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Abstract 

Background: Childhood growth is a cornerstone of pediatric research. Statistical models need to consider individual 
trajectories to adequately describe growth outcomes. Specifically, well-defined longitudinal models are essential to 
characterize both population and subject-specific growth. Linear mixed-effect models with cubic regression splines 
can account for the nonlinearity of growth curves and provide reasonable estimators of population and subject-spe-
cific growth, velocity and acceleration.

Methods: We provide a stepwise approach that builds from simple to complex models, and account for the intrinsic 
complexity of the data. We start with standard cubic splines regression models and build up to a model that includes 
subject-specific random intercepts and slopes and residual autocorrelation. We then compared cubic regression 
splines vis-à-vis linear piecewise splines, and with varying number of knots and positions. Statistical code is provided 
to ensure reproducibility and improve dissemination of methods. Models are applied to longitudinal height measure-
ments in a cohort of 215 Peruvian children followed from birth until their fourth year of life.

Results: Unexplained variability, as measured by the variance of the regression model, was reduced from 7.34 when 
using ordinary least squares to 0.81 (p < 0.001) when using a linear mixed-effect models with random slopes and a 
first order continuous autoregressive error term. There was substantial heterogeneity in both the intercept (p < 0.001) 
and slopes (p < 0.001) of the individual growth trajectories. We also identified important serial correlation within 
the structure of the data (ρ = 0.66; 95 % CI 0.64 to 0.68; p < 0.001), which we modeled with a first order continuous 
autoregressive error term as evidenced by the variogram of the residuals and by a lack of association among residuals. 
The final model provides a parametric linear regression equation for both estimation and prediction of population- 
and individual-level growth in height. We show that cubic regression splines are superior to linear regression splines 
for the case of a small number of knots in both estimation and prediction with the full linear mixed effect model 
(AIC 19,352 vs. 19,598, respectively). While the regression parameters are more complex to interpret in the former, we 
argue that inference for any problem depends more on the estimated curve or differences in curves rather than the 
coefficients. Moreover, use of cubic regression splines provides biological meaningful growth velocity and accelera-
tion curves despite increased complexity in coefficient interpretation.
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Background
Childhood growth is a cornerstone of pediatric research 
and many centuries of work have been undertaken to 
understand and model how children grow [1–5]. In stud-
ies of childhood growth, anthropometric data are often 
collected at multiple time points to describe growth in 
a population, evaluate the role of exposures on growth, 
investigate the effects of an intervention, and assess indi-
vidual growth in clinical practice [6–11]. Height is com-
monly monitored longitudinally as a marker of chronic 
malnutrition; however, estimation and prediction of 
subject-specific height curves with age, as in the study we 
consider here, can present several methodological chal-
lenges to researchers.

Cross-sectional studies are an attractive option for 
surveillance because of their feasibility and cost-effec-
tiveness in populations, but this approach for growth 
monitoring has several inherent limitations. For example, 
they can be confounded by secular trends, such as selec-
tive mortality that leads to perceived improved growth at 
older ages due to the better health of the survivor pop-
ulation [12]. Additionally, cross-sectional growth data 
may display large skewness and kurtosis and may exhibit 
substantial heteroskesdasticity, and marginal analyses to 
describe population trajectories require transformations 
to normality, weighting or both to achieve an adequate 
fit [13]. While longitudinal data may also suffer from 
the same problems, linear mixed effects models natu-
rally take skewness, kurtosis, and even heteroskedasticity 
into account, making transformations not necessary. The 
utility of transformation techniques remains controver-
sial. Indeed, while transformations may lead to a better 
fit of Gaussian models, they require a priori knowledge 
of the data structure. The flexible Box-Cox transforma-
tion family of distributions [14, 15] can be used, but it 
may fail when data are clustered. Moreover, interpreta-
tion of transformed data is problematic, and producing 
predictions at the subject and population level is not 
straightforward.

Longitudinal studies provide a more realistic view of child 
growth, in which a cohort of children are monitored over 
time and repeated measurements of height are collected. 
Longitudinal studies provide information about individual 
growth patterns, and allow the estimation and analysis of 
growth velocity and acceleration at either the individual 
or population level. However, longitudinal growth data 
has complex characteristics that need to be accounted for 

including: within-subject clustering of growth observations, 
heterogeneity of individual baseline and dynamic growth 
characteristics, and autocorrelation within individuals.

