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REDUCTS OF STRUCTURES ANDMAXIMAL-CLOSED PERMUTATION
GROUPS

MANUEL BODIRSKY ANDDUGALDMACPHERSON

Abstract. Answering a question of Junker and Ziegler, we construct a countable first order structure
which is not �-categorical, but does not have any proper nontrivial reducts, in either of two senses (model-
theoretic, and group-theoretic). We also construct a strongly minimal set which is not �-categorical but
has no proper nontrivial reducts in the model-theoretic sense.

§1. Introduction. For an �-categorical structureM, there is a clear notion of
reductM′ ofM; namely, a structure whose domain is equal to the domain M of
M, and such that for each k > 0 every subset of Mk which is ∅-definable inM′

is also ∅-definable in M. Two reducts are viewed as equal if they have the same
∅-definable sets. By the Ryll-Nardzewski Theorem, the notion can also be viewed
group-theoretically: the automorphism group of a reduct is a closed subgroup of
Sym(M ) which contains Aut(M), two reducts are equal if and only if they have
the same automorphism group, and every closed subgroup of Sym(M ) containing
Aut(M) corresponds to a reduct. Closure here is with respect to the topology of
pointwise convergence—see the remarksbelowon thegroup-theoretic interpretation
of Theorem 1.1(1).
A countably infinite structure is homogeneous (in the sense of Fraı̈ssé) if any
isomorphism between finite substructures extends to an automorphism. By the
Ryll-NardzewskiTheorem, any structure that is homogeneous over a finite relational
language is �-categorical. For various such homogeneous structures, the reducts
have been completely classified. See for example [4, 6, 8, 25, 31, 32]. Thomas has
conjectured that ifM is homogeneous over a finite relational language then it has
just finitely many reducts. Such questions have received additional motivation in
recent work of the first author and collaborators on constraint satisfaction problems
with infinite domains, where one aims to understand reducts up to primitive positive
interdefinability; see, e.g., [6].
It appears that structures which are not �-categorical typically have infinitely
many reducts. Junker and Ziegler [15] asked whether this is always the case. In this
paper, we give a negative answer to this question (see Theorem 1.1), and construct
a structure which is not �-categorical and has no proper nontrivial reducts. The
example is a set equipped with a D-relation in the sense of [2]. We also investigate
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1088 MANUEL BODIRSKY ANDDUGALDMACPHERSON

the question for strongly minimal sets which are not �-categorical—see Section 5
and in particular Theorem 5.6.
Without the assumption of �-categoricity, the group-theoretic definition of
‘reduct’ above does not in general coincide with the model-theoretic definition.
We shall say that M′ is a definable reduct of M if M and M′ have the same
domain M , and every subset of Mk (for any k) which is ∅-definable in M′ is
∅-definable in M; two definable reducts are identified if they are inter-definable
over ∅. A group-reduct ofM is a structureM′ with domainM such that Aut(M′)
is a closed subgroup of Sym(M ) containing Aut(M), two group-reducts identified
if their automorphism groups are equal. A definable reductM′ ofM is improper if
M′ =M, and is trivial ifM′ is the pure setM (as above, identifying inter-definable
reducts); and we talk similarly of improper and trivial group-reducts. Clearly, any
definable reduct is also a group-reduct, though a definable proper reduct may not be
a proper group-reduct. Also, if two definable reducts are different as group-reducts,
then they are also distinct definable reducts.
We remark that it is also possible to mix the two notions, and consider group-
reducts up to interdefinability. Considering reducts in this sense, the answer
to the Junker-Ziegler question is positive—see Proposition 5.3 below. See also
Proposition 5.1 relating the two notions of reduct in the saturated case.
At the start of Section 2 we introduce a specific countable structureM, which
can loosely be described as a D-relation in the sense of [2] which is discrete and
3-branching. It is noted in Lemma 2.3(iii) thatM is not �-categorical. Our main
theorem is the following, and gives a negative answer to Question 2 of [15].

Theorem 1.1. (1) The structureM has no proper nontrivial group-reducts.
(2) The structureM has no proper nontrivial definable reducts.

The proof of Theorem 1.1(1) is a straightforward application of classification
results for primitive Jordan permutation groups from [1]; see Definition 2.6 below
for the notion of Jordan group. The proof of (2) is a more intricate bare-hands
argument.
When looking for structures with no (or finitely many) reducts in either sense, it
is natural to investigate classes of structures which are closed under taking definable
reducts and for which there is a good structure theory, or classes of closed permu-
tation groups which are closed under taking closed supergroups in the symmetric
group and have a good structure theory. The latter consideration led us toM, since
there is a structure theory for closed Jordan permutation groups. An obvious class
of structures which is closed under taking definable reducts is the class of strongly
minimal sets; that is, structuresM1 such that, for anyM2 ≡ M1, any definable
subset of the domain ofM2 is finite or cofinite. We investigate this in Section 5, and
give in Theorem 5.6 an infinite family of examples of strongly minimal structures
which are not �-categorical but have no proper nontrivial definable reducts. We
have not been able to show that these examples have no proper nontrivial group-
reducts—but note the recent Theorem 5.9 of Kaplan and Simon, which shows that
countable affine spaces over Q of dimension at least 2, which are strongly minimal,
have no proper nontrivial group-reducts.

Group-theoretic interpretation of Theorem 1.1(1). If M = {an : n ∈ �} is
countably infinite, then there is a natural complete metric d on the symmetric group
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REDUCTS OF STRUCTURES ANDMAXIMAL-CLOSED PERMUTATIONGROUPS 1089

Sym(M ): if g, h ∈ Sym(M ) are distinct, put d (g, h) = 1
n+1 if n is least such that

agn �= ahn or ag
−1
n �= ah−1n , where following the conventions of this paper, a

g
n denotes

the image of an under g. The group Sym(M ) is a topological group with respect to
the resulting topology, which is independent of the enumeration ofM . A subgroup
G of Sym(M ) is said to be closed if it is closed with respect to this topology. It is an
easy exercise—see e.g., [9, Section 2.4]—to check thatG ≤ Sym(M ) is closed if and
only if there is a first order structureM with domainM such that G = Aut(M).
We shall say that a closed proper subgroup G of Sym(M ) is maximal-closed if,
whenever G ≤ H ≤ Sym(M ) andH is closed, we haveH = G or H = Sym(M).
Recall that a permutation group G on a countably infinite set M is oligo-
morphic if G has finitely many orbits on Mn for all n > 0, or equivalently
(by the Ryll-Nardzewski Theorem) if the topological closure of G in Sym(M )
is the automorphism group of an �-categorical structure with domain M . Thus
Theorem 1.1(1) yields the following.

Corollary 1.2. With M as in Theorem 1.1, Aut(M) is a maximal-closed
subgroup of Sym(M ) which is not oligomorphic.

Maximal-closed subgroups previously known to us, such as those arising from
the results cited earlier in [8, 31, 32], are oligomorphic. (We recently became aware
of the results of [7]. This yields other very different maximal-closed nonoligomor-
phic groups of the form PGL(n,Q) where 3 ≤ n ≤ ℵ0, but we do not know if
it yields other countable non-�-categorical structures without proper nontrivial
definable reducts.) Possibilities for further nonoligomorphic examples are discussed
below in Section 5. We remark that, prior to the classification of finite simple
groups (CFSG), proving that certain finite subgroups of the symmetric group
Sn are maximal was often technically involved. In the infinite case, investigating
maximal-closed subgroups is the natural analogue, andwe haveno version of CFSG
available.

