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ABSTRACT
Recently, there has been growing interest in the synchro-
nization of mobile pulse-coupled oscillators. We build on
the work by Prignano et al. (Phys. Rev. Lett. 110, 114101)
and show that agents that interact exclusively with others
in their cone of vision can exhibit different synchronization
regimes. Depending on their speed, synchronization emerges
as a slow process through spreading of the local coherence,
as a fast process where global synchronization dominates, or
it is inhibited for a range of intermediate speeds. In addi-
tion, we show that, not only the speed of the agents, but also
their angle and range of interaction can tune the appearance
of this intermediate regime.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Distributed Artifi-
cial Intelligence—Multiagent systems

Keywords
Mobile Agents, Agent-Based Simulation, Emergent Behav-
ior, Complex Systems, Swarm Robotics, Artificial Social
Systems

1. INTRODUCTION
Rhythmic synchronous flashing by large groups of males of

some firefly species, in particular, tropical fireflies in South-
east Asia, has been reported for hundreds of years. This
phenomenon awoke the interest of biologist from the begin-
ning of the 20th century, and a vast number of research arti-
cles appeared during that time, describing and modeling this
behavior [4]. Each species of firefly may achieve this flash
synchronization in a different manner, but the basic mecha-
nism is as follows: each insect in the colony has an internal
biological clock that indicates the timing of the flashes; by
observing the firings of other individuals, either the timing
or frequency of its own flashes gets slightly shifted in an at-
tempt to match this external stimuli [15]. In such a way,
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spontaneous order appears without a leader, in a process of
self-organization.

The synchronization of populations of pulse-coupled os-
cillators is not unique to fireflies. It is observed in numer-
ous natural systems, such as pacemaker cells in the heart,
pacemaker neurons in the brain (for instance, those produc-
ing the circadian rhythm), the unison chirping of crickets,
or even the synchronization of women menstrual cycles [25,
13].

The ubiquity of synchronization in communities of locally
interacting constituents gave rise to intensive research in
mathematics, and complex networks and non-linear dynam-
ics in physics [1], aiming for an understanding and a de-
scription of these multiple systems led by the seminal work
of Winfree [24]. Most of this research focuses on static net-
works of oscillators. Recently, however, there has been in-
creasing interest in the study of synchronization in networks
of mobile oscillators [19, 7, 20]. These studies aim to under-
stand what role topological changes, due to the mobility of
the oscillators, play on the synchronization of theses sys-
tems.

In [20] and [19], Prignano et al. investigate a system simi-
lar to that of fireflies. Each oscillator moves in the plane and
influences only the neighbors that lie within a certain range
of interaction [20] (case A); or only its nearest neighbor [19]
(case B). In case A, a monotonically descending relation-
ship between the time it takes for the system to synchronize
and the speed of the oscillators can be observed. This is
what one would expect, given that at high speeds all the os-
cillators interact with each other frequently, whereas at low
speeds the neighborhood of any particular individual does
not often change, leading to a rapid local synchrony but tak-
ing a long time to achieve coherence at a global scale. Sur-
prisingly, in case B, a non-monotonic dependence is found.
While the slow and fast regimes remain the same, an inter-
mediate regime appears where neither of these mechanisms
work and synchronization is inhibited.

The self-organizing behavior of pulse-couple oscillators is
akin to that of swarm intelligent systems, where a number of
relatively simple and limited individuals can achieve a com-
plex collective behavior through local interactions without
any centralized control [3, 17, 2]. Therefore, it is natural to
extend the aforementioned work to a swarms of robots. As
a matter of fact, Christensen et al. [6] developed a swarm
level fault detection behavior based on firefly synchroniza-
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tion, and implemented it on the swarm-bot robotic platform.
In their work, similarly to case A, the agents interacted with
others within a certain range. However, the effect of the
speed of the robots and their radius of interaction was not
investigated.

In this work we study a different kind of interaction, where
the agents are influenced only by others in their cone of vi-
sion. This is a potentially more realistic scenario for robotics
than case B given that, without knowledge of the position of
every member of the population, a particular agent cannot
know whether it is the nearest neighbor to another agent.
We show that by tuning the angle and range of vision, both
the monotonic and the non-monotonic behaviors of case A
and case B, respectively, can be obtained.

