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Modelling rotational failure
in confined geometries
using DLO

Colin C. Smith MA, PhD
Senior Lecturer, Department of Civil and Structural Engineering, University
of Sheffield, Sheffield, UK

Matthew Gilbert BEng, PhD, CEng, MICE MASCE
Professor, Department of Civil and Structural Engineering, University of
Sheffield, Sheffield, UK

Discontinuity layout optimisation (DLO) is a generally applicable numerical limit analysis procedure that can be used

to identify critical plastic collapse mechanisms in engineering problems. Considering the modelling of in-plane

failure, the authors have previously presented a formulation capable of identifying rotational failure mechanisms in

non-dilating media. However, the formulation presented did not explicitly address cases involving confined

geometries, where curved slip lines could potentially intersect boundaries. In this paper, methods are outlined which

permit efficient modelling of such cases. Details of the kinematic and equilibrium formulations are provided, which

are then verified through application to various geotechnical and structural mechanics problems. It is shown that

results of high accuracy can be obtained, both in terms of the predicted collapse load and the corresponding failure

mechanism.

Notation
B compatibility matrix

B foundation width

c cohesion

D moment of segment between the arc and the chord

d displacements

E energy dissipated

F factor of safety

fD dead load

fL live load

g acceleration due to gravity

g work coefficients

H clay layer thickness, slope height

l length of discontinuity

M moment

m number of discontinuities

N flow rule matrix

Ns stability number

n number of nodes, depth to stiff ground as a fraction

of slope height

p plastic multipliers

p̄ x-coordinate of centroid of the material above a

specified line

q discontinuity forces/moments

S shear force

s relative slip across discontinuity (anti-clockwise

positive)

t nodal force variable

v violation

W weight of the material above a specified line

α cos θ

β sin θ, slope angle

λ adequacy factor

ψ angle subtended by an arc at its centre

ρ density

θ angle of discontinuity measured anti-clockwise from

horizontal about a master node

ω relative rotation

1. Introduction

Discontinuity layout optimisation (DLO) is a computational

limit analysis procedure that can be used to obtain accurate

upper-bound solutions for a wide range of plastic collapse pro-

blems. It differs from other established numerical methods,

such as finite-element limit analysis (e.g. Lysmer, 1970;

Makrodimopoulos and Martin, 2006; Sloan, 1988) and the

method of characteristics (Sokolovskii, 1965), through its

ability to identify directly critical failure mechanisms in the

form of velocity discontinuities for a prescribed numerical dis-

cretisation, and to handle singularities in a natural and fully

general way. The application of DLO to three-dimensional

problem and plane-strain problems involving purely transla-

tional failure mechanisms has been described by Hawksbee

et al. (2013) and Smith and Gilbert (2007), respectively, and to

plane-strain rotational mechanisms in non-dilational materials

by Smith and Gilbert (2013). Recently, a formulation suitable

for the analysis of slabs has been also presented (Gilbert et al.,
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2014). A simple exemplar MATLAB code for plane-strain

translational DLO can be found in Gilbert et al. (2010).

Stages in the plane-strain translational DLO procedure are

illustrated diagrammatically in Figures 1(a)–1(d). The limit

analysis problem is couched in terms of (potential) discontinu-

ities interlinking nodes used to discretise the solid region being

modelled. Compatibility of displacements associated with dis-

continuities meeting at a given node is explicitly enforced,

while compatibility at locations where discontinuities crossover

one another away from a node is implicitly enforced. The criti-

cal layout of discontinuities is then identified using rigorous

mathematical optimisation techniques (hence the name ‘dis-

continuity layout optimisation’), with the objective being to

find the solution which minimises overall energy dissipation.

Smith and Gilbert (2013) showed that curved discontinuities

could alternatively be employed, as shown in Figures 1(e)–1(f),

which replaces stages in Figures 1(c)–1(d). This allows fully

rotational mechanisms to be modelled with high accuracy.

However, as presented, the formulation only allowed unrestricted

curved discontinuities to be modelled. This is a problem since in

the case of confined geometries the curved discontinuities may

extend beyond the domain under consideration.