Further background.We briefly describe the historically-first reduct classification
for �-categorical structures, a context where the two notions of reduct coincide.
Let P be the homogeneous structure (Q, <). By Cameron [8], P has three proper
nontrivial reducts, namely (Q, B), (Q, K), and (Q, S). Here B is the ternary linear
betweenness relation on Q, defined by putting B(x;y, z) whenever y < x < z or
z < x < y; the relation K is the natural ternary circular ordering on Q, where
K(x, y, z) holds if and only if x < y < z or y < z < x or z < x < y; and S
is the induced quaternary separation relation on Q, where, for x < y < z < w
and {s, t, u, v} = {x, y, z, w}, we have S(s, t; u, v) if and only if {s, t} = {x, z} or
{s, t} = {y,w}. In particular, the �-categorical structure (Q, S), which is itself a
reduct of (Q, B) and (Q, K), has no proper nontrivial reducts; thus Aut(Q, S) is
maximal-closed in Sym(Q).
Given the example in the last paragraph, a natural first attempt for a non-�-
categorical structure with no proper nontrivial reduct (of either kind) would be
(Z, S) where S is the separation relation induced as above from the natural linear
order onZ.However, this has infinitelymany distinct definable reducts. For example,
it is easily seen that the natural graph on Z, with u, v adjacent if and only if
|u − v| = 1, is ∅-definable in (Z, S), and has for every n a reduct Γn , where Γn is a
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1090 MANUEL BODIRSKY ANDDUGALDMACPHERSON

graph on Z with u, v adjacent if and only if |u − v| = 2n; these also yield infinitely
many distinct group-reducts. See also Remark 5.5(3).
We mention also the extensive model-theoretic literature on reducts of fields,
typically on structures which are definable reducts of a field F in which the additive
structure of the field (as a module over itself) is ∅-definable. See for example [21]
and [27], which are related to Zilber Trichotomy phenomena.

Organisation of the paper. In Section 2 we introduce the structureM, give further
background on D-relations, and prove some elementary facts aboutM. We also
give some definitions and basic facts concerning Jordan groups. Parts (1) and (2) of
Theorem 1.1 are proved in Sections 3 and 4, respectively. Section 5 contains further
discussion, on connections between the two notions of reduct, and on reducts of
strongly minimal sets, and concludes with some open questions. We believe that
the questions considered in this paper have potential interest from both a model-
theoretic and a permutation group-theoretic viewpoint, and have aimed to give
sufficient background for readers from either perspective. For space reasons the
paper does not contain many diagrams, but the arguments in Sections 2–5 are
highly pictorial, and we urge the reader to draw diagrams.

§2. Treelike structures and Jordan permutation groups. We first describe the
exampleM of Theorem 1.1. Following [2], aD-relation on a setM is a quaternary
relation D(x, y; z,w) on M which satisfies the following axioms. The semicolon
indicates a symmetry on the arguments: in the specific structure M which we
build, if a, b, c, d ∈ M are distinct then Aut(M) induces the dihedral group D4 on
{a, b, c, d}.
(D1) ∀x∀y∀z∀w (

D(x, y; z,w)→ (D(y, x; z,w)∧D(x, y;w, z)∧D(z, w;x, y))).
(D2) ∀x∀y∀z∀w (

D(x, y; z,w)→ ¬D(x, z;y,w)).
(D3) ∀x∀y∀z∀w∀u (D(x, y; z,w)→ D(u, y; z,w) ∨D(x, y; z, u)).
(D4) ∀x∀y∀z ((x �= z ∧ y �= z)→ D(x, y; z, z)).
(D5) ∀x∀y∀z (x, y, z distinct→ ∃w (w �= z ∧D(x, y; z,w))).

Example 2.1. (1) First description of example. Let M be the set of sequences
of zeros and ones, indexed by Z, which have finite support, that is, finitely many
ones. Let x, y, z ∈ M , with x = (xi)i∈Z, y = (yi )i∈Z and z = (zi )i∈Z. Write
C (x;y, z) if there is i ∈ Z such that xi �= yi and such that for all j ≤ i we have
yj = zj . Then (M,C ) is aC -relation in the sense of [2]. Now defineD onM , putting
D(x, y; z,w) if and only if one of the following holds: (a) C (x; z,w) ∧ C (y; z,w),
(b) C (z;x, y) ∧ C (w;x, y).
(2) Second description of example. Let (T,R) be the unique (graph-theoretic) tree
of valency three, with vertex set T and adjacency relation R. LetM+ be the set of
ends of T , that is, equivalence classes of one-way infinite paths (also called rays) of
T , where two such paths are equivalent if they have infinitely many common vertices.
Letx, y, z, w ∈M+.DefineD(x, y; z,w) to hold if oneof (a)x = y∧x �= z∧x �= w;
(b) z = w ∧ x �= z ∧ y �= z; (c) x, y, z, w are distinct and there are one-way paths
x̂ ∈ x, ŷ ∈ y, ẑ ∈ z, ŵ ∈ w such that x̂ ∪ ŷ and ẑ ∪ ŵ are disjoint lines, that is,
disjoint two-way infinite paths. Finally, letM be a countable subset ofM+ which is
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REDUCTS OF STRUCTURES ANDMAXIMAL-CLOSED PERMUTATIONGROUPS 1091

dense, in the sense that for any vertex a ∈ T there are x, y, z ∈ M and rays x̂ ∈ x,
ŷ ∈ y, ẑ ∈ z such that x̂ ∪ ŷ, x̂ ∪ ẑ and ŷ ∪ ẑ are all lines through a.
For each of these descriptions, axioms (D1)–(D5) are easily verified—see [2,
Theorem 23.5] for description (1). It can be checked that the second description
determines a unique structure up to isomorphism, and that the structures (M,D)
described in these two ways are isomorphic—see Lemma 2.5 below.We shall gener-
ally use the second description, as the symmetry ismore visible.Until Section 5 of the
paper,M denotes the structure (M,D). This structure is clearly not �-categorical
(see Lemma 2.3(iii)), but Aut(M) is 3-transitive onM , by Lemma 2.5(iii).
We now discuss the structureM rather more fully, and introduce some notation.
Consider the tree (T,R) from the second description ofM, letM+ be the set of all
ends of T , and M be a countable dense subset of M+, andM = (M,D); at this
stage, we do not assume that this determinesM up to isomorphism—see Lemma 2.5
below. We refer to elements of T as vertices (of T , or of M ). Given vertices u, v
of T (or of any graph in the given context) we write d (u, v) for the graph distance
from u to v. For each end x ∈ M and a ∈ T there is a unique ray xa ∈ x starting
at a. We shall write S(a, xa), or just S(a, x), for the ‘segment at a towards x’, that
is, the set of vertices on the tree (T,R) lying on the ray xa (including a). There
is an equivalence relation Ea onM , where Eaxy holds if the rays xa and ya start
with the same edge from a to a neighbour of a. The Ea -classes are called cones at
a. Observe that as (T,R) is trivalent, there are three cones at a, that the union of
two cones at a is a cone at a neighbour of a, and hence that the complement inM
of a cone is a cone. For example, in Figure 1, the union of the two leftmost cones
at a is a cone at b. If U is a cone at a, then a is determined by U and we write
a = vert(U ).
We may view a cone as a subset of M or of M+. Slightly abusing notation, we
sometimes view a coneU at a as a subset ofT , namely as the union

⋃
x∈U (S(a, x)\

{a}). In particular, we may write v ∈ U where v lies in T rather thanM .