Other recent works that researched pulse-coupled synchro-
nization in swarms of robots include [5], which studied a syn-
chronization based approach to task allocation; and [21, 22,
23], which utilize evolutionary approaches to obtain robot
controllers that would lead to swarm synchronization. Some
of these approaches involve the use a line of sight interaction,
similar to the cone of vision. However, all of them deal with
movement synchronization in the environment. Therefore,
the impact of the speed of the agents was not examined.

This paper is organized as follows. Section 2 introduces
the methods used, including the oscillator and neighborhood
models as well as the synchronization metric. Section 3
presents the experiments performed in a particle simulator
and compares the results with those of [19, 20]. Section 4
shows the effects of embodiment and physical constraints in
a robot simulator. Section 5 concludes the paper.

2. METHODS
We consider a population of N agents moving with con-

stant speed V in a bounded square 2-D environment of side
length L. Each agent possesses an associated internal oscil-
lator. When an agent reaches the scene boundary it will ran-
domly reorient its motion to a direction uniformly selected
from the range

[
−π

2
, π
2

]
with respect to the wall’s normal.

This is in contrast to the results of [20, 19], where periodical
boundary conditions were considered (topologically equiva-
lent to a torus). A bounded scenario was preferred here for
realism and practical feasibility.

Two sets of simulations were realized. Firstly, we ana-
lyze an abstract model, where each oscillator behaves as a
point-like particle. Secondly, we study the effects of physi-
cal constraints and embodiment on a robot simulator. The
robot chosen for these simulations was the e-puck [14].

2.1 Oscillator Model
The model of the internal oscillator of each agent, i, is a

simple integrate and fire oscillator,

dφi
dt

=
1

τ
, (1)

where its phase, φi ∈ [0, 1], grows linearly in time with pe-
riod τ , until a threshold, φthres = 1, is reached and a firing
event occurs. Upon firing, the oscillator resets its phase to
0, and the phase of the neighbors, φn, is updated multi-
plicatively by a factor ε [20, 19, 6], as follows (see Fig. 1
left):

φi
(
t−
)

= 1⇒

{
φi
(
t+
)

= 0

φn
(
t+
)

= (1 + ε)φn
(
t−
)
.

(2)
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Figure 1: Dynamics of two oscillators, where the
bottom one influences the top one. Left: Oscilla-
tor model and interaction as described in Sec. 2.1.
Right: Oscillator as implemented in the robot sim-
ulations. During the refractory period (only shown
for the upper oscillator) the oscillator is not influ-
enced by any interaction. Outside the refractory
period multiple consecutive interactions are allowed,
as it will benefit synchronization.

Table 1: Dimensions of the Cone of Vision
Parameter Value

R [0.05L, ∞]
θ [10◦, 360◦]

2.2 Neighborhood Model
An agent, A, is considered neighbor of another, B, if and

only if B lies inside the cone of vision of A, that is, the
circular sector centered in A, with radius R and angle θ,
and oriented in the direction of motion of A (see Fig. 2 top-
left). If A is a neighbor of B, then B will influence A when
applying Eq. 2.

The bottom-left panel in Fig. 2 shows the interaction
range used in case A [20]. In that case, agents that lie
within a certain distance, R, from another are considered
its neighbors. By contrast, regardless of the shape of the
interaction region, our cone assigns the neighborhood in the
opposite direction. That is, if B can be seen by A, then A
is B’s neighbor. This choice was made to emulate a natural
scenario, where the flashing of a firefly would only be rec-
ognized by those insects that are currently seeing it. Note,
however, that for θ = 360◦ this interaction becomes equiva-
lent to case A.

In contrast to the nearest neighbor interaction (case B)
described in [19] where each oscillator has precisely 1 neigh-
bor, in our model any given agent could have from 0 to
potentially N −1 neighbors (see Fig. 2 right for examples of
different interactions). In this aspect, this is similar to the
interaction range scenario of case A.

The dimensions of the cone of vision that were studied are
shown in Table 1. Note that any R greater than

√
2L, the

length of the diagonal, is equivalent to an infinite range.