Linear mixed-effect models combine the components 
of fixed effects, random effects, and repeated measure-
ments in a single unified approach [16, 17]. Analysis of 
longitudinal data using mixed effects models does not 
require the same assumptions as a cross-sectional study 
and may not require transformations. The use of linear 
mixed-effect models, while widely described in the statis-
tical literature, has been only slowly adopted by applied 
researchers. This was due in part to the limited avail-
ability of user-friendly software tools; this is now rapidly 
changing with many commercial and open source soft-
ware providing fitting capabilities for increasingly com-
plex mixed effects models [18]. To address this problem, 
ensure reproducibility of methods, and provide a wider 
dissemination, we provide examples of statistical code in 
an open-source platform for fitting models described in 
this paper. Another reason for the slow adoption of lin-
ear mixed-effect models is their complexity relative to 
standard regression models and the modeling structures 
necessary to capture non-linear trajectories. These ele-
ments require a higher level of statistical and computa-
tional expertise [19]. Utilizing longitudinal length/height 
data from a child cohort in Peru, we describe a natural 
and intuitive stepwise approach to the development of a 
linear mixed-effect model with cubic splines for the anal-
ysis of longitudinal childhood growth in height. We then 
derive individual height velocity and acceleration curves 
from the longitudinal model based on height. Our objec-
tive is to describe the use of these methods to analyze 
height and height velocity data in a way that can be eas-
ily used by an applied researcher. While we have a pref-
erence to use the raw measurements of growth, methods 
introduced here extend directly to Z-scores relative to 
the WHO standard.

Methods
Study setting
The study was conducted in Las Pampas de San Juan 
Miraflores and Nuevo Paraíso, both peri-urban shanty 
towns with high population density located on the south-
ern edge of Lima city in Peru. The shanty towns had 
approximately 40,000 residents of whom 25 percent are 
under 5 years of age. These communities are described in 
detail elsewhere [10, 11].

Conclusions: Through this stepwise approach, we provide a set of tools to model longitudinal childhood data for 
non-statisticians using linear mixed-effect models.

Keywords: Longitudinal studies, Body Height, Child development, Growth, Linear Models
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Study participants
A simple census was conducted to find pregnant women 
and children less than 3 months of age. Eligible newborns 
and pregnant women were randomly selected from the 
census and invited to participate in the study. Only one 
newborn was recruited per household. Written informed 
consent was required from parents or guardians before 
enrollment. Exclusion criteria for the study were: severe 
disease that required hospitalization, severe or chronic 
conditions, child of a multiple pregnancy, birth weight 
less than 1500 g and plans to move to another commu-
nity within the study time. Our analysis excluded data 
of children whose follow-up ended before they reached 
one year of age, those who were followed up for less than 
60 days during the first 6 months of life, or followed up 
for less than 120 days during the first year of life.

Study design
We conducted a birth cohort study between May 2007 
and February 2011. Child growth data presented in this 
paper is a part of a larger longitudinal study conducted 
in Brazil and Peru. The objective of the cohort study was 
to assess if infection with Helicobacter pylori increases 
the risk of diarrhea and in turn adversely affects growth 
in children less than 2 years of age [20]. For the purposes 
of illustration, this study utilizes longitudinal height data 
from Peru only.

Outcomes
We measured anthropometrics weekly until the child 
was 3  months of age, every 2  weeks between three and 
11  months of age, and once monthly thereafter for the 
remainder of follow-up. Both height and recumbent 
length (supine length) was measured using a wooden 
length platform and sliding head-footboard (Shorr sta-
diometers, Shorr Productions, Olney, Maryland). We 
followed calibration procedures as per manufacturer 
instructions. Height or length were measured to the 
nearest 0.1  cm. Anthropometric standardization was 
conducted at the beginning of the study, and once yearly 
thereafter. Outcomes of this study were height in cen-
timeters and height velocity in centimeters per month. 
Child length at birth was obtained from the perinatal 
care booklet given to mothers from the health care pro-
viders. Children less than 2 years of age were measured in 
a horizontal position (recumbent length), whereas chil-
dren aged 2 years and older were measured in a vertical 
position (height). Length (or height) was measured using 
a wooden length platform and sliding footboard (or head-
board) to the nearest 0.1 cm.

Height velocity was calculated in two ways. First, 
we calculated empirical height velocity by subtracting 

previous height from current height and dividing by the 
time gap between both measurements:

Second, we computed an estimated height velocity 
using the first time derivative of the longitudinal height 
models using standard methods (Table 1).

Biostatistical methods
The primary aim of our analysis was to model height 
and height velocity. We included the following predic-
tors in our models: age in months, an indicator variable 
for greater than 24 months to account for unit differences 
in length vs. height measurement methods, and sex. To 
model the non-linear relationship between age and height 
over time, we used smooth, flexible functions known as 
cubic regression splines. While there are several forms 
of regression splines that can be used to model non-lin-
ear relationships between a predictor (i.e., age) and an 
outcome (i.e., height), we chose to use cubic regression 
splines because they are simple to construct and under-
stand [21]. We purposely varied the number and positions 
of the interval knots in several of our examples to demon-
strate that our models are not affected by these changes. 
As mentioned, derivation of different types of splines to 
calculate height velocity is straightforward (Table  1). 
Since other investigators [6] have proposed the use of lin-
ear splines to model child growth because of their ease 
of use, in this paper, we compared adequacy of both esti-
mation and prediction between cubic and linear regres-
sion splines with variations in the number and positions 
of the knots. We compared cubic and linear regression 
spline models using an in-sample (i.e., estimation) mean 
square error (MSE) and out-of-sample (i.e., prediction) 
MSE using standard methods. For out-of-sample predic-
tion, we used 80 % of the data for training and 20 % of the 
data for validation. For each individual growth curve, we 
randomly sampled 80 % of the data values and used them 
to construct the model fit. The validation data consisting 
of 20 % of the data was then used to generate predicted 
height values. The predicted height and observed height 
were used to compute subject-specific prediction MSEs.