Figure 1. Illustration forM,M+, and cones U at a.
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1092 MANUEL BODIRSKY ANDDUGALDMACPHERSON

We note the following easy facts.

(i) Any distinct x, y, z ∈ M+ determine a unique a ∈ T such that x, y, z are
pairwise Ea-inequivalent; we write a = vert(x, y, z).

(ii) For any distinct x, y ∈ M+, there exist x̂ ∈ x, ŷ ∈ y such that x̂ and ŷ are
disjoint and x̂∪ ŷ is a line, that is, a connected 2-way-infinite path in the tree
viewed as a set of vertices. This line is uniquely determined by x, y (though
x̂, ŷ are not), and we denote it by l(x, y).

(iii) If a ∈ T and x, y ∈M+ are distinct then x Ea y if and only if a �∈ l(x, y).
(iv) If x, y, z ∈ M+ are pairwise Ea -inequivalent and w �= z then w Ea z if and

only if l(x, y) ∩ l(w, z) = ∅.
(v) If U1, U2 are subcones of a cone V then they are either disjoint or one
contains the other.

The set of cones forms a basis of clopen sets for a totally disconnected topology
onM+ (and also onM ). We say that a subset X ofM+ is dense inM+ if it is dense
in this topology, that is, meets every cone. This coincides with the notion of density
in Example 2.1(2).
In [2, Section 24] cones are called sectors. These are defined more generally in [2]
for arbitraryD-relations—see the discussion at the end of this section. In the proof
of Theorem 1.1(1) we briefly refer to cones (i.e., sectors) for an arbitraryD-relation,
not necessarily arising from (T,R).
In the proof of Theorem 1.1(2), we shall show that in any nontrivial reduct ofM
the family of cones (see Section 2) is uniformly definable in the sense ofDefinition 2.2
below, and hence thatM is definable, so the reduct is not proper.

Definition 2.2. If x̄ = (x1, . . . , xr) is a tuple, then we denote by |x̄| the length r
of x̄. IfM is a structure, and r ∈ N, we shall say that a family F of subsets ofMr
is uniformly definable if there is s ∈ N and formulas φ(x̄, ȳ) and �(ȳ), with |x̄| = r
and |ȳ| = s , such that

F := {φ(Mr, ā) : ā ∈Ms andM |= �(ā)}.
Lemma 2.3. (i) The set of all cones is uniformly definable inM.
(ii) The tree (T,R) is interpretable inM.
(iii) The structureM is not �-categorical.

Proof. (i) Ifxa, ya , za ∈M lie in distinct cones ata, then the cone ata containing
za is the set {w ∈ M :M |= D(xa, ya ; za , w)}. Thus, if φ(w, xyz) is the formula
D(x, y; z,w) and �(xyz) is the formula x �= y ∧ x �= z ∧ y �= z, then the pair
of formulas φ,� is a uniform definition of the family of cones, in the sense of
Definition 2.2.
(ii) Since the set of cones is uniformly definable in M, we may define the set
S of all 3-sets {U1, U2, U3} of cones such that the Ui are pairwise disjoint and
U1 ∪ U2 ∪ U3 = M . The set S is then identified with T , identifying each vertex a
with the set of three cones at a. The vertex {U1, U2, U3} is adjacent to the vertex
{U ′
1, U

′
2, U

′
3} if there is U ∈ {U1, U2, U3} and U ′ ∈ {U ′

1, U
′
2, U

′
3} such that U ′ is

the disjoint union of the two cones in {U1, U2, U3} \U , andU is the disjoint union
of the two cones in {U ′

1, U
′
2, U

′
3} \U ′. See also Sections 24–26 of [2].
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REDUCTS OF STRUCTURES ANDMAXIMAL-CLOSED PERMUTATIONGROUPS 1093

We may also view T directly as a quotient ofM 3. LetY be the set of all 3-element
subsets ofM . For {x, y, z}, {x′, y′, z′} ∈ Y , write E({x, y, z}, {x′, y′, z′}) if there
is {U1, U2, U3} ∈ S such that each Ui contains exactly one of x, y, z and exactly
one of x′, y′, z′. Since for {x, y, z} ∈ Y there is a unique {U1, U2, U3} ∈ S such
that each Ui contains exactly one of x, y, z, E is an equivalence relation on Y .
Informally, E({x, y, z}, {x′, y′, z′}) says that the ends x, y, z and x′, y′, z′ ‘meet’ at
the same vertex.Wemay then identifyT withY/E.Wemay define the graph relation
R on T as follows: for a, b ∈ Y/E we define R(a, b) to hold if a �= b and there are
distinct x, y, u, v ∈M with D(x, y; u, v) such that a = vert(x, y, u) = vert(x, y, v),
b = vert(x, u, v) = vert(y, u, v), and there is no c ∈ Y/E \ {a, b} and t ∈ M such
that c = vert(t, w, z) for all w ∈ {u, v} and z ∈ {x, y}. See Figure 2.
(iii) This follows, sinceM interprets (T,R) which has pairs of vertices at arbitrary
distance so is clearly not �-categorical. �
Let A ⊂ M be finite. We say that a vertex v ∈ T is an A-centre if there are
distinct a, b, c ∈ A such that v = {a, b, c}/E = vert(a, b, c). We denote by Tr(A)
the smallest subtree of (T,R) containing all A-centres (so if |A| ≤ 2 then T (A) is
empty). An A-vertex is a vertex of Tr(A); that is, it is an A-centre or lies on a path
in (T,R) between two A-centres. If ā = (a1, . . . , an), then an ā-centre or ā-vertex
is just an {a1, . . . , an}-centre or {a1, . . . , an}-vertex respectively. Any A-vertex is
definable over A inM (as an element ofMeq, formally).

Remark 2.4. We shall freely use without explicit justification observations such
as the following: given finite A ⊂ M and x ∈ M \ A, there is a cone containing
x and disjoint from A; such a cone can be chosen properly inside any cone which
contains x and is disjoint from A, or, if |A| ≥ 3, can be chosen to be at an A-vertex
or at a vertex of S(u, a) for some A-centre u and a ∈ A.
Lemma 2.5. LetM1 andM2 be countable dense subsets ofM+ in Example 2.1(2).
Then

(i) For i = 1, 2 let Ai be finite nonempty subsets of M+. Let f : (A1, D) →
(A2, D) be an isomorphism that induces an isomorphism fT : T (A1) →
T (A2). Suppose a1 ∈ M1 \ A1. Then there is a2 ∈ M2 \ A2 such that f
extends to an isomorphism (A1 ∪ {a1}, D)→ (A2 ∪ {a2}, D) that induces an
isomorphism between T (A1 ∪ {a1}) and T (A2 ∪ {a2}).