2.3 Particle Simulation
The particle simulation was performed in an event-driven

manner. The positions, phases and orientations of the os-
cillators were updated either when a wall was reached by a
particle or when an oscillator reached the firing threshold.
In this way we simulated pure continuous time and equation
(1) is integrated exactly.
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Figure 2: Top-left: Cone of interaction. Center-left:
Occlusion in the robot simulation; C cannot be seen
from A. Bottom-left: Interaction range used in [20].
The red arrows indicates the direction of the interac-
tion. Right: Example of different interactions. A is
neighbor of B and C; B has two neighbors, A and D;
A and E have no neighbors and E is not a neighbor
of any other agent.

Given that some agents may fire upon receiving a phase
update from a firing neighbor and, it turn, could elicit fur-
ther firings, in the particle simulation this interaction occurs
instantaneously in frozen time. This also implies that, if two
firings are received at the exact same time, a single phase
update will take place.

2.4 Robot Simulation

2.4.1 Robot and Simulator
The robot simulation was performed using the open-source

Enki simulation toolkit [12]. Enki provides a faster than real
time simulation of the physics and dynamics of colonies of
robots, and it contains a built-in model of the e-puck (see
Fig. 3). This robot weighs 152 g and its body is modeled
as a differential-wheeled cylinder of diameter 7.4 cm. The
distance between the wheels is 5.1 cm. Their speed can be
set independently within the range [−12.8, 12.8] cm/s. The
length of the control cycle was set to ∆t = 0.1 s and the
physics was updated 100 times per second.

The choice of simulator is supported by the work of Gauci
et al. [8, 9] where swarm controllers synthesized using Enki
were successfully validated with up to 40 physical e-pucks.

The e-puck is equipped with eight short-range infra-red
proximity sensors and a proximity camera located at its
front. The camera has a resolution of 640 (horizontal) by 480
(vertical) RGB pixels, with a corresponding 56◦ horizontal
viewing angle. The full image cannot be processed or stored
in the dsPIC of the robot. Nevertheless, a subsampled image
can be acquired at 4 frames per second [14].

The proximity sensors are used to implement a simple wall
avoidance algorithm. When the distance to a wall is smaller
than a certain value, the robot reorients itself as described
at the beginning of Section 2. In order to keep the robot
simulation as close as possible to the particle simulation,
no explicit robot-robot collision avoidance mechanism was
employed. We carried out preliminary tests with ENKI and
the physical e-pucks, and found that the circular shape of
the robot allows two agents to come in contact and slide
past each other.

2.4.2 Oscillator
The phase of the robot’s oscillator is updated according

to the discrete version of (1),

φi (tn) =
∆t

τ
φi (tn−1) , (3)

where tn represents the nth control step. Once the phase
reaches the threshold and is reset to 0, the red LED ring on
the contour of the robot is switched on and kept lit for a
certain interval.

2.4.3 Cone and Interaction
The agents take snapshots using their camera, which is

pointed in the direction of motion. In Enki, the camera
can be set to capture images of objects within a certain
distance range and angle of view, which directly implements
the neighborhood model. If a certain robot is firing, and thus
having its LEDs on, it will be detected by the camera of its
neighbors and lead to an update of their phases according
to (2). However, in contrast to the particle simulation, in
this case a direct line of sight between the two agents is also
required. Therefore, the effects of occlusion by other robots
is taken into account (see center-left panel in Fig. 2).

In the particle simulation the interaction between oscil-
lators occurs instantaneously. In a real robot scenario that
would be impossible. For a robot to observe a flash it must
record and process the snapshot of its camera [6]. This pro-
cess inevitably gives rise to delays. For this reason, the
LEDs are kept on for a certain time, tLED. Because of the
necessary latency of the flashing signal and the delays in pro-
cessing it, an oscillator could get displaced from synchrony
if it detects more than one firing. To compensate for this
effect, a refractory period, tref was added immediately after
each agent has fired. During this interval the oscillator is
not influenced by any interaction [11, 18] (see Fig. 1 right).
We have found experimentally that keeping the LEDs on for
four control cycles, tLED = 4∆t, while staying in the refrac-
tory period for eight cycles, tref = 8∆t allowed the robots
to achieve and sustain synchronization.