In this paper, the basic DLO formulation, as previously

applied to rotational problems, will initially be briefly

described. Means by which rotational problems can be solved

for problems involving confined geometries will then be

explored, considering both primal kinematic and dual equili-

brium formulations, and will cover

& modification of the yield surface for a discontinuity by

accounting for the proximity of a boundary

& kinematic and equilibrium interpretation

& interpretation of equilibrium variables in relation to the

operational arc shape.

Finally, the adaptive DLO procedure developed will be used to

investigate a footing founded on a two-layer clay, a notched

beam and two undrained slope stability problems, serving to

illustrate the efficacy of the approach.

(a) (b) (c)

(d) (e) (f)

Figure 1. Stages in the DLO procedure [(a–d) translational failure;

(a–b) & (e–f) rotational failure (after Smith and Gilbert, 2013)]:

(a) initial problem (eccentric rigid load applied to a block of

soil close to a vertical cut); (b) discretisation of soil using nodes;

(c) interconnection of nodes with potential straight-line

discontinuities interlinking all nodes; (d) identification of critical

subset of potential discontinuities using optimisation (giving

layout of slip lines in the critical translational failure mechanism);

(e) interconnection of nodes with potential linear and curved

discontinuities (for clarity only a small subset of possible curved

discontinuities are shown); and (f) identification of critical subset

of potential discontinuities using optimisation (giving the layout

of slip-lines in the critical rotational failure mechanism) (after

Smith and Gilbert, 2013)
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2. Modelling rotational failure in DLO

2.1 General procedure

As indicated in Figures 1(a)–1(f), when using DLO a grid of

nodes is first distributed across the solid region under con-

sideration, and these nodes are then interconnected with poten-

tial straight line or curved discontinuities. Thus, when a

sufficiently fine grid of nodes is employed, the set of potential

discontinuities will comprise lines of a wide variety of lengths

and orientations. The problem is then to find the critical col-

lapse mechanism that satisfies compatibility and dissipates

minimum energy, formed using a subset of these potential dis-

continuities. It can be observed that however dense the grid of

nodes is, if only straight line discontinuities are employed, it is

not possible to capture, for example, the failure mechanism for

an eccentrically loaded footing. The solution will be the same

as that for a centrally loaded footing. The use of curved slip

lines in the entire domain is therefore necessary in order to

capture fully all possible forms of failure mechanism.

In this paper, the focus is on Tresca materials in which

rotational failure occurs along the arcs of circles. However, the

principles outlined here are equally applicable to dilational

Mohr–Coulomb materials where the failure lines form log

spirals.

2.2 Primal energy formulation

A plane-strain analysis of a quasi-statically loaded, perfectly

plastic cohesive body discretised using m nodal connections

(slip-line discontinuities), n nodes and a single load case can

be stated in standard matrix–vector form as follows

1a: min λf TLd ¼ �f TDd þ gTp

subject to

1b: Bd ¼ 0

1c: Np� d ¼ 0

1d: f TLd ¼ 1

1e: p � 0

where the objective is to minimise energy dissipation (1a),

subject to constraints enforcing energy balance (1a), nodal

compatibility (1b), plastic flow (1c) and unit external work

by unfactored live loads (1d). The normalisation constraint

imposed by Equation 1d is required to avoid obtaining a

solution in which all displacement jumps d (and thus plastic

multipliers p) are trivially zero or unbounded. The positivity of

internal energy dissipation is ensured by inequality (1e).

Following Smith and Gilbert (2013), the full rotational

compatibility relationship in (1b) for any node pair AB

for geometrically unrestricted problems can be stated as

follows

2: Bid i ¼

αi 0�5liβi

βi �0�5liαi

0 1

�αi 0�5liβi

�βi �0�5liαi

0 �1

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

si
ωi

� �

where the first three lines correspond to compatibility around

node A and the last three lines to compatibility around node

B; αi and βi are, respectively, x-axis and y-axis direction cosines

for slip line i, connecting nodes A and B in the direction A to

B, and where si is the relative linear displacement across the

discontinuity; li is the straight line length between nodes; and

ωi is the relative rotation across the discontinuity as shown in

Figure 2 and according to the sign convention given in

Figure 3. Summing these equations for all discontinuities con-

nected to any node ensures translational and rotational com-

patibility about that node.