As described in detail below, the following statisti-
cal methods were used in the model: a cubic regression 
spline with knots at 3, 6, 12, 18, 24 and 40 months, ran-
dom intercepts and slopes to capture the heterogeneity 
in growth curves, and a first-order continuous autore-
gressive error [CAR(1)] to capture residual serial cor-
relation that arises from repeated measurements of the 
same child [22–24]. At each step of model building, we 

∆height(tij) =
height

(

tij
)

− height(tij−1)

tij − tij−1
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conducted exploratory analysis in which we visualized 
standardized residuals with age, a sample variogram of 
the residuals [25], and pairwise scatterplots of residuals 
at different time points to assess goodness-of-fit. We lim-
ited the number of internal knots for our statistical mod-
els between three and six because this number is likely 
sufficient to model the inflexion of linear/height growth 
curves in children under 5 years of age. Moreover, we also 
tested slight variations in the numbers and positioning of 
knots to determine if the model fit was affected. We con-
ducted our statistical analyses in STATA 11 (StataCorp 
LP, College Station, TX, USA) and R (http://www.r-pro-
ject.org). Examples of statistical code in R are provided 
to ensure reproducibility and improve dissemination of 
methods (Additional file 1).

Research ethics
This study was approved by the internal review boards 
of A.B. PRISMA (Lima, Peru), Johns Hopkins Univer-
sity (Baltimore, USA), and the European Union Ethics 
Committee.

Results
Baseline characteristics
We included a total of 215 children in this analysis. The 
initial cohort started with 304 children: however, 11 did 
not have available anthropometric data and 78 were lost 
to follow up before 1 year of age. Average follow-up was 
34  months (range 12–45  months). Average number of 
observations per children was 50, giving a total of 10,838 
observations. Of 215 children, 109 were girls (51.0 %).

Initial observations
We conducted exploratory data analysis as the first step 
to gain insight into the structure and nature of the data. 
In exploratory analysis for longitudinal data, we obtained 

an understanding of the non-linear relationship of height 
with age but also the heterogeneity in growth curves 
for the study population (Fig.  1). Using a spaghetti plot 
of empirical height velocity, we found that it declined 
with age and the change was steepest at the young-
est ages. In addition, in longitudinal growth data with 
repeated height measures, it is important to evaluate the 
serial autocorrelation, or the relationship between these 
measures. The variogram is a useful tool, as it evaluates 
autocorrelation by comparing the half square difference 
between each pair of heights within an individual to the 
time gap associated with each pair of heights. A nonpara-
metric smooth fit is added to the variogram to describe 
the pattern. The exponential nonparametric smooth fit 
indicates that data exhibit both strong serial autocorrela-
tion and heterogeneity (Fig. 1).

Building a longitudinal growth model
Our exploratory data analysis highlighted several chal-
lenges that need to be addressed in modeling growth 
data. Specifically, we had to account for the shape 
of the curve, the clustering of values, the heteroge-
neity among individuals, and the individual effects 
of serial correlation. To emphasize the role of each 
of these factors, we used combinations of random 
effects and serial correlation components in a linear 
model (Table 2). The steps to build the final model are 
described below.

Ordinary least squares model
Ordinary least squares (OLS) estimates growth param-
eters by minimizing the sum of the squared vertical dis-
tances between the observed and predicted responses. It 
provides efficient and valid predictions with the following 
assumptions: height can be explained by a linear com-
bination of predictors, values of height are determined 

Table 1 Representation of three common forms of regression splines and calculation of first derivatives

Regression equation First derivative

Truncated polynomial 
splines (order p)

fTPS(x) = β0 + β1x + · · · + βpx
p +

∑K−1
k=0 γk(x − ξk)

p
+

where (x − ξ)+ =

{

0 if x ≤ ξ

x − ξ if x > ξ

f
′

TPS(x) = β1 + 2β2x
2 + · · · + pβpx

p−1 +
∑K−1

k=0 pγk(x − ξk)
p−1
+

B-splines (order p) fB(x) =
∑K−p−2

k=0 αkBk,p(x)

where Bk,0(t) =
{

1 if xk ≤ x < xk+1

0 if otherwise

and higher order splines bases are obtained by  
the recursion

Bk,p(x) =
x−xk

xk+p−xk
Bk,p−1(x)+

xk+p+1−x

xk+p+1−xk+1
Bk+1,p+1(x)

b
′

k,0(x) = 0

b
′

k,p(x) =
1

xk+p − xk
Bk,p−1(x)+

x − xk

xk+p − xk
B
′

k,p−1(x)