Even though the actual camera of the e-puck is directional
and has a limited field of view (approx. 56◦), we assumed
that it can detect images of up to 360 degrees for the sake
of completeness. In practice this could be implemented by
rotating the robots on the spot to observe the full environ-
ment. To account for this the LEDs should be kept on for
longer and the refractory period increased accordingly.

2.5 Synchronization Metric
In order to measure the level of synchrony of the system,

a certain oscillator, φ1, is selected as reference, and upon its
kth firing, at time Tk, we calculate the order parameter [20,
19], defined as follows,

η (Tk) =
1

N

N∑
i=1

cos (2πφi (Tk)) . (4)

As it is calculated at the moment of firing of the reference
oscillator, this function measures the average phase differ-
ence between the other oscillators and the reference. It in-
creases monotonically with the degree of synchronization,
from η (Tk) = 0 for a totally uniform phase distribution, to
η (Tk) = 1 for complete synchronization.
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Figure 3: The robot environment in ENKI showing
20 e-pucks in a 100 cm square arena. The robots
with the red LED ring turned on are firing.

Table 2: Parameters of the Particle Simulation
Parameter Value

N 20
L 200 cm
τ 1 s
ε 0.1
V

[
10−2, 102

]
cm/s

ηsync 1− 10−6

Tcens 107

The simulation is stopped once the order parameter ar-
rives to a certain threshold, ηsync ' 1; in this case we con-
sider the system to be synchronized. Moreover, we count
the number of cycles, k, of the reference oscillator elapsed
until synchronization. From this point, we will refer to this
value as Tsync. This synchronization time is a good mea-
sure of how long it takes for a system to achieve coherence
independently of the oscillation period.

For practical reasons, we halted any simulation where T
exceeded a certain censoring threshold, Tcens, before syn-
chronization is achieved. This censoring is taken into ac-
count when calculating the mean of Tsync over several rep-
etitions (see Appendix A for further details).

3. PARTICLE SIMULATION RESULTS
We performed the particle simulations with the parame-

ters shown in Table 2. We studied the effect of varying the
cone dimensions for 30 different speeds, V . We explored a
set of 18 angles of view, θ, and 14 radii, R, from the ranges
in Table 1. For each combination of V , θ, R the simulations
were repeated 100 times, where the initial phases, positions
and orientations of the oscillators were randomly chosen.

Figure 4 shows the average synchronization time, Tsync, as
a function of the speed of the oscillators, for several angles,
θ, and radii, R, of the cone of interaction. We obtained both
the monotonic dependence of case A and the non-monotonic
relationship of case B. For large angles and large cone radii
Tsync is a strictly decreasing function of V . However, as
the size of the cone decreases (either θ or R decrease), the

Table 3: Parameters of the Robot Simulation
Parameter Value

N 20
L 200 cm
τ 8 s
ε 0.1
V

[
10−2, 12.8

]
cm/s

ηsync 0.95
Tcens 104

∆t 0.1 s
tLED 0.4 s
tref 0.8 s

monotonicity is broken, and an intermediate region appears
where the synchronization is totally impeded. This inter-
mediate regime varies from a small bump in the curve, to
a drastic inhibition of synchronization, for relatively narrow
and short interaction cones. Furthermore, we observe that,
when present, the onset of the intermediate regime varies as
a function of R. For comparison, the behavior for a nearest
neighbor interaction (case B), for the same setup is depicted
with a dashed-line. The resemblance to our case becomes ap-
parent in the second plot in Fig. 4 (R = 0.25L), where the
intermediate regime coincides for the same range of speeds.

For further insight, Figure 5 displays the dependence of
Tsync as a function of the ranges of interaction for several
angles of vision. Here we perceive three clearly distinct sec-
tors corresponding to the three dynamical regimes. Narrow
angles exhibit a low degree of synchronization and the three
areas are visibly separated. As the cone widens, the interme-
diate regime gradually disappears and gets relegated to the
small radii region of the graph. Concurrently, a monotonic
gradient of Tsync as a function of V appears and gradually
spreads over all values of R. In the limit when θ → 360◦,
which is equivalent to case A, the synchronization time de-
creases monotonically with V and R as in [20].