Such a set of equations is equivalent to starting at a point in

the body adjacent to the node and traversing around the node,

crossing slip lines separating one body from another, before

returning to the original starting point. As slip lines are

crossed, relative translational displacements and rotations

accumulate; however, they must all sum to zero when the orig-

inal starting point is reached.

A combination of s and ω corresponds to an arc subtended by

an angle ψ, where ω=2s tan (ψ/2)/l. Note that, in principle,

− 2π<ψ<2π. However for any arc angle ψ, there is a kinemati-

cally equivalent angle 2π+ψ (for ψ<0) or − 2π+ψ (for ψ>0);

this is discussed in more detail later. The small magnitude arc

angles will, however, always involve less energy dissipation,

and hence in practice − π ≤ψ ≤ π.

The work equation in (1a) may be divided into two parts, the

self-weight terms and the dissipation terms. The general dead

load work component may be written as follows (note this is
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in a slightly different form to that presented in Smith and

Gilbert, 2013)

3: f TDid i ¼ �Wi βi �Wi p̄i �Di½ �
si
ωi

� �

where Wi is the total weight of the strip of the material lying

vertically above chord i; p̄i is the x-coordinate of the centroid

of the strip of the material relative to the centre of the chord;

and Di is the moment of the segment between the arc and the

chord and is constant for any arc angle

4: Di ¼ ρg
l3i
12

βi

where ρ is the density of the material and g the acceleration

due to gravity.

Live loads are defined similarly. Calculation of energy dissipa-

tion requires the derivation of plastic multipliers using a flow

rule equation (note that ψi can be positive or negative)

5:

Nipi � d i ¼

sinψi

ψi

�
sinψi

ψi

4 sin2ðψi=2Þ

ψili
�
4 sin2ðψi=2Þ

ψli

2

6

6

6

4

3

7

7

7

5

�
p1i

p2i

" #

�
si

ωi

� �

¼ 0

6: p � 0

The energy dissipation in terms of pi is given by

7: gTp

where p takes on the absolute value of s and where the dissipa-

tion matrix g is given by

8: gT ¼ c1l1; c1l1; c2l2; . . . ; cmlmf g

Note that Equations 5 and 8 differ slightly from the equivalent

matrix in Smith and Gilbert (2013) in that all terms have been

multiplied by (sin ψ)/ψ. This avoids infinite terms arising

across the range of possible ψ values.

O

BA
ψ /2

ψ

rr

l

ω

ω r

Figure 2. Slip-line geometry. The relative slip ωr across the slip

line can be divided into two components parallel and normal to

the nodal connection chord AB. At nodes A and B these resolve

to the parallel component s=ωl/(2 tan (ψ/2)) and the

perpendicular component ± 0·5lω

si

ω i

+ve –ve

+ve

–ve

ψi  +ve

ψi  +ve

ψi  –ve

ψi  –ve

Figure 3. Sign convention for si and ωi after Smith and

Gilbert (2013). ‘Master’ node is indicated by the larger dot. ψi, the

angle subtended by the arc at the arc centre, is positive if the arc

is located on the clockwise (about the master node) side of the

chord linking the nodes. si is positive if the relative movement

vectors (straight arrows) form an anti-clockwise ‘couple’. ωi is

positive if the body on the clockwise (about master node) side of

the arc is moving anti-clockwise relative to the body on the other

side of the arc (as indicated by curved arrows)
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2.3 Dual equilibrium form

The equivalent equilibrium formulation for a given discontinu-

ity i is given by Smith and Gilbert (2013) as follows

9: BT
i ti þ λf Li � qi ¼ �f Di

or in expanded form as

10:

αi βi 0 �αi �βi 0

liβi
2

�
liαi

2
1

liβi
2

�
liαi

2
�1

2

4

3

5

txA

t
y
A

tmA

txB

t
y
B

tmB

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

þ λ
f sLi

f mLi

" #

�
Si

MDi

" #

¼ �
f sDi

f mDi

" #

where ti ¼ ftxA; t
y
A; t

m
A ; t

x
B; t

y
B; t

m
Bg

T
contains nodal force variables

at nodes A and B (corresponding to the nodal compatibility

constraints, and where Si and Mi, respectively, represent the

shear force and moment acting on chord i (i=1, …, m). The

required yield constraint can be written for discontinuity i as

follows

11: NT
i qi � gi

or in expanded form for the Tresca yield condition as

12:

sinψi

ψi

4 sin2ðψi=2Þ

ψili

�
sinψi

ψi

�
4 sin2ðψi=2Þ

ψili

2

6

6

6

4

3

7

7

7

5

Si

M i

� �

�
cili

cili

� �

The shear force S and moment M are the forces/moments

acting on the chord face of the solid segment delineated by the

chord and arc joining the two nodes under consideration, as

shown in Figure 4. Equation 12 tests whether this combination

of S and M would cause yield by slip along the arc specified

by ψ.