Figure 2. Illustration for the interpretation of (T,R) inM.
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1094 MANUEL BODIRSKY ANDDUGALDMACPHERSON

(ii) M1 := (M1, D) andM2 := (M2, D) are isomorphic.
(iii) IfM1 is as in (ii), then Aut(M1) is 3-transitive onM1.
(iv) The structures (M,D) described in Example 2.1(1) and (2) are isomorphic.
(v) The group Aut(M) is transitive on the set of cones ofM.
Proof. (i) Assume first that |A1| > 2. Let A′

1 := A1 ∪ {a1}. Note that there is
exactly one A′

1-centre v1 = vert(a1, b, c) (with b, c ∈ A1) that is not an A1-centre,
and the vertices of T (A′

1) consist of those of T (A1) together with (possibly) those
lying between v1 and the nearest A1-centre. Easily there is a subtree T ′ of T2 such
that fT extends to an isomorphism f′T : T (A′

1)→ T ′. Let v2 := f′T (v1). AsM2

is dense, there is a2 ∈M2 such that v2 = vert(a2, f(b), f(c)). Then extend f to f′

by putting f′(a1) = a2. It is easily checked that f′ preserves D.
If |A1| ≤ 2 then T (A1) is empty. There are now no constraints over the choice of
a2, though if A1 = {b1, c1} and A2 = {b2, c2} then the resulting map A1 ∪ {a1} →
A2 ∪ {a2} will induce a map taking vert(a1, b1, c1) to vert(a2, b2, c2).
(ii), (iii) These are both immediate from (i), by an easy back-and-forth argument.
(iv) Let M be the set of finite support sequences of zeros and ones indexed
by Z, with D defined as in Example 2.1(1). Define T to be the collection of
all subsequences of elements of M indexed by a set of the form (−∞, n) for
some n ∈ Z, and if �, � ∈ T , define R(�, �) to hold if there is n such that
� is indexed by (−∞, n), � by (−∞, n + 1), and � extends � (or vice versa).
It is easily seen that (T,R) is a regular tree of valency 3, and that M may
be identified with a dense set of ends of T . An element a ∈ M contains the
ray consisting of the bounded restrictions of a (subsequences indexed by some
(−∞, n)), and consists of all rays which agree with this ray on some final segment.
Now apply (ii).
(v) IfU1, U2 are cones at vertices a1, a2 respectively, pick xi , yi , zi ∈M such that
ai = vert(xi , yi , zi ) and zi ∈ Ui (for each i = 1, 2). By (iii) there is g ∈ Aut(M)
with (x1, y1, z1)g = (x2, y2, z2). We then have U

g
1 = U2. �

Consequences of Lemma 2.5(i) may be used without explicit mention. For exam-
ple, suppose that u, v, x, y ∈M are distinct, as are u′, v′, x′, y′, withD(u, v;x, y) ∧
D(u′, v′;x′, y′). Suppose also that a := vert(u, v, x), a′ := vert(u′, v′, x′), b :=
vert(u, x, y), b′ := vert(u′, x′, y′), and that in the graph T there is an ab-path
a = a0, a1, . . . , an = b and an a′b′-path a′ = a′0, a

′
1, . . . , a

′
n = b

′. Suppose ai =
vert(u,wi , x) and a′i = vert(u

′, w ′
i , x

′), wherewi ,w ′
i ∈M , for i = 1, . . . , n−1. Then

there is g ∈ Aut(M) with (u, v,w1, . . . , wn−1, x, y)g = (u′, v′, w ′
1, . . . , w

′
n−1, x

′, y′).
We shall heavily use properties of Aut(M), in particular, the fact that it is a
Jordan permutation group. If G is a permutation group on X (so denoted (G,X )),
we say that G is k-transitive on X if, for any distinct x1, . . . , xk ∈ X and distinct
y1, . . . , yk ∈ X there is g ∈ G with xgi = yi for i = 1, . . . , k; we say G is highly
transitive onX ifG is k-transitive onX for each positive integer k. The permutation
group (G,X ) is primitive if there is no proper nontrivial G-invariant equivalence
relation onX . IfA ⊂ X , we writeG(A) for the pointwise stabiliser inG ofA, namely
the group {g ∈ G : g|A = idA}. We put G{A} = {g ∈ G : Ag = A}, the setwise
stabiliser of A in G .

Definition 2.6. Let G be a transitive permutation group on a set X . A subset A
of X is a Jordan set if |A| > 1 and G(X\A) is transitive on A. We say A is a proper
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REDUCTS OF STRUCTURES ANDMAXIMAL-CLOSED PERMUTATIONGROUPS 1095

Jordan set if A �= X , and, if |X \ A| = n ∈ N, then (G,X ) is not (n + 1)-transitive.
A Jordan group is a transitive permutation group with a proper Jordan set.

Lemma 2.7. (i) Every cone ofM is a Jordan set for G := Aut(M).
(ii) If U is a cone and x, y ∈ U are distinct then there is g ∈ G(M\U ) with
(x, y)g = (y, x).

(iii) Any cone at an A-vertex is A-definable inM.
(iv) If v is an A-vertex and U is a cone at v not containing any element of A, then

U is an orbit of Aut(M)(A).
(v) If v is an A-vertex, a ∈ A, and u is a vertex of S(v, a), then u is A-definable
(as an element ofM eq), as is each of the three cones at u.

(vi) If A ⊂ M is finite with |A| ≥ 3, then the orbits of Aut(M)(A) which are
disjoint fromA are of two kinds: (a) any cone which contains no member of A
and is at an A-vertex w which is not an A-centre; and (b), for any A-centre u
and a ∈ A, and any v �= u on S(u, a) with v not an A-centre, the unique cone
at v which is disjoint from A.

(vii) For any finiteA ⊂M ,Aut(M)(A) has no finite orbits onM \A. In particular,
for anyA ⊂M , the model-theoretic algebraic closure ofA (the union, denoted
acl(A), of the finite A-definable subsets ofM ) is exactly A. This property is
inherited by reducts ofM.

(viii) The structureM is NIP, that is, its theory does not have the independence
property (see p. 69 of [29] for a definition).

Proof. (i) The main point to observe here is that (by Lemma 2.5(iv)) if U is a
cone, we may identify it with the set of sequences of zeros and ones indexed by N of
finite support, carrying the ternary relationC , where C (x;y, z) holds if and only if
either y = z �= x, or the first index where x and y differ is before the first where y
and z differ; see the first description in Example 2.1 above. Any permutation of U
which preserves thisC -relation extends to an element ofG(M\U ). We may viewU as
an elementary abelian 2-group under pointwise addition, that is, an abelian group
of exponent 2. The action of U on itself by addition preserves the C -relation. Thus
U acts transitively by addition as a group of automorphisms of (M,C ), so G(M\U )
is transitive on U .
(ii) Viewing U as a group as in the proof of (i), let g act on U as addition by
x + y.
(iii) Suppose thatU is the cone at theA-vertex u. Then there are distinct a, b ∈ A
such that u lies on the line l(a, b). As noted before Remark 2.4, the vertex u is A-
definable, and clearly the setW := {x : u = vert(a, b, x)} is also A-definable. The
three cones at u areW , the cone at u containing a which is defined asD(a,M ; b, x)
for any x ∈ W , and the cone at u containing b, defined by D(b,M, a, x) for any
x ∈W . These definitions are over A.
(iv) This is immediate, as there are just three cones at v, each a Jordan set.
(v) This follows by induction on d (u, v).
(vi) This is straightforward – see Figure 3. Note that in type (b), by (v) such a
vertex v is A-definable, and by (i) such a cone is contained in an Aut(M)(A)-orbit
so is an orbit, as the other cones at v meet A.
(vii) This is immediate from (vi).
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1096 MANUEL BODIRSKY ANDDUGALDMACPHERSON

Figure 3. Illustration for the two types of orbits of Aut(M)(A)
which are disjoint from A, for A = {a, b, c, d}.