−
1

xk+p+1 − xk+1

Bk+1,p−1(x)+
xk+p+1 − x

xk+p+1 − xk+1

B
′

k+1,p−1(x)

Natural cubic splines 
(order 3)

fns(x) = β0 + β1x +
∑

K−1
k=0

γk(x − ξk)
3
+

∑

K−1
k=0

γkξk =
∑

K−1
k=0 γk = 0

f
′

ns(x) = β1 +
∑

K−1
k=0

2γk(x − ξk)
2
+

∑

K−1
k=0

γkξk =
∑

K−1
k=0 γk = 0

http://www.r-project.org
http://www.r-project.org
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independently of each other, height has a normal distri-
bution at any particular age, and height has equal vari-
ances at any particular age.

Unfortunately, growth data violates all of these assump-
tions. First, growth does not follow a linear pattern 
with age. This can be addressed through the use cubic 

Fig. 1 Panels a, c shows a spaghetti plot of the height and height velocity raw data from 50 participants respectively. Panels b, d show the vari-
ograms corresponding with each data set, where values in the x-axis represent the distance in time between two measurements and values in the 
y-axis (vijk) represent the square distance between those two observations [29]

Table 2 Linear models used in our analyses

Model Regression equations

Ordinary least squares Heightij = β0 + β1tij + β2t
2
ij + β3t

3
ij + β4

(

tij − 3
)3

+
+ β5

(

tij − 6
)3

+
+ β6

(

tij − 12
)3

+
+ β7

(

tij − 18
)3

+

+β8
(

tij − 24
)3

+
+ β9

(

tij − 40
)3

+
+ β10I

(

tij > 24
)

+ β11I(male)+ εij

Linear mixed-effect model with  
random intercept and random slope.

Heightij = β0 + b0i + β1tij + b1i tij + β2t
2
ij + β3t

3
ij + β4

(

tij − 3
)3

+
+ β5

(

tij − 6
)3

+
+ β6

(

tij − 12
)3

+

+β7
(

tij − 18
)3

+
+ β8

(

tij − 24
)3

+
+ β9

(

tij − 40
)3

+
+ β10I

(

tij > 24
)

+ β11I(male)+ εij

Linear mixed-effect model with random  
intercept and random slope and first order 
continuous autoregression (CAR(1))

Heightij = β0 + b0i + β1tij + b1i tij + β2t
2
ij + β3t

3
ij + β4

(

tij − 3
)3

+
+ β5

(

tij − 6
)3

+
+ β6

(

tij − 12
)3

+

+β7
(

tij − 18
)3

+
+ β8

(

tij − 24
)3

+
+ β9

(

tij − 40
)3

+
+ β10I

(

tij > 24
)

+ β11I(male)+ εij

εij ∼ N
(

0, σ 2
)

(

b0
b1

)

∼ MVN

([

0
0

]

,

[

g11 g21
g12 g22

])

εij ∼ N
(

0, σ 2
)

(

b0
b1

)

∼ MVN

([

0
0

]

,

[

g11 g21
g12 g22

])

εij ∼ N
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regression spline to model the curvature with age. How-
ever, there are other concerns that cannot be as eas-
ily adjusted by OLS. Several height measurements were 
taken from each child; however, these serial measure-
ments of height for the same child are not independ-
ent of each other. This is confirmed by a variogram of 
the residuals from the OLS (Fig.  2, panel a). Next, the 
height data did not follow a normal distribution as per 
the Shapiro–Wilk test (p < 0.001), the Mardia skewness 
test (p < 0.001), and the Mardia Kurtosis test (p < 0.001). 
Finally, a display of residuals versus age revealed a heter-
oskedastic distribution implying that the variance of the 
error was not constant across ages (Fig. 2, panel d). Het-
eroskedasticity was confirmed with the Breusch–Pagan 
test (p  <  0.001). OLS model is therefore insufficient to 
model longitudinal growth.

Linear mixed‑effect model without repeated 
measurements
The OLS model indicated that additional modeling com-
ponents are necessary to account for individual-level 
clustering and residual autocorrelation. Linear mixed-
effect models allow for non-independence and cluster-
ing by describing both between and within individual 
differences. We added random intercepts and slopes to 
the OLS model described above. Specifically, we added 
the parameters of the variance–covariance matrix to the 

fitted model (Table 2). Our model assumes that the vari-
ance–covariance of the random effects is unstructured.

At first, we only included random intercepts (b0i). The 
model assumes that the random intercepts are normally 
distributed with mean 0 and variance g11. We found that 
this parameter was statistically significant with a variance 
(g11) of 6.31 (95  % CI 5.21–7.62; p  <  0.001). This result 
suggests that the growth of individual children diverge 
from the population prediction by a shift in the intercept; 
in other words, individual growth is shifted up or down 
but parallel to the population prediction.