2.4 Yield surface

Equation 12 defines the yield surface for any discontinuity and

may be rewritten in the form of equations relating S, M and ψ

as follows (assuming − π ≤ψ ≤ π)

13:
S

lc

� �

sinψ

ψ
þ 4

M

l2c

� �

sin2ðψ=2Þ

ψ
� 1

14:
S

lc

� �

sinψ

ψ
þ 4

M

l2c

� �

sin2ðψ=2Þ

ψ
� �1

The corresponding yield lines are graphically depicted in

Figure 5 across the full range of arc angles ψ. These enclose

the core unrestricted yield surface which has an approximately

elliptical shape. Note that for the dashed lines (second con-

straint in Equation 12, or Equation 14), negative values of ψ

apply to the upper left-hand corner of the graph.

Thus, the upper right-hand corner of the graph corresponds to

Figures 3(a) and 4(a), while the upper left-hand corner of the

graph corresponds to Figures 3(b) and 4(b) and so on.

It can be seen that for unrestricted boundaries, the most effi-

cient arc (i.e. that which dissipates least energy) for pure

rotation corresponds to point A which is at S=0, M=0·69

and ψ=133·56°.

Equation 13 Equation 14

S

M

+ve –ve

+ve

–ve

ψ  +ve

ψ  +ve

ψ  –ve

ψ  –ve

(a) (b)

(c) (d)

M

S

M
S

M
S

M

S

Figure 4. Interpretation and sign convention for the derived dual

parameters S and M acting on the chord joining two nodes, for

the different scenarios depicted in Figure 3. The sign of S is

independent of the location of the master node. The sign of M is

a function of the location of the master node. The small arrows

on the circumference of the arc indicate the shear stresses

opposing the rotation of the segment (after Smith and Gilbert,

2013)
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3. Yield surface in the presence of a
boundary

3.1 Background

Consider a chord AB within a single body adjacent to a

boundary of arbitrary form as depicted in Figure 6. Standard

geometrical methods exist to determine the largest arc span-

ning AB that does not intersect the boundary. Let the limiting

arc be described by subtending angle ψmin for arcs on the anti-

clockwise side of the chord relative to the master node and

ψmax for arcs on the clockwise side.

In the primal kinematic formulation, the only additional

requirement is to restrict ψ such that ψmin<ψ<ψmax (where

negative ψ lies on the anti-clockwise side of the line).

In the dual equilibrium formulation, the presence of the

boundary increases the size of the yield surface for the relevant

chord. An example is given in Figure 7 for ψmax=45° with

ψmin unrestricted. A solution at point B shows that the

same energy is dissipated for an angle ψ=45° or ψ=−159°.

If there is a restriction on the other side of the line (i.e. there

is an additional minimum value ψmin) then the yield

surface is restricted further on the other quadrants of the yield

surface.

Any point on the yield surface corresponds to a unique arc

angle ψ with the exception of the distinct corners (e.g. point A

in Figure 5 or B in Figure 7). At these locations, the point

corresponds to a range of arc angles. For example, in the

case of point B in Figure 7, the range is 45° <ψ<180°,

−180°<ψ<−159° and it is not possible to determine the exact

angle from the dual solution. However, in kinematic terms,

this arc is actually made of a linear combination of two arcs,

one with ψ=−159° and the other with ψ=45°. The kinematic

theory behind this is given in Section 3.2.

3.2 Kinematic combination of two slip-lines

3.2.1 Kinematic equivalence

Consider discontinuity AB with two slip-lines assigned to

it, with angles ψ1 and ψ2, and each with a slip s1 and s2.