(viii) One way to see this is to observe that a model of Th(M) is interpretable
in the field Q2, since it is well-known that the p-adic fields Qp are NIP. Indeed, an
elementarily equivalent structureM′ lives on the projective line PG1(Q2), with the
D-relation defined by whether or not the cross-ratio lies in the maximal ideal (see
Section 7 of [18], or [2, 30.4]). This observation is related to Proposition 5.7 below,
and the remarks after it. Alternatively, as noted by the referee, observe that the
setM in Example 2.1(1) may be viewed as the set of leaves of a tree with internal
vertices the setM0 of all finite support functions from (−∞, n) (for some n ∈ Z) to
{0, 1}, that such a ‘coloured’ tree has NIP theory e.g., by [26], and that (M,D) is
interpretable in this tree. �

A structure theory (or classification, in a loose sense) for primitive Jordan
groups is given in [1], but in this paper we just require the following consequence
(Theorem 2.8 below), for which we first give some definitions.
A separation relation is the natural quaternary relation of separation on a circu-
larly ordered set. An example is the relationS defined in the introduction. Following
Section 3 of [2], a separation relation may be viewed as a relation satisfying the fol-
lowing universal axioms (though here, unlike the relation S in the introduction, we
do not require all arguments to be distinct).

(S1) S(x, y; z,w) → (S(y, x; z,w) ∧ S(z,w;x, y)).
(S2) (S(x, y; z,w) ∧ S(x, z;y,w)) ↔ (y = z ∨ x = w).
(S3) S(x, y; z,w) → (S(x, y; z, t) ∨ S(x, y;w, t)).
(S4) S(x, y; z,w) ∨ S(x, z;w, y) ∨ S(x,w;y, z).

A Steiner system on X is a Steiner k-system for some integer k ≥ 2, that is, a
family of subsets of X , called blocks, all of the same size (possibly infinite), such
that any k elements of X lie on a unique block. It is nontrivial if any block has
cardinality greater than k and there is more than one block.
Next, following [1, Definition 2.1.10], we say thatH < Sym(X ) preserves a limit
of Steiner systems on X if for some n > 2, (H,X ) is n-transitive but not (n + 1)-
transitive, and there is a totally ordered index set (J,≤) with no greatest element,
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and an increasing chain (Xj : j ∈ J ) of subsets of X such that:
(i)

⋃
(Xj : j ∈ J ) = X ;

(ii) for each j ∈ J , H{Xj} is (n − 1)-transitive on Xj and preserves a nontrivial
Steiner (n − 1)-system on Xj ;

(iii) if i < j then Xi is a subset of a block of the H{Xj}-invariant Steiner (n −
1)-system on Xj ;

(iv) for all h ∈ H there is i0 ∈ J , dependent on h, such that for every i > i0 there
is j ∈ J such that Xhi = Xj and the image under h of every block of the
Steiner system on Xi is a block of the Steiner system on Xj ;

(v) for every j ∈ J , the set X \ Xj is a Jordan set for (H,X ).
Note that in [1, Definition 2.1.10] ‘n is an integer greater than 3’ should read ‘n is
an integer with n ≥ 3’.
Our key tool in Section 3 is the following theorem, which follows from Theorem
1.0.2 of [1].

Theorem 2.8 ([1]). Let G be a Jordan permutation group on an infinite set X ,
and suppose that G is 3-transitive but not highly transitive. Then G preserves on X a
separation relation, a D-relation, a Steiner system, or a limit of Steiner systems.
Finally, we say a little more about general D-relations, as defined in the intro-
duction. For a formal presentation, see Sections 22–26 of [2]. Intuitively, there is
a notion of ‘general betweenness relation’ (see [2, Sections 15–21]) which can be
defined on a (possibly dense) semilinear order with appropriate properties – it is
analogous to the well-known notion of Λ-tree (see [11]) but without any metric.
A D-relation is the natural quaternary relation defined on a dense set of ‘ends’, or
‘directions’ (equivalence classes of 1-way paths) of the general betweenness relation.
Following [2, Section 24], if D is aD-relation on a set X , then a structural partition
of (X,D) with sectors {Xi : i ∈ I } is a partition of X into nonempty sets Xi (with
|I | ≥ 3) such that
(i) for all i ∈ I and x, y ∈ Xi and z,w �∈ Xi , we haveD(x, y; z,w),
(ii) if x, y, z, w all lie in different setsXi , thenD does not hold of any permutation
of x, y, z, w.

Extending our usage above, we use the word ‘cone’ in place of ‘sector’.

Lemma 2.9. If D and D′ are D-relations on X with the same set of cones, then
D = D′.
Proof. This is clear from [2, Sections 23–26]. In fact, for distinct x, y, z, w ∈ X ,
D(x, y; z,w) holds if and only if some cone contains x, y and omits z,w: here,
the direction ⇐ follows from (i) above, and for ⇒, by [2, Theorem 24.2] there is
a structural partition {Xi : i ∈ I } with y, z, w in distinct cones, and by (4) at the
start of [2, Section 24], this andD(x, y; z,w) implies that someXi contains x, y and
omits z,w. �
A family F of subsets of X is called syzygetic [2, pp. 117–118, Section 34] if for
any U,V ∈ F , if U \ V , V \ U and U ∩ V are all nonempty then U ∪ V = X . If
H ≤ Sym(X ) then U ⊂ X is syzygetic (for H ) if {Uh : h ∈ H} is syzygetic. By
[2, Corollary 25.2(2)], the family of cones of a D-relation is syzygetic, and hence
any cone of a D-relation (X,D) is syzygetic for Aut(X,D). Syzygetic sets provide
a tool for recognising D-relations. For example, by [2, Theorem 34.7], if G is a
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1098 MANUEL BODIRSKY ANDDUGALDMACPHERSON

2-transitive permutation group on an infinite set X and U ⊂ X is syzygetic for G ,
then G preserves on X a D-relation or C -relation or general betweenness relation
(as defined in [2]).

§3. Proof of Theorem 1.1—group-reducts. We here prove Theorem 1.1(1), using
the classification of 3-transitive Jordan groups (Theorem 2.8). Put G := Aut(M).
We suppose that H is a closed proper subgroup of Sym(M ) containing G , and
must show that H = G . First observe that H acts 3-transitively on M , and that
each cone ofM is a proper Jordan set forH . Thus, by Theorem 2.8,H preserves a
separation relation, a D-relation, a Steiner k-system for some k ≥ 3, or a limit of
Steiner systems. We consider these in turn, showing that the only possibility is that
H preserves the original D-relation ofM, so H = G .
The group G does not preserve any separation relation onM , and hence neither
canH . For let U be a cone ofM containing distinct elements u, v, and let x, y, z be
distinct elements ofM \ U . By Lemma 2.7(ii) there is g ∈ G fixing each of x, y, z
and with (u, v)g = (v, u). However, it is easily checked that no automorphism of a
separation relation can fix three points and interchange two others.
The group H cannot preserve a nontrivial Steiner k-system: for if S is such
a Steiner system with point set M , let a1, . . . , ak be distinct points, let l be
the block through a1, . . . , ak , let bk be a point not on l , and let m be the
block through a1, . . . , ak−1, bk . Since blocks have more than k points, there is
ak+1 �∈ {a1, . . . , ak} on l , and bk+1 �∈ {a1, . . . , ak−1, bk} on m. Now l is the
unique block containing a1, . . . , ak−2, ak, ak+1 and m is the unique block contain-
ing a1, . . . , ak−2, bk, bk+1. These two blocks have common points a1, . . . , ak−1. Put
A := {a1, . . . , ak−2, ak, ak+1, bk, bk+1}. Thus, ak−1 lies in a finite orbit (in fact of
size one) of H(A). This contradicts Lemma 2.7(vii), asH ⊇ G and ak−1 �∈ A.
Next, suppose thatH preserves a limit of Steiner systems onM , with the notation
M =