Then, in a second step, we included both random inter-
cepts and random slopes (b1i). The variance of the inter-
cept (g11) was 3.60 (95  % CI 2.97–4.36; p  <  0.001), the 
range is -5.27 cm to 3.57 cm and the mean is 0.0056 cm. 
In addition, the variance of the slope (g22) was 0.0091 cm/
month (95  % CI 0.0075–0.011; p  <  0.001), the range is 
−0.27  cm/month to 0.24  cm/month and the mean is 
0.00077 cm/month (Table 3). Following the same reason-
ing as for random intercepts, the random slopes repre-
sent the individual variability in growth velocity around 
the population prediction: some individual children grow 
faster or slower than the population. A statistically sig-
nificant variance, close to 0, as in this case, means that 
the shift of the individual growth velocity from the popu-
lation is statistically supported but it is small. Therefore, 
the data exhibit less heterogeneity in the random slope 

Fig. 2 Panels a, d shows the variogram and standardized residuals for the fit using OLS. Panels b, e shows for mixed model regression. Panels c, f 
shows for linear mixed model with CAR(1). Notice how the fit improves with each new addition. In Panels a–c, values in the x-axis represent the 
distance in time between two measurements and values in the y-axis (vijk) represent the square distance between those two observations [29]
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than in the random intercept, indicating that the main 
source of difference between trajectories is encapsulated 
in their birth height. The story could be different in other 
growth cohorts or on other outcomes different than 
growth such as blood pressure.

In our data, it was suitable to assume that the ran-
dom effects follow an unstructured matrix because the 
random intercepts and random slopes have different 
variance estimates; this flexibility confers individuality 
to each child’s pattern of growth. The covariance (g12) 
describes how the random intercept varies with the ran-
dom slope. The covariance for this data set was 0.019 
(95 % CI −0.0059 to 0.044; p < 0.001; Table 3). A positive 
covariance, as what is shown from these data, suggested 
that children with greater individual intercept tend to 
have a greater rate of growth.

The unexplained or residual variance in this model is 
0.60 (95  % CI 0.59–0.62). The introduction of random 
effects reduced the residual variance by an order of mag-
nitude from 7.34 to 0.60, implying that individual effects 
explain a considerable portion of the outcome variation.

To evaluate the fit of our model, we visualized stand-
ardized residuals with age (Fig.  2, panel e). The linear 
mixed-effect model eliminated heteroskedasticity of 
residuals. The mixed model assumes errors are normal 
and conditionally independently distributed with mean 
zero and common variance. However, the estimated 
residuals did not appear randomly distributed; instead, 
they show symmetry in wider or narrower areas across 
the horizontal axis. Additionally, the variogram of the 

residuals still displays a degree of autocorrelation (see 
Fig. 2, panel b). The correlation in the residuals was con-
firmed by plotting the residual versus the residual of 
the previous observation within a child (Fig.  3). Taken 
together, a mixed model was able to address the non-
independence and clustering that OLS could not, and in 
doing so account for a greater proportion of unexplained 
variance and reduce the heteroskedasticity. However, it 
still had limitations in addressing the serial correlation 
from repeated measures in growth data.

Linear mixed‑effect model with CAR (1) error for repeated 
measurements
From the exploratory data analysis, we noted that serial 
height measurements within children were auto-cor-
related. We used a CAR(1) error to capture serial cor-
relation in our statistical model. This structure assumes 
that errors are correlated and the degree of correlation 
is greater in those closer with age than in those further 
apart. The third model adds a new parameter of correla-
tion ρ =  0.66 (95  % CI 0.64–0.68; p  <  0.001). To evalu-
ate the fit of this model, we visualized residuals with age 
(Fig. 2, panel f ). The autocorrelation was further reduced 
as evidenced by the variogram of the residuals and by 
the lack of relationship in scatter plots of residuals ver-
sus the previous observation’s residuals (Fig. 3). Both the 
random intercept and the random slope were statisti-
cally significant and followed the same growth patterns 
as before (Table  3). The covariance was 0.036 (95  % CI 
0.013–0.059; p  <  0.001). The unexplained variance was 

Table 3 List of estimated parameters for each individual model

Parameter Variable Ordinary least squares Random effects Random effects and CAR(1)

β0 Intercept 48.17 (47.43, 48.90) 48.07 (47.66, 48.49) 47.97 (47.56, 48.38)

β1 tij 4.47 (3.39, 5.55) 4.53 (4.21, 4.84) 4.65 (4.33, 4.96)

β2 t2ij −0.28 (−0.75, 0.18) −0.29 (−0.42, −0.15) −0.32 (−0.47, −0.18)

β3 t3ij 0.0015 (−0.061, 0.058) −0.0014 (−0.019, 0.016) 0.0021 (−0.017, 0.021)