Purely in terms of kinematics, the effect across the discontinu-

ity is equivalent to a single slip line with angle ψ and slip s,

−1·0 −0·8 −0·6 −0·4 −0·2 0·0 0·2 0·4 0·6 0·8 1·0
S/lc

−1·0

−0·8

−0·6

−0·4

−0·2

0·0

0·2

0·4

0·6

0·8

1·0

M
/l

2
c

−180 −165 −150 −135 −120 −105 −90 −75 −60 −45 −30

−15

0

15

3045607590105120135150165180

A

Figure 5. Yield surface in normalised shear (S)–moment (M)

space (thick dashed line). Thin solid lines and dashed lines refer,

respectively, to the first and second constraints in Equation 12.

Numbers on lines indicate the value of ψ in degrees and are

plotted on solid lines only for clarity
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such that

15: s ¼ s1 þ s2

16: ω ¼ ω1 þ ω2

or, equivalently,

17: s tan ðψ=2Þ ¼ s1 tan ðψ1=2Þ þ s2 tan ðψ2=2Þ

Let

18: Tþ ¼
tan ðψ1=2Þ þ tan ðψ2=2Þ

2

19: T� ¼
tan ðψ1=2Þ � tan ðψ2=2Þ

2

Then

20: tan ðψ1=2Þ ¼ Tþ þ T�

21: tan ðψ2=2Þ ¼ Tþ � T�

It can be shown that

22:

tan ðψ=2Þ ¼ Tþ þ T� 1� s2=s1
1þ s2=s1

� �

¼ Tþ þ T� tan π=4� tan�1 s2

s1

� �� �

Thus, for any ratio of s2 and s1, it is possible to determine the

equivalent angle ψ.

For ψ to lie between ψ1 and ψ2, it is necessary for − 1< tan

(π/4− tan −1(s2/s1)) < 1, which requires s2/s1>0 (i.e. s1 and s2

must share the same sign). In terms of the dual yield surface

this is equivalent to both slip-lines being either on the left-

hand side or on the right-hand side of the yield surface.

3.2.2 Work done against body forces

From superposition, for n slip lines linking any single pair of

nodes, the work done is given by

23: E ¼
X

n

i¼1

�Wiβi �Wip̄i �Dið Þ½ �
si
ωi

� �

Since W, p̄, D are same for all slip-lines that connect the same

pair of nodes, Equation 23 becomes

24: E ¼ �Wβ �Wp̄�Dið Þ½ �
X

n

i¼1

si
ωi

� �

Substituting extended versions of Equations 15 and 16

25: E ¼ �Wβ �Wp̄�Dið Þ½ �
s

ω

� �

Hence, there is no effect on the work done against body forces

by replacing multiple slip-lines linking a single pair of nodes

with one kinematically equivalent slip line.

3.2.3 Energy dissipation

The energy dissipated by one equivalent slip-line is given by

26: E1L ¼ cl
ψ sj j

sinψ

� �

;

ψmin

ψmax

Figure 6. Slip-line arc size restricted by boundary. The main node

is indicated by the larger dot
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−1·0 −0·8 −0·6 −0·4 −0·2 0·0 0·2 0·4 0·6 0·8 1·0
S/lc

−1·0

−0·8

−0·6

−0·4

−0·2

0·0

0·2

0·4

0·6

0·8

1·0

M
/l

2
c

−180 −165 −150 −135 −120 −105 −90 −75 −60 −45 −30

−15

0

15

3045607590105120135150165180

B

Figure 7. Yield surface in normalised shear (S)–moment (M)

space (thick line), where there is a single boundary restriction

ψr=45°. Thin solid lines and dashed lines refer, respectively, to the

first and second constraints in Equation 12. Numbers on lines

indicate the value of ψ in degrees and are plotted on solid lines

only for clarity

−10

0

10

20
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%
e
rr

o
r

in
e
n
e
rg

y

−180 −160 −140 −120 −100 −80 −60 −40 −20 0 20 40 60 80 100 120 140 160 180
ψ

ψ
1
= 20° 40° 60° 80° 100° 120° 140° 160°

Figure 8. Percentage error in energy dissipation by linearly

combining two symmetrical arcs of various subtending

angles ±ψ1. Angle ψ is the combined single arc angle.