⋃
(Xj : j ∈ J ) used in the last section. Though it is not explicit in [1], we may

suppose (after replacing J by a subset of the form {j ∈ J : j > j0} if necessary)
that all theXi are infinite. Indeed, otherwiseM is a union of a sequence of finite sets
whose complements are cofinite Jordan sets, in which case, by the main theorem
in Section 4 of [24], G is a group of automorphisms of a nontrivial Steiner system
onM .
No set Xj can contain a cone U . For otherwise, pick a ∈ U , and a finite set
A ⊂ Xj , such that a �∈ A and every automorphism of the Steiner system on Xj
which fixes A pointwise fixes a (this is done as in the Steiner system argument in
the last paragraph). Replacing U by a subcone if necessary (cf. Remark 2.4) we
may suppose that U ∩ A = ∅. Now G(M\U ) has an element h such that ah �= a and
h ∈ H((M\Xj )∪A) ≤ H{Xj},(A), which is a contradiction, since the Steiner system on
Xj is H{Xj}-invariant. So for all j ∈ J , the setM \ Xj is dense inM , in the sense
given in Section 1.
SinceM is countable and (Xj : j ∈ J ) is an increasing sequence of sets ordered
by inclusion, J has a countable cofinal subset I = {in : n ∈ �}. We claim that any
infinite subset A of M meets infinitely many disjoint cones: indeed, the tree T0 of
A-vertices is infinite, so (e.g., byKönig’s Lemma) contains an infinite path including
infinitely many A-centres, and we may choose disjoint cones, one at each A-centre
on this path, so that each meets A. In particular, Xi0 meets infinitely many disjoint
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cones {Ui : i ∈ �}. In particular, for each n ∈ � there is xn ∈ Un ∩Xi0 . By the last
paragraph there is yn ∈ Un \ Xin for each n ∈ �. Since cones are Jordan sets and
we may piece together actions on disjoint Jordan sets to obtain an automorphism,
there is g ∈ G such that xgn = yn for all n. Thus, for each n, Xgi0 meets M \ Xin ,
so for each j ∈ J with j ≥ i0 and each k ∈ J we have Xgj ∩ (M \ Xk) �= ∅. This
contradicts clause (iv) in the definition of a limit of Steiner systems.
Finally, suppose that H preserves a D-relation D′ on M . We must show that
D′ = D. We may supposeH = Aut(M,D′).
By Lemma 2.9, any D-relation is determined by its cones. Hence it suffices to
show thatM = (M,D) and (M,D′) have the same cones. To see that every cone
of (M,D′) is a cone of (M,D), it suffices to show that if V ⊂ M is syzygetic with
respect to G (see Section 2), and is infinite and coinfinite, then V is a cone ofM.
Choose distinct x, y ∈ V , and z ∈ M \ V . Let a := vert(x, y, z) (with respect
to (M,D)). Let Ux,Uy,Uz be the cones ofM at a containing x, y, z respectively.
Suppose firstUx contains an element w �∈ V . By Lemma 2.7(ii), using thatM \Ux
is a cone ofM, there is g ∈ G(Ux) such that yg = z and zg = y. Then x ∈ V ∩V g ,
w �∈ (V ∪V g), y ∈ V \V g and z ∈ V g \V , contradicting that V is syzygetic with
respect to G . Thus, Ux ⊂ V , and similarly Uy ⊂ V . Now ifM \V is not a cone of
(M,D), there is w �= z such that w �∈ V , and such that if U is the smallest cone of
(M,D) containing w, z, then U also contains a point t of V . We may suppose that
D(x,w; z, t) holds (otherwise D(x, z;w, t) holds, and the same argument applies
with z and w reversed). Now let U ′ be the smallest cone containing z and t. There
is h ∈ G(U ′) such that xh = w and wh = x, and again, this contradicts that V is
syzygetic with respect toG . Thus, the conclusion is thatM \V is a cone of (M,D),
and hence also V is a cone of (M,D).
Finally, as Aut(M) is transitive on the set of cones of D (by Lemma 2.5(v)) and
preservesD′, and some (M,D)-cone is an (M,D′)-cone, it follows that every (M,D)-
cone is an (M,D′)-cone. ThusG = H , and the proof of Theorem 1.1(1) is complete.

§4. Proof of Theorem 1.1-definable reducts. Our proof below depends on the
following analysis of definable subsets ofM inM.
Lemma 4.1. Let A be a finite subset of M , and let X be an infinite co-infinite
A-definable subset ofM in the structureM. Then there is anA-definable subsetS ofM
such thatS�X ⊆ A andS is a union of finitely many disjoint cones, each of which is
(i) a cone, at an A-vertex, which is disjoint from A, or
(ii) for some A-centre v and a ∈ A, a cone at a vertex of S(v, a).
Observe that any cone of type (i) or (ii) in the lemma is at a vertex which lies on
a line of T with both ends in A.

Proof. By Lemma 2.7(vi), (vii), any infinite co-infinite orbit of G(A) is

(a) a cone at an A-vertex which is disjoint from A, or
(b) a cone, disjoint fromA, at a vertex of S(v, a) for someA-centre v and a ∈ A.
Furthermore, an Ehrenfeucht-Fraı̈ssé game argument, which we omit, shows the
following:
(∗) for any A-centre v and a ∈ A, there is a vertex w ∈ S(v, a) such that if Uw is
the cone at w containing a, then either Uw \ {a} ⊂ X or (Uw \ {a}) ∩ X = ∅.
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We do not give full details of this game-theoretic argument, but it is standard.
It suffices to observe the following: with v, a as in (∗), let ā enumerate A, suppose
that there is noA-vertex on S(v, a) except v, thatm ∈ N, and that for i = 1, 2 there
arewi ∈ S(v, a) with d (v,wi) ≥ 2m, conesUwi atwi disjoint fromA, and bi ∈ Uwi ;
then āb1 ≡m āb2, that is, āb1 and āb2 satisfy the same formulas of quantifier rank
at most m in the language {D} of M. To start the argument, observe that two
tuples ā, b̄ of distinct elements ofM have the same quantifier-free type if and only
if the trees that they ‘generate’ (with vertices the ā-centres and b̄-centres and edges
the paths between these centres) are isomorphic as graphs. For an account of such
arguments, see [13, Section 3.3].
More informally, (∗) asserts that if we consider cones of type (b) at vertices w on
S(v, a), then either such cones all lie in X provided d (v,w) is sufficiently large, or
they are all disjoint from X for d (v,w) sufficiently large.
We may assume that X is disjoint from A. Since X is a union of G(A)-orbits, it is
a union of sets of type (a) or (b). Since there are finitely many A-vertices, there are
finitely many cones of type (a), and these are of type (i) in the lemma. There are
also finitely many pairs of form (v, a) with v an A-centre and a ∈ A. For any such
(v, a), by (∗), the union of the set of cones of type (b) can be written as the union
of finitely many cones of type (b), together possibly with a set of form W \ {a},
whereW is a cone containing a at a vertex of S(v, a). Thus, the union of the sets of
type (b) contained in X can be written as the union of finitely many cones of type
(ii), possibly adjusted by the removal of finitely many elements ofA. This yields the
lemma. �
Proof of Theorem 1.1(2). The proof proceeds in a series of claims. We suppose
thatM′, a structure in a language L′, is a nontrivial definable reduct ofM. Our
goal is to show that ifM′ is not a trivial reduct (that is, a pure set), then the set of
cones inM is uniformly definable inM′. For then, by Claim 1 below, the relation
D is definable inM′, so the latter is an improper reduct.