The experiments corresponding to R = 0.25 were repeated
for four additional environment sizes (L = 50, 100, 300 and
400 cm). In agreement with the results of [19], the location
of the intermediate regime varies proportionally with the
environment size. This relationship is not trivial, given that
for a change of L not only the relative speed, V , changes
but also the density of oscillators. Figure 7 shows the shift
in speeds of Tsync from L = 200 cm to L = 100 cm.

4. ROBOT SIMULATION RESULTS
We performed the robot simulations with the parameters

shown in Table 3. For the initial experiments we used a
scenario of the same size as in the particle simulation (L =
200 cm). Nevertheless, the maximum speed of the e-pucks is
12.8 cm/s, which is significantly lower than the maximum in-
vestigated speed in the particle simulations (100 cm/s). We
set τ = 8 s in order to keep the number of cycles it takes for
an agent to cover L approximately equal in both simulations.

Conditioned by the fact that embodied simulations are
several orders of magnitude more costly to perform than
particle simulations, we set lower synchronization and cen-
soring thresholds compared to the particle simulation. By
applying Eq. 4 to a system with 20 agents, ηsync = 0.95
implies that the firing time of any individual is not shifted
further than 0.01τ from all other firings, which is equivalent
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Figure 4: Log-log plot of Tsync as a function of the speed of the oscillators for the particle simulation.
The results for three ranges of interaction, R, are shown. Different color lines represent different angles of
interaction. The dashed line represents the nearest neighbor interaction of case B for the parameters of Table
2.
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Figure 5: Contour plot showing the change in Tsync as a function of the speed of the oscillators, V , and their
ranges of interaction, R, for the particle simulation. The results for six different angles of vision are shown.
θ = 360 is equivalent to caseA.
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Figure 6: Log-log plot of Tsync as a function of the speed of the oscillators for the robot simulation. The results
for three ranges of interaction, R, are shown. Different color lines represent different angles of interaction.

to the threshold suggested in [6]. Tcens = 104 with τ = 8 s
corresponds to 22 hours, much longer than what an e-puck
can run continuously.

The effect of varying the cone dimensions was studied for
30 different speeds. We selected five different angles of in-
teraction, θ, and six interaction radii, R, from the ranges
in Table 1. For every combination of V , θ and R we per-
formed 25 trials, where the initial phases, positions and ori-
entations of the robots were randomly chosen. Additionally,
we ensured that the random initial positions of the e-pucks
were physically possible, i.e. no two individuals can occupy
simultaneously the same space.

The results of these experiments are shown in Figure 6.
Despite the changes in implementation with respect to the
particle simulation, the same essential behavior is found (cf.
Fig. 4). The non-monotonic relationship of Tsync with re-
spect to V is observed. For cones of vision of increasing di-
mensions, a single monotonic regime dominates. However,
in the case of embodied robot simulations, we observe a
stronger prevalence of the intermediate regime than in the
particle simulation. For instance, for R = ∞ and θ = 60◦

we still observe an inhibition of the synchronization in the
robot simulation, whereas in the particle simulation this is
almost completely smoothed out.

The simulations corresponding to R = 0.25L were re-
peated for two smaller environment sizes (L = 100 and 150
cm). In contrast to the particle simulation, we observe that
the inhibitory regime disappears for L = 100 cm for some of
the studied angles (Fig. 8), instead of the shift in speeds pre-
viously obtained. We ascribe this difference to the effect of
occlusion. For large environments, i.e. low robot densities,
the effect of the physical size of the agents can be neglected.
However, for an environment densely populated with robots,
occlusion will occur more frequently. This will, inevitably,
influence the rate at which agents change neighbors.

5. CONCLUSIONS
This paper has presented a new case study on the emer-

gence and tuning of synchronization in mobile pusle-coupled
oscillators and it has shown a possible implementation on a
swarm of robots.

Prigano et al. [19] hypothesized that the occurrence of
the intermediate regime in case B (that is, the case where
only the agent that is nearest to a firing agent is influenced)

might be related to the rate of change of neighbors. Our
results support this hypothesis, given that a smaller cone
of interaction (both in angle and range) implies a higher
frequency of neighborhood change. Moreover, for very wide
angles, our results approach those of case A [20] (that is,
the case where all agents within a certain distance from a
firing agent are influenced). The dimensions of the cone of
vision allow to connect both cases, thus yielding a natural
extension of the aforementioned work. We have shown that
global synchrony can be tuned both with the speed of the
agents and the characteristics of their interaction. Further
analysis is needed to understand the underlying mechanism
that governs the dynamical regimes of the system.