β4
(

tij − 3
)3

+
0.026 (−0.044, 0.096) 0.026 (0.0062, 0.047) 0.023 (−0.00037, 0.046)

β5
(

tij − 6
)3

+
−0.021 (−0.035, −0.0069) −0.022 (−0.026, −0.018) −0.022 (−0.028, −0.016)

β6
(

tij − 12
)3

+
−0.0021 (−0.0063, 0.0020) −0.0025 (−0.0037, −0.0013) −0.0030 (−0.0050, −0.00097)

β7
(

tij − 18
)3

+
−0.0018 (−0.0050, 0.0013) −0.0011 (−0.0020, −0.00016) −0.00056 (−0.0020, 0.00090)

β8
(

tij − 24
)3

+
0.00092 (−0.00085, 0.0027) 0.00047 (−0.000038, 0.00098) 0.00032 (−0.00050, 0.0011)

β9
(

tij − 40
)3

+
−0.019 (−0.040, 0.0030) 0.00019 (−0.0062, 0.0066) −0.0029 (−0.011, 0.0048)

β10 I
(

tij > 24
)

−1.20 (−1.63, −0.77) −0.91 (−1.03, −0.78) −0.72 (−0.84, −0.60)

β11 I(male) 1.64 (1.54, 1.74) 1.61 (1.11, 2.12) 1.51 (0.99, 2.02)

g11 var(Intercept) – 3.60 (2.97, 4.36) 3.37 (2.73, 4.16)

g22 var
(

tij
)

– 0.0091 (0.0075, 0.011) 0.0067 (0.0054, 0.0084)

g12 var
(

Intercept, tij
)

– 0.019 (−0.0059, 0.044) 0.036 (0.013, 0.059)

ρ Correlation – – 0.66 (0.64, 0.68)

σ 2 Unexplained variance 7.34 (−7.05, 21.76) 0.60 (0.59, 0.62) 0.81 (0.75, 0.87)
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0.81, it remained low and was similar to the unexplained 
variance of the linear mixed-effect model. Since there 
can be sex differences in child growth, we also evaluated 
the contribution of sex as a covariate. If all the variables 
remained constant, boys were on average 1.5 cm (95 % CI 
0.99–2.01) taller than girls during the follow up period 
(Table 3).

Cubic versus linear regression splines
Cubic regression splines were superior to linear regres-
sion splines in both estimation and prediction at each 
modeling step, and even when varying the number and 
position of knots. In Table 4, we report the values of AIC 
and BIC for OLS, LME, and LME with CAR(1) models 
even when the number of knots and their positions are 
varied. All results indicate that mixed effects models with 
cubic splines by far outperform the other models con-
sidered and that cubic splines outperform linear splines 
for every level of model complexity. AIC and BIC results 
show that cubic splines outperform linear splines even 
when cubic splines use three knots and linear splines use 
five knots. This is probably because the growth curvature 
is better captured by a cubic function than by multiple 
piecewise linear splines. Equally importantly, however, is 
the important reduction in AIC and BIC noted when a 
CAR(1) error structure was incorporated into the regres-
sion model.

Cubic regression splines models were also better at 
both estimation and prediction than were linear regres-
sion splines. Using three knots (at 3, 10, and 29 months) 
we obtained a median subject-specific estimation MSEs 
of 0.65 for linear regression splines and 0.51 for cubic 
regression splines (Fig.  4). A Kolmogorov–Smirnov test 
comparing the MSE distributions indicates that the two 
MSE distributions were different (D = 0.186, p = 0.001). 
Differences in the median subject-specific estima-
tion MSE were similar even when the number of knots 
were increased, or their positions were varied (data not 
shown). Specifically, the out-of-sample prediction MSE 
was 0.86 for linear regression splines and 0.80 for cubic 
regression splines. These findings suggest that objective 
of inference in child growth problems should be primar-
ily the curve and only secondarily the coefficients.

Longitudinal models for height velocity and acceleration
With an appropriate model for height, the model for 
height velocity using a cubic regression spline is sim-
ply obtained from its first derivative (Table 1). Similarly, 
growth acceleration can be obtained by taking the deriva-
tive of the height velocity (formulas not shown). As a 
result of the derivation, the height velocity model loses 
the indicator variable of a difference between length 
and height. Also, sex is not included because our model 
assumes there is no interaction between sex and age. In 

Fig. 3 This graph plots the standardized residuals versus the first, third and fifth previous residual. The first lane (top row) are residuals form a fit 
using a linear mixed model without CAR(1) and the second with the inclusion of CAR(1). Notice how the autocorrelation is successfully treated with 
this approach
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this height velocity model, the random slope component 
is represented by b̂1i.