Claim 1. Suppose that the set of cones ofM is uniformly definable inM′; that
is, for some integer k > 0 there are L′-formulas φ(x, ȳ) (with ȳ = (y1, . . . , yk)) and
�(ȳ), both over ∅, such that the set

F := {φ(M, ā) : ā ∈Mk,M′ |= �(ā)}
is exactly the set of cones ofM. Then D is definable inM′.

Proof. See Lemma 2.9. Define D′(x, y; z,w) to hold onM if one of

(a) x = y ∧ x �= z ∧ x �= w,
(b) z = w ∧ z �= x ∧ z �= y,
(c) x, y, z, w are distinct and there are disjoint cones U,U ′ with x, y ∈ U and
z,w ∈ U ′.

Then D′ is exactly the relation D. �
Claim 2. There is a cone ofM which is definable inM′.

Proof. We first claim that in the structure M′ there is an infinite co-infinite
definable subset of M . Indeed, by Lemma 2.7(vii), for any A ⊂ M the algebraic
closure ofA in the structureM′ is exactly A. AsM′ is a nontrivial definable reduct,
there is finite A ⊂ M enumerated by a tuple ā, an L′-formula �(x, ȳ), and b, c ∈
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REDUCTS OF STRUCTURES ANDMAXIMAL-CLOSED PERMUTATIONGROUPS 1101

M \ A, such thatM′ |= �(b, ā) ∧ ¬�(c, ā). Let X := {x ∈ M : M′ |= �(x, ā)}.
Then the sets X \ A and M \ (X ∪ A) are both nonempty and A-definable, so as
acl(A) = A, these sets are both infinite. In particular, X is an infinite co-infinite
definable set inM′.
By Lemma 4.1, replacing X by a set differing finitely from it if necessary, we may
writeX as a finite disjoint unionX = U1∪· · ·∪Ur of cones, with each coneUi at the
vertex vi . Let S := {v1, . . . , vr}, and let T0 be the smallest subtree of T containing
S. Define s to be the sum of the distances (in the tree T0) between distinct members
of S. We suppose that ā and the definable set X have been chosen to minimise s .
We may also suppose that s > 0; indeed, if s = 0 thenX is the union of at most two
cones at a vertex, so is a cone.
The finite tree T0 has a leaf, v1 say. Now since the Ui are disjoint and their union
is coinfinite in M , no vertex of S lies in U1. (Recall here the abuse of notation
mentioned early in Section 2.) Furthermore, vj �= v1 for j > 1. For otherwise,
U1∪Uj is a coneW at a vertexw (a neighbour of v1); we may then replaceU1∪Uj
by the coneW , contradicting the minimality of s .
It follows that there is a coneU ′

1 at v1 which is disjoint fromX . By Lemma 2.7(ii),
there is g ∈ Aut(M) fixingM \ (U1 ∪U ′

1) pointwise, with U
g
1 = U

′
1 andU

′g
1 = U1.

Let X ′ := X ∪ Xg = X ∪U ′
1, and put ā

′ := āg . Then X ′ is āā′-definable, and it is
easily checked that X ′ is infinite and coinfinite. Furthermore, in the description of
X ′ as a disjoint union of cones we may replace U1 byW := U1 ∪ U ′

1 and thereby
reduce s , contradicting our minimality assumption. �
Claim 3. There is a cone ofM definable by an L′-formula φ(x, ā) such that no
element of ā lies in U .

Proof. By Claim 2, there is a cone U1 defined by φ(M, ā) in M′. We assume
some element of ā lies in U1. Suppose U1 is a cone at the vertex u of T , and let
U2 and U3 be the other two cones at u. Suppose first that one of these cones, say
U3, contains no element of ā. By Lemma 2.7(ii), there is g ∈ G interchanging U1
and U2, and so fixing U3 setwise: indeed, pick b1 ∈ U1, b2 ∈ U2 and b3 ∈ U3, and
choose g so that (b1, b2, b3)g = (b2, b1, b3). Now U2 is āg -definable, so U1 ∪ U2 is
āāg -definable, and henceU3 =M \ (U1∪U2) is āāg -definable—and the parameter
set āāg does not meet U3.
Thus, we may suppose that the entries a1, a2, a3 of ā lie inU1, U2, U3 respectively.
Let z be the vertex on the set S(u, a3) nearest to u such that some cone Z at z
contains no element of ā. We may suppose that φ(x, ā) was chosen to minimise
d = d (u, z); here we are allowing the formula φ to vary, but work with the above
framework of formulas defining cones. Now let u1 be the vertex adjacent to u on the
path from u to z (so possibly u1 = z). Let h ∈ G(U3) with (a1, a2)h = (a2, a1); such
h exists by Lemma 2.7(ii). Then U1 ∪ U2, a cone at u1, is defined by the formula
φ(x, ā) ∨ φ(x, āh). The parameters āāh of this formula have no entries lying in U3
other than those of ā which lie in U3. Thus, we can replace the coneU1 by U1 ∪U2,
replace u by u1, and replace φ(x, ā) by φ(x, ā) ∨ φ(x, āh), and we have reduced d .
This contradiction to minimality completes the proof of the claim. �
Let n := l(ā), where φ(x, ā) is as in Claim 3. Since G := Aut(M) is transitive
on the set of cones, every cone U of M has the form φ(M, ā′) for some ā′ ∈
(M \U )n. However, for some ā′, the set φ(M, ā′) might not be a cone, so we cannot
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1102 MANUEL BODIRSKY ANDDUGALDMACPHERSON

immediately apply Claim 1 to define D. Now let �1(ȳ) be the L′-formula

∃z(
n∧

i=1

z �= yi ∧ ¬φ(z, ȳ)) ∧ ∃z (
n∧

i=1

z �= yi ∧ φ(z, ȳ)
) ∧

n∧

i=1

¬φ(yi , ȳ).

Let φ1(x, ȳ) be φ(x, ȳ) ∧ �1(ȳ). Now φ1 and �1 are the first approximations of
the formulas φ and � mentioned in Claim 1, and we shall repeatedly modify them
until we obtain formulas as in Claim 1. Observe by Lemma 2.7(vii) that for any
ȳ, if φ1(x, ȳ) holds for some x then φ1(M, ȳ) is infinite and coinfinite. So for any
ā′, φ1(M, ā′) if nonempty is an infinite coinfinite set disjoint from ā′. Also, by
transitivity of Aut(M) on the set of cones, every cone ofM has the form φ1(M, ā′)
for some ā′ such thatM′ |= �1(ā′).
Next let �2(ȳ) be the following L′-formula, where ȳ′ = (y′1, . . . , y

′
n):

∀ȳ′(
n∧

i=1

¬φ1(y′i , ȳ)→ ((φ1(M, ȳ′) ⊇ φ1(M, ȳ)) ∨ (φ1(M, ȳ′) ∩ φ1(M, ȳ) = ∅))).