The work of [19] suggested a possible discontinuity in the
intermediate regime of case B, where the synchronization is
completely inhibited (i.e. Tsync =∞). In our case, the syn-
chronization time is computationally incalculable for small
cones of vision. Nevertheless, we observe a gradual change
of the behaviour for the intermediate range of speeds, from
a slight impediment to a large inhibition of the synchroniza-
tion. This could indicate that such a discontinuity might not
exist in the present case until the size of the cone becomes
infinitely small. However, this hypothesis remains unproven.
In practice, the intermediate regime acts as a true boundary
to synchronization.

In addition, an implementation on a swarm of e-pucks is
simulated. For a sufficiently large environment, this yielded
similar results to the particle simulation despite the phys-
ical constraints of the system, such as occlusion, collisions
between agents and a non-instantaneous interaction. How-
ever, for a small environment, where the robots would be
closer to each other, the effects of embodiment (i.e. occlu-
sion, collision) become apparent. The intermediate regime
is no longer present for some configurations. In the future,
we intend to validate the results of this paper using a swarm
of physical e-puck robots.

The cone of vision was chosen due to its applicability in
a robotics scenario. We demonstrated that the synchroniza-
tion of the system can be inhibited under certain conditions.
This becomes relevant when applying algorithms that rely
on synchronization to robots that interact with each other
using an interaction akin to the cone of vision. An exam-
ple would be to apply the fault-detection method proposed
by [6] on robots with a directional camera, whereas it was
originally implemented on robots with an omnidirectional
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camera. Our findings suggest that depending on the dimen-
sions of their field of view, the speed of the agents would
affect the performance of this algorithm.

Speed, V (cm/s)
10 -2 10 -1 10 0 10 1 10 2

T sy
nc

10 0

10 1

10 2

10 3

10 4

10 5

10 6

10 7

θ = 60º
θ = 120º

θ = 180º
θ = 360º

Figure 7: Effects of decreasing the environment size
for R = 0.25L in the particle simulation. The dashed
lines represent the log-log plot of Tsync as a function
of V for L = 200 cm whereas the solid lines depict the
corresponding curves for L = 100 cm.
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APPENDIX
A. CENSORED DATA

As described in Sec. 2.5, any simulation exceeding Tcens
is terminated. As a consequence, we will have a record of
the repetitions where Tsync < Tcens but no value of Tsync for
the censored results. Despite the incompleteness of the data,
we can estimate the cumulative distribution function, CDF,
of the synchronization times by using the Kaplan-Meier, K-
M, estimator [10]. Assume that out of M trials, there are
K where Tsync < Tcens, the procedure for calculating K-M
estimator is as follows [16]:

1. Sort T isync in increasing order, from i = 1 to i = K.

2. Associate a number ni for each T isync. ni is the number

of trials that take longer than T isync to synchronize.

3. Calculate R(T 1
sync) = (n1 − 1) /n1.

4. Calculate R(T isync) = R(T i−1
sync) (ni − 1) /ni.

5. The CDF is estimated as F (T isync) = 1−R(T isync)

In this way, the censored values are counted up to the latest
recorded synchronization time, TKsync. Note that the CDF is
calculated without making any assumption about the form
of the probability distribution function, PDF, of the data.

By examining our results we concluded that the data best
fits a Weibull distribution for all the performed simulations.
By adjusting the K-M estimator to the CDF of a Weibull
distribution,

F (Tsync) = 1− e−
(
Tsync
α

)γ
,

we obtain its two parameters, α and γ. Lastly, we can cal-
culate the mean of Tsync as

αΓ

(
1 +

1

γ

)
,

and its variance as

α2Γ

(
1 +

2

γ

)
−
[
αΓ

(
1 +

1

γ

)]2
,

where Γ is the Gamma function.
The accuracy of this method decreases as the number of

censored values increases. Therefore, we required a mini-
mum of 10% of the measures to be exactly obtained in order
to calculate their average. If this condition is not met then
we consider the mean value as undetermined.
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