An interesting characteristic of the height velocity and 
acceleration curves from a cubic regression model is that 
they are continuous and make biological sense. In con-
trast, a linear regression spline would assume that growth 
velocity is piecewise constant within knots but discontin-
uous across knots. Moreover, growth acceleration curve is 
zero. Both these assumptions of linear spline approaches 
contradict scientific knowledge about growth trajecto-
ries and the data in our application. For example, in Fig. 5 
we estimated growth velocity (top panels) and accelera-
tion (bottom panels) for three subjects in the study using 

linear (left panels) and cubic (right panels) splines with 
three knots (at 3, 10, and 29 months.) A different num-
ber of knots and knot locations would result in slightly 
different plots, but with the same qualitative interpreta-
tion. The linear spline plot assumes that growth velocity 
is piecewise constant between the knots, an assumption 
that once highlighted is very difficult to accept from a sci-
entific perspective. In contrast, the cubic spline estimate 
of the velocity curve is much more aligned with the cur-
rent knowledge of human growth with the velocity curve 
being continuous and smooth. Even more striking, the 
acceleration curve estimated using linear splines is always 
zero. In contrast, cubic regression splines estimate a neg-
ative acceleration, which is especially large in absolute 
terms in the first part of the curve. This corresponds to 
the obvious patterns we observe in growth curves: they 
have a slightly concave shape, with concavity much more 
pronounced immediately after birth (indicating decelera-
tion of growth). Interestingly, the cubic spline estimator 
gets much closer to zero after month 10, but continues to 
be negative, which may indicate continuous concavity of 
the function, though much subtler.

Interpretation of the final model
By displaying the individual growth of three children at 
three different percentiles and their predicted values, we 
can see how our model effectively reflects individual and 
population growth patterns (Fig. 6). Differences between 
children appear to be largely from shifts in intercepts, 
with minimal differences in growth rates. This is further 
supported in the height velocity model in which the three 
individuals have almost the same rate of growth, only dif-
fering by a minimal vertical shift (Fig. 6). Therefore, the 
last model was able to effectively predict both population 
growth and differences between and within individuals 
in a population of Peruvian children from a peri-urban 
shanty town.

Table 4 Comparing the Akaike information criterion and Bayesian information criterion for linear and cubic spline mod-
els using OLS (fixed effects only), LME (random slope random intercept) and LME with CAR(1) errors

Linear splines Cubic splines

Akaike information criterion

3 knots (3, 10, 29) 5 knots (3, 6, 18, 24) 3 knots (3, 10, 29) 5 knots (3, 6, 18, 24, 40)

Ordinary least squares 52,495.44 52,472.74 52,399.32 52,397.75

Random effects 28,608.28 28,345.14 27,560.38 27,541.87

Random effects and CAR(1) 19,719.72 19,495.80 19,222.76 19,235.37

Bayesian information criterion

 Ordinary least squares 52,553.77 52,545.24 52,472.23 52,485.24

 Random effects 28,688.47 28,439.91 27,655.15 27,651.22

 Random effects and CAR(1) 19,807.21 19,597.86 19,329.66 19,352.00

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3
3.2
3.4
3.6
3.8

Linear regression spline Cubic regression spline

50%
25%

75%

50%
25%

75%

Mean-squared error

Fig. 4 Subject-specific distributions of the square root MSEs for the 
entire growth curve for linear splines (black) versus cubic splines (red). 
Dashed lines correspond to the estimated median, 25 %, and 75 % 
percentiles of the subject-specific MSE distribution. Cubic regression 
splines outperformed piecewise linear splines: the median square 
root subject-specific MSE for linear regression splines was 0.65 vs. 
0.51 for cubic regression splines. The Kolmogorov–Smirnov test indi-
cates that the two distributions are significantly different (D = 0.19, 
p = 0.001)
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Discussion
The final statistical model for the prediction of height was 
obtained by applying a linear mixed-effect model with ran-
dom intercepts and slopes, and a first-order continuous 
autocorrelation structure for the error term. To account 
for the curvature of growth with age, we used cubic regres-
sion splines. To describe this modeling process, we build 
longitudinal growth data using a stepwise process. At each 
step, we examined standardized residuals with age, the 

sample variogram of the residuals and pairwise scatter-
plots of residuals at different time points to assess good-
ness-of-fit. We also compared estimation and prediction 
of cubic regression spline models vis-à-vis linear regres-
sion splines, and found that the former outperform the lat-
ter. This suggests that inference of child growth problems 
should focus on differences in growth curves based on the 
regression parameters rather than on direct interpretation 
of the regression parameters themselves.