The peaks in the curves occur at ψ=−133·56°, 0°

and 133·56°
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and the energy dissipated by the two lines separately will be

27: E2L ¼ cl
ψ1 s1j j

sin ψ1

þ
ψ2 s2j j

sin ψ2

� �

The error in energy dissipation associated with modelling a

single arc with subtending angle ψ using two symmetrical arcs

of angle ±ψ1 is shown in Figure 8. It is seen that the maximum

error inside the original arcs occurs at the centre where ψ=0,

s1= s2 and, using Equation 27, is equal to 100((ψ1/sin ψ1)− 1).

For ψ=30°, the error is � 4·7%; for ψ=10°, the error is

� 0·5%; and for ψ=1°, the error is � 0·005%.

It is also seen that where the equivalent arc lies outside the

original arc pair, the error increases very rapidly with ψ. In the

context of the dual solution, in the case where s1 and s2 share

the same signs, then this corresponds to either point B or point

D in Figure 9 and it is clear that the distance from the core

yield surface is small. However, if the signs of s1 and s2 differ,

then this corresponds to point A or point C and the distance

from the standard yield surface is large.

Conversely, and as also shown in Figure 9, if the arc pairs are

larger (for example, ψ=90°), it can be seen that the deviation

is small when the signs of s1 and s2 differ, and large if they are

the same. This is shown in Figure 8. It can be seen that for

angles of ψ1>133·56°, it is possible for the line pair to be

more efficient than the single equivalent line. However, this

will never happen in practice since for angles ψ>133·56° there

will always be an angle of the opposite sign, which corre-

sponds to a lower energy solution (if this is not possible due to

the proximity of a boundary then the symmetrical line pair in

this example will also not be possible).
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Figure 9. Yield surface, ψ=±30° and ψ=±90°
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3.2.4 Implication for DLO solutions

When graphically displaying a DLO solution, for clarity it is

simplest to depict an arc according to the values of s and ω,

determined for that connection where ψ ¼ 2 arctan ðωl=sÞ.

However, during the adaptive phase of the solution, it is poss-

ible for an apparently illegal curved slip line to be predicted

(i.e. one which crosses a boundary) due to the combination of

two yield conditions, as for example shown by point B in

Figure 7. In this case, the two constituent slip lines should be

displayed. These can be determined from the plastic multipliers

p. However, in general, these will be progressively replaced with

more efficient, legal, slip lines.

4. Adaptive solution procedure

4.1 Background

The solution procedure outlined in Section 2 becomes compu-

tationally expensive when large numbers of nodes are involved.

Smith and Gilbert (2007, 2013) demonstrated that the solution

process can be significantly accelerated by solving a simple

initial starting problem, involving a reduced number of slip-

line discontinuities between nodes, and then enriching this by

way of adaptive addition of additional slip lines that are found

to violate yield (based on the dual solution).

For simplicity, if the domain is divided into several bodies of

differing material properties, then it is convenient to confine

slip lines so as to lie entirely within a single body. If a critical

arc does span two bodies, the solver will be able to model this

in a piecewise manner, within the respective bodies (in practice

the slip line is unlikely to be unchanged from one body to

another).

4.2 Initial starting problem

The initial starting problem should be devised so as to

permit a viable kinematic mechanism to be found using the

minimum number of variables and constraints, in the interests

of computational efficiency. To this end, slip-line discon-

tinuities are only placed between nodes and their nearest

neighbours. Moreover, only four constraints per slip-line dis-

continuity are initially used to (approximately) define the yield

surface.

For an unrestricted nodal connection, the yield surface can

initially be represented by four linear constraints, correspond-

ing to ψ=0° and 180° in Equations 13 and 14, and shown in

Figure 10(a). This corresponds to two straight lines and two

semi-circular slip lines, allowing slip in both directions in each

case. Note that if a slip line is not restricted, then using

M/l2 c=±0·69 is preferable as it coincides with the upper and

lower edges of the yield surface, indicated by the horizontal

dashed lines shown in Figure 10(a).

