �t(M̂k(t + 1)) components are derived

in (11) and (12). Given a prediction function for the optical flow asso-

ciated with the moving object k, we can predict the frame t + 1 con-

sidering the segmentation of the individual objects

f̂(t+ 1) = [Nk=1�t(Xk(t+ 1)) (14)

where f̂(t+1) is the predicted image. As it was shown in the previous

section, certain regions do not have a clear assignment. Such regions are

classified based on an overlapping priority assumption. For example,
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Fig. 1. First frame of the “Hamburg taxi” image sequence.

if the background is known, it will get the lowest priority and it will be

covered in the case of moving objects pointing to the same region, or

it will fill in the regions which remained uncovered. The values to be

used in the unlabeled regions of the predicted frame are taken from one

of the previous frames by considering the optical flow.

The PSNR between the predicted frame fp(t + 1) and the real one

f(t+1), when it is available, is considered for checking the validation

of the assumed model

PSNR = 20 log
10

255R� S

R;S

i=1;j=1
(f̂ij(t+ 1)� fij(t+ 1))2

(15)

where R � S is the size of the image. If the PSNR between the two

images is below a certain threshold, then the model is not valid at the

respective frame. Usually, this is caused because a moving object enters

or leaves the scene. In such a case, the MRBF network is retrained in

order to obtain the appropriate moving object segmentation and optical

flow (5) [6]. The new model is tracked over the following frames as

described in the previous section.

V. SIMULATION RESULTS

We provide simulation results when the proposed algorithm is ap-

plied in the “Hamburg taxi” image sequence. The first and the 20th

frames are displayed in Figs. 1 and 2. In the center of a frame from this

image sequence a white taxi turns around the corner, a black car moves

from left to right while a van moves from right to left. The moving

object segmentation as provided by the MRBF network for the first

frame is shown in Fig. 3. Its corresponding optical flow is provided

in Fig. 4. The segmentation and optical flow parameters are used for

the initialization of the tracking algorithm.The occluding and unlabeled

regions for the first frame are shown in Fig. 5. They are located at the

moving object boundaries according to a small local frame reconstruc-

tion probability in (7). The pixels of these regions are classified using

the MRBF network parameters. The moving object segmentation re-

sulted after this classification is displayed in Fig. 6. After tracking the

moving objects as described in Section III, we obtain the segmentation

of the 20th frame, as provided in Fig. 7. Six past frames (M = 6) have

been used for tracking. It can be observed that the segmentation of the

white taxi in the center of the frame is quite good despite the fact that,

due to the three-dimensional perspective view, its projection changes

Fig. 2. Twentieth frame of the “Hamburg taxi” image sequence.

Fig. 3. Moving object segmentation.

Fig. 4. The optical flow of the first frame from the “Hamburg taxi” image
sequence.

while turning around the corner. The optical flow corresponding to the

tracked objects in the 20th frame is represented in Fig. 8. The predicted

20th frame, reconstructed from the predicted segmentation and moving
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Fig. 5. Occluding and unlabeled regions.

Fig. 6. Segmentation of the moving objects after appropriately classifying the
occluding regions.

Fig. 7. Moving object segmentation after tracking them 20 frames.

object velocities, is provided in Fig. 9. The difference between the pre-

dicted and the real 20th frame is shown in Fig. 10. We can see from this

Figure that many errors in the prediction of the 20th frame are due to

Fig. 8. Estimated optical flow of the 20th frame.

Fig. 9. Predicted 20th frame.

Fig. 10. Difference between the predicted and the real 20th frame from the
“Hamburg taxi” image sequence.

changes in illumination. In Fig. 11, the PSNR of the predicted image

when tracking the moving objects is ploted for a set of frames. The

MRBF network training took 33.3 s when using a Silicon Graphics
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Fig. 11. PSNR of the predicted frame in the “Hamburg taxi” image sequence.
“–” denotes the PSNR of the proposed tracking algorithm. “- -” represents the
PSNR prediction considering the initial MRBF model on 4 � 4 pixel blocks.
“-.” denotes the PSNR between the actual frame and that used for prediction.

Indy Workstation. The trained network, can be used for those succes-

sive frames which match the model according to a criterion [6]. In this

case, 95 s are required for segmenting the moving objects and the op-

tical flow for 20 frames when using 4�4 pixel blocks. When employing

tracking as described in this study, only 68 s are necessary for the same

frames using pixel resolution segmentation. In the first case only 3040

vectors had been processed while in the second case their number was

48 640. The segmentation provided by the tracking algorithm is quite

good as it can be observed from the experimental results and provides

a good basis for prediction-based frame reconstruction. The prediction

PSNR of the tracking algorithm is better than when considering the

initial MRBF model for segmenting all the frames and assuming just

the previous moving object features for reconstruction, as it can be ob-

served from Fig. 11.

VI. CONCLUSION

We propose a moving object tracking algorithm derived from the

Bayesian theory. The optical flow and the segmentation features are

jointly modeled by the MRBF network in the initial stage. The oc-

cluding and unlabeled regions are detected and classified appropriately.

The proposed algorithm provides good moving object tracking capa-

bilities. Such capabilities are used for segmenting and estimating the

moving object velocity and segmentation in a future frame. The pro-

posed algorithm is employed for frame prediction.
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Tomographic Reconstruction Using Nonseparable Wavelets

Stéphane Bonnet, Françoise Peyrin, Francis Turjman, and Rémy Prost

Abstract—In this paper, the use of nonseparable wavelets for tomo-
graphic reconstruction is investigated. Local tomography is also presented.

The algorithm computes both the quincunx approximation and detail
coefficients of a function from its projections. Simulation results showed
that nonseparable wavelets provide a reconstruction improvement versus

separable wavelets.

Index Terms—Local tomography, McClellan transformation, nonsepa-
rable wavelets.

I. INTRODUCTION

Computerized tomography (CT) consists of recovering a function

from a set of its projections and relies on the inversion of the Radon

transform. According to the nature of the data set, this problem may

be ill-posed. The use of wavelets for inverse problems in general, and

CT in particular, presents several interesting features to stabilize the

inversion process [1]. As a matter of fact, wavelets may bring valuable

solutions to the problem of local tomography [2]–[4].

The relationships between the continuous wavelet transform and the

Radon transform have first been established in several independent

works [5], [6]. Olson was the first to devise a reconstruction scheme

from a customized sampling of the Radon transform [2]. Delaney [3]

and Rashid-Farrokhi [4] proposed a multiresolution tomographic re-

construction algorithm to recover the two-dimensional (2-D) separable

discrete wavelet transform (2-D DWT) of the image from its projec-

tions, and applied it to local tomography. Both algorithms are based on

2-D wavelets, constructed by tensor products of one-dimensional (1-D)

wavelets. The 2-D separable wavelets impose a rectangular tiling of the
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