Fig. 5 Estimated growth velocity (top panels) and acceleration (bottom panels) for three subjects in the study using linear (left panels) and cubic 
(right panels) splines with three knots (at 3, 10, and 29 months). A different number of knots and knot locations would result in slightly different 
plots, but with the same qualitative interpretation
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While a sizeable literature on modeling child growth 
data already exists [1–11], it should be recognized that 
estimation and, more importantly, prediction of subject-
specific growth trajectories continues to be a problem 
under active methodological development and much 
attention needs to be given to the various choices and 
refinements to address the wide variety of applications. 
Our modeling framework adds to the literature in at least 
three directions. First, we are interested in fitting and 
predicting both at the population and subject-specific 
level, whereas previous related papers focus exclusively 
on population-level parameters [6–11]. In large studies 
with more than 100 children, estimating the population 
level parameters is relatively easy and straightforward 
and there is not a lot of need for modeling the subject-
specific deviations. However, subject-specific estima-
tion and predictions is more complicated and requires a 
higher level of technical detail. Second, cubic regression 
splines provide a better fit than linear splines to non-lin-
ear growth curves when the number of knots is small, as 
proposed by us and others. This happens because cubic 
regression splines capture better the non-linear trajec-
tories between knots and are especially well-suited for 
modeling child growth immediately after birth when both 
acceleration and velocity are the greatest. Second, cubic 
regression splines assume that the velocity of growth in 
children is continuous and smooth whereas linear splines 
assume that velocity is constant in a small number of 
intervals, an assumption that is biologically difficult to 
support. Moreover, growth acceleration is a piecewise 

linear and continuous function when data are modeled as 
cubic splines, whereas a linear spline approach assumes 
that growth acceleration is exactly zero. Our results indi-
cate that, for this growth data set, cubic splines outper-
forms linear splines when the same number and location 
of knots is used, and these findings are consistent with 
previously published work [26, 27]. In general, we rec-
ommend conducting application-specific simulations 
to assess which model performs better. Third, modeling 
residuals as a continuous auto-regressive process is a fun-
damentally important feature of unbalanced data that 
needs to be taken carefully into account.

Linear mixed-effect models are an advantageous and 
appropriate statistical method for longitudinal growth in 
children under 5 years of age. Linear mixed models not 
only provide information about the population predic-
tion of growth but also give insight on individual patterns 
of growth through the random component. Our analysis 
also points to the importance of adequately accounting 
for autocorrelation of repeated measurements. Inclu-
sion of cubic regression splines when compared to linear 
splines to model the curvature of growth is supported by 
our data because more measurements were taken when 
growth was faster. Also, linear mixed models allow for 
the analysis of unbalanced data with ease, e.g. subjects 
with a different number of observations and observa-
tions measured at different points in time. From a meth-
odological and logistical perspective, this is an advantage 
because sometimes it is hard to ensure that subjects do 
not miss any visits and that they are measured at the 

Fig. 6 Observed and predicted growth for 3 individual children at different percentiles. In black are the observed growth curves and in red the pre-
dicted growth curves. The same children were plotted in both graphs. Notice children have a different growth pattern but similar growth velocity
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exact scheduled time. Linear mixed-effect models can 
account for some bias because subjects with complete 
follow up time might differ from subjects lost during the 
follow up period [28]. In addition, linear mixed-effect 
models support several variance–covariance matrices 
and structure of the residuals, allowing flexibility for vari-
ous types of data with different levels of clustering, the 
inclusion of time-varying and time-invariant covariates 
and an efficient method to account for repeated measure-
ments [17, 18].

A limitation of linear mixed-effect model approach 
presented in this paper is that not all the statistical soft-
ware packages support the generation of variograms for 
longitudinal data, and may therefore require program-
ming. Our analysis has some additional shortcomings. 
First, our inferences are based on the analysis of a single 
dataset. Second, the population under study consisted 
of a rather homogenous group of children with a high 
number of height measurements in early childhood. We 
acknowledge that there may be differences in statistical 
modeling approaches in study samples that exhibit more 
heterogeneity and have fewer measurements during 
early childhood. Third, our analytical approach requires 
the assumption that growth data are missing at random, 
in which case mixed effects models are very robust. If 
outcome data were not missing at random (e.g. the child 
was sick for a long period of time), then this can lead to 
larger prediction errors due to subject-specific biases. 
Finally, we did not include an interaction between sex 
and age to simplify our illustration of the statistical prin-
ciples of our analysis; however, this model may not be 
realistic for human growth or perhaps for other longitu-
dinal outcomes.

In conclusion, we present a stepwise approach to devel-
oping longitudinal growth models using linear mixed-
effect models that account for random effects and serial 
autocorrelation with cubic regression splines to capture 
the non-linear relationship between age and growth 
in height. As compared to other approaches, this mod-
eling approach is simpler, direct and does not require 
multiple steps of transformation, analyzing age intervals 
separately or estimating LMS parameters. The growth 
velocity model obtained from the derivative eliminates 
measurement error directly from the growth without 
the need of assuming negative increments as no growth. 
Moreover, models based on cubic regression splines out-
perform those based on linear regression splines, sug-
gesting that inferences should be based on differences 
in growth curves based on parameters and not on the 
interpretation of the parameters themselves. Therefore, 
researchers who seek to model longitudinal child growth 
in their investigations would benefit from using these 
steps for mixed modeling in future analyses.
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