−1·0

−0·8

−0·6

−0·4

−0·2

0·0

0·2

0·4

0·6

0·8

1·0

M
/l

2
c

M
/l

2
c

M
/l

2
c

0

−1·0

−0·8

−0·6

−0·4

−0·2

0·0

0·2

0·4

0·6

0·8

1·0

45

–135

(b)

−1·2 −1·0 −0·8 −0·6 −0·4 −0·2 0·0 0·2 0·4 0·6 0·8 1·0 1·2

S/lc

−1·0 −0·8 −0·6 −0·4 −0·2 0·0 0·2 0·4 0·6 0·8 1·0

S/lc

(a)

−1·0 −0·8 −0·6 −0·4 −0·2 0·0 0·2 0·4 0·6 0·8 1·0

S/lc

−1·4

−1·2

−1·0

−0·8

−0·6

−0·4

−0·2

0·0

0·2

0·4

0·6

0·8

1·0

1·2

1·4

15

–90

(c)

180

Figure 10. Proposed initial yield surfaces (indicated by solid lines)

for: (a) no restrictive boundaries, (b) single restrictive boundary,

ψmax=45°; and (c) two restrictive boundaries, ψmin=−90°,

ψmax=15°
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For a case involving a single restrictive boundary, correspond-

ing to an arc angle ψ, for simplicity the other line is set to

180+ψ for ψ<0 and ψ− 180 for ψ>0 to keep the overall

initial yield surface relatively well represented, as shown in

Figure 10(b). If both sides are restrictive, for example, ψ=15°

and − 90°, the initial yield surface is simply set using both

angles, as shown in Figure 10(c).

4.3 Adaptive method

Violation of the yield surface, as determined using the dual

formulation, leads to the addition of an arc that provides the

(assumed) best way to eliminate violation (this also adds an

additional straight line constraint to the yield surface

diagram). It is important to distinguish between: (a) an existing

slip-line discontinuity between two nodes for which an (s, ω)

pair exists in the compatibility equation (1b); (b) a potential

slip-line discontinuity between a pair of nodes, which is not yet

represented in the relevant solution matrices, but for which the

dual equilibrium forces can be computed; (c) a plastic multi-

plier (or equivalent dual yield constraint) which can be associ-

ated with an (s, ω) pair, by way of Equation 1c, using a

specific value of ψ. Restrictions in arc angle ψ for any slip-line

discontinuity may be designated by ψmin and ψmax and will be

equal to +180° for unconstrained slip lines.

The proposed adaptive algorithm is as follows.

(a) Loop through all existing and potential slip-line

discontinuities between node pairs.

(b) In the case of a potential slip-line discontinuity, assume

ψmin=−180° and ψmax=180°, and check for violation

of Equations 13 and 14 in the range ψmin<ψ<ψmax.

There may be up to two violations. Store the largest

violation v and the corresponding angle ψv (possible

restrictive boundaries are not checked at this stage for

computational efficiency).

(c) In the case of an existing slip-line discontinuity, ψmin

and ψmax will have previously been computed and

stored. Check for violation of Equations 13 and 14 in

the range ψmin<ψ<ψmax. There may be up to two

violations. Store the largest violation v and the

corresponding angle ψv.

(d) Sort all violations according to the magnitude of v.

Select the top n violations, where n is typically around

10% of the full set of violations.

(e) For the top n violations.

(i) if a potential slip-line discontinuity occurs, check

for the restricting boundaries and store the

corresponding ψmin and ψmax values. The maximum

violation may change as a result and is recomputed

together with a revised ψv. Add an (s, ω) pair into

the compatibility equation. If the recomputed

violation >1·0 then add the associated plastic

multiplier terms using ψv.

(ii) if an existing slip-line discontinuity occurs, add

additional plastic multiplier terms using ψv.

(f) Repeat from (a) until no violations remain.

The numerical value of the violation v is computed using the

left-hand side of Equation 13 or 14 as appropriate. The

addition of the plastic multiplier terms using ψv corresponds

to an additional potential curved slip line in the kinematic

formulation, but allowing relative displacement in only one

direction.

Figure 11. Failure mechanism for a two-layer clay problem, upper

layer strength c=1, lower layer strength cl=0·2, footing width B,

upper layer thickness H, fully rough footing, H/B=0·5, nodal

spacing B/10. Collapse load = 2·31cB
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5. Examples

5.1 Footing on two-layer clay soil

The problem of a footing on a two-layer clay is interesting in

that for a weak clay over strong clay scenario, the mechanism

will be almost entirely translational, whereas for a strong

clay over weak clay scenario, the mechanisms will have signifi-

cant rotational elements. An example of the mechanism is

given in Figure 11, with the corresponding collapse load of

2·31 (� cB). This compares favourably with the solutions

derived by Merifield (1999) for this problem, of 2·16 (lower

bound) and 2·44 (upper bound) (average= 2·30).

5.2 Bending of a shallow notched beam

The problem of bending of a shallow notched beam was classi-

cally investigated by Green (1956), who showed that a number

of different slip-line mechanism topologies could be obtained

depending on the notch geometry. An example mechanism is

given in Figure 12, with the corresponding DLO computed

collapse bending moment per unit width M=0·3519c. The

mechanism is clearly very similar in form to that postulated by

Green.

5.3 Undrained slope stability

This problem was classically investigated by Taylor (1937) who

produced a series of stability charts based on single slip circles

for a range of slope angles β, slope heights H, soil unit weights

ρg and depths to stiff ground beneath the crest of the slope of

nH. Results were quoted in terms of stability number Ns which

is given by

28: Ns ¼
ρgHF

c

where F is the factor of safety on the undrained shear

strength c.

For the case of a vertical cut (β=90°), the solution given in

Figure 13 is obtained with Ns=3·783. This compares well

(numerically within 0·2%) with the solution by Martin (2011),

who derived what may be regarded as a highly accurate sol-

ution of 3·77649 using the method of characteristics. For a

shallower slope, β=20°, n=1·2, Taylor predicts a stability
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Figure 12. Failure mechanism for a shallow notched beam in

pure bending (DLO solution above, a=0·75, b=0·25, notch

mouth width = 0·4; Green’s solution below for comparison,

collapse load not given in original paper)

Figure 13. Vertical cut problem β=90°, n=1·0, nodal spacing

H/50. Ns=3·783
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number Ns=7·95 and a toe mechanism. The DLO analysis

also predicts a toe mechanism as shown in Figure 14, with a

slightly lower value of Ns=7·905.

6. Discussion

In the algorithm presented, restrictive boundaries are checked

only in the case of slip-line discontinuities, which are

already represented in the solution matrix. This is efficient

since typically only 1–5% of all potential slip-line discontinu-

ities ever become represented in the solution matrix in the

adaptive solution procedure. In addition, as the adaptive

solution becomes closer to the final solution, adaptively added

slip lines will automatically sit between any restrictive bound-

aries since the new slip lines are based on a solution that

already implicitly accounts for the presence of these bound-

aries. Hence, few new slip lines will be considered that are sub-

sequently required to be rejected for violating a restrictive

boundary. For the problems presented here it was possible

to get to within 1% of the best available solution in the

literature in under 10 s using a PC running an Intel Core i7-

2640M CPU at 2·80 GHz with 8 GB RAM on a 64 bit

system. Implementation of boundary checking led to little

change in solution time. However, achievement of greater accu-

racy does require significantly longer run times, as has been

previously observed by, for example, Smith and Gilbert (2013).

As can be seen in the examples presented, the inherent ability

of DLO to handle singularities remains a key advantage of the

procedure. Singularities are a common feature of many sol-

utions; for example, the two-layer clay problem in particular is

made up almost entirely of intersecting sets of curved fan

zones in the lower layer.

7. Conclusions

(a) The theory presented by Smith and Gilbert (2013) that

allowed modelling of rotational failure mechanisms in

cohesive media using DLO has been extended to deal

with problems involving confined geometries.

(b) A corresponding theory has been developed, considering

both the primal kinematic and dual equilibrium forms.

(c) Application to classical problems involving a footing on

two layers of clay, a notched beam in bending and the

stability of a slope has been described, demonstrating the

ability of the method to find accurate upper-bound

solutions for problems involving confined geometries.

(d) It is demonstrated that pairs of slip lines may be

combined to give the same kinematic effect as a single

slip line, although these will involve higher energy

dissipation. Depending on the formulation of the linear

programming problem, this can in rare cases lead to an

apparently geometrically illegal slip line which is in fact

made up of two legal slip lines; however, this is

straightforward to detect.
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