Observe that �2(ā) holds. For �1(ā) holds, and if ā′ is disjoint from φ1(M, ā)
then as φ1(M, ā) is a cone so a Jordan set, Gā,ā′ is transitive on it; hence if b ∈
φ1(M, ā) ∩ φ1(M, ā′) and c ∈ φ1(M, ā), there is g ∈ Gā,ā′ with bg = c, so also
c ∈ φ1(M, ā′). Let φ2(x, ȳ) be φ1(x, ȳ) ∧ �2(ȳ). Again, every cone ofM has the
form φ2(M, ā′) for some ā′ such thatM′ |= �2(ā′).
Let �3(ȳ) be

�2(ȳ) ∧ ∃z̄∀x (φ2(x, z̄)↔ ¬φ2(x, ȳ)
)
.

Then since φ2(M, ā) is a cone, the complement of any cone is a cone, and G is
transitive on the set of cones, �3(ā) holds. Let φ3(x, ȳ) be φ2(x, ȳ) ∧ �3(ȳ). Then
we have

�3(ȳ)→ ∃z̄(∀x(φ3(x, z̄)↔ ¬φ3(x, ȳ))).
Also, by transitivity on the set of cones, every cone has the form φ3(M, ā′) for some
ā′ such thatM′ |= �3(ā′).
We aim next to reduce to the case when n = |ȳ| = 4. For this, it suffices to
show that some cone U is 4-definable, that is, definable by an L′-formula with 4
parameters, none lying inU ; for then we may take this formula to be φ(x, ȳ) above,
and modify it to obtain φ3(x, ȳ) and �3(ȳ) as above, but with l(ȳ) = 4.

Claim 4. Let b1, b2, b3 be distinct elements ofM , and for each i let Ui be the cone
at u := vert(b1, b2, b3) containing bi . Assume that U1 is definable over b1, b2, b3, with
U1 = �(M,b1, b2, b3) where � is an L′-formula. Then some cone is 4-definable.
Proof. Choose b4 so that if u′ := vert(b1, b3, b4) then u′ ∈ S(u, b3) and
d (u, u′) = 2. Let U ′

3, U
′
4 be respectively the cones at u

′ containing b3, b4.
Then, by 3-transitivity of Aut(M) each of the cones U1, U2, U ′

3, U
′
4 is defin-

able over b1, b2, b3, b4, respectively by the formulas �(x, b1, b2, b3), �(x, b2, b1, b3),
�(x, b3, b1, b4), and �(x, b4, b1, b3). HenceW :=M \ (U1 ∪U2 ∪U ′

3 ∪U ′
4) is a cone

(based at the common neighbour of u and u′) which isL′-definable over b1, b2, b3, b4
but does not contain any of these parameters. �
Let φ3 and ā ∈ Mn be as above, so that φ3(M, ā) is a cone. Now define the
relationE(x, y; z,w) to hold if and only if x, y, z, w are distinct and there is ē ∈Mn
such that φ3(M, ē) contains x, y but not z,w. Observe that E is L′-definable.
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REDUCTS OF STRUCTURES ANDMAXIMAL-CLOSED PERMUTATIONGROUPS 1103

Claim 5. Suppose that E(b1, c; b2, b3) ∧ D(b1, b3; c, b2) holds. Then u :=
vert(b1, b3, c) and v := vert(b1, b2, c) are at distance at most 2n + 1.

Proof. Suppose for a contradiction that d (u, v) = m > 2n+1. There is ē ∈Mn
such that φ3(M, ē) contains b1, c and omits b2, b3. There are at most n vertices
strictly between u and v of form vert(b1, b2, ei) for some ei in ē. In particular, there
is a vertex w strictly between u and v and not of this form (in fact, there are at
least n + 1 such w). Let W be the cone at w which does not contain b1, b2, b3 or
any element of ē, and for i = 1, 2 letWi be the cone at w containing bi . We claim
thatW ⊆ φ3(M, ē). Indeed, suppose not. Then as Aut(M)ē is transitive onW , we
haveW ∩ φ3(M, ē) = ∅. We may (reordering if necessary) write ē = ē1ē2 so that
for ei ∈ ē1, the vertex w lies on the eib2 line, and for ei ∈ ē2, the element w lies
on the ei b1 line, and we may suppose ē2 is nonempty (for clearly ē �= ∅). Using
Lemma 2.7(ii), pick g ∈ G fixing pointwise the coneW1, and interchangingW and
W2. Put ē′ := ēg . Then ē′ = ē1ē

g
2 is disjoint from φ3(M, ē), as ē1 is disjoint from

φ3(M, ē) and ē
g
2 lies inW which is also disjoint from φ3(M, ē). However φ3(M, ē

′)
neither contains nor is disjoint from φ3(M, ē), as b1 ∈ φ3(M, ē′) ∩ φ3(M, ē), and
c ∈ φ3(M, ē)\φ3(M, ē′). This contradicts the assumption that�2(ē) holds, so yields
thatW ⊆ φ3(M, ē).
Since �3(ē) holds, there is ē′ such that ¬φ3(M, ē) = φ3(M, ē′). The set φ3(M, ē′)
contains b2, b3 and omits c, b1. Since there are at least 2n+1 vertices strictly between
u and v, and |ē| + |ē′| = 2n, there is a vertex z strictly between u and v such that
the cone Z at z omitting all the bi does not meet ē or ē′. The argument of the last
paragraph now shows that Z ⊆ φ3(M, ē) ∩ φ3(M, ē′), which is impossible. �
Claim 6. Some cone is 4-definable.

Proof. Let b1, b2, b3 be distinct, let u := vert(b1, b2, b3), and let Ui be the cone
at u containing bi , for each i = 1, 2, 3. Put X := E(b1,M ; b2, b3) ∪ {b1}. For any
c ∈ U1 \ {b1}, there is a cone containing b1, c and omitting b2, b3. Thus, by the
definition of E and the fact that every cone has form φ3(M, ā′) for some ā′, we
have X ⊇ U1. By Claim 4, we may suppose X �= U1. Thus, we may suppose that
X ∩U3 �= ∅. By Claim 5 together with Lemma 4.1,X ∩U3 is a union of some cones
(not containing b3) at vertices of S(u, b3) which are at distance at most 2n+1 from
u. Pick a vertex w on S(u, b3) with d (u,w) minimal such that the cone W at w
which omits all the bi is disjoint from X . Using Lemma 2.7(ii), let g ∈ Aut(M)(U3)
with (b1, b2)g = (b2, b1) and let Y := X ∪Xg . ThenU1 ∪U2 ⊂ Y , andY ∩W = ∅;
in fact, the cone at w containing b1 lies in Y , since by the choice of W , for any
vertex w ′ strictly between u and w, the coneW ′ at w ′ not containing any bi has a
nonempty intersection with X , so by Lemma 4.1,W ′ even lies in X .
Choose b4 ∈M \ {b1, b2, b3} such that if u′ := vert(b1, b3, b4) then u′ ∈ S(w, b3)
and d (w, u′) = d (w, u). Let h ∈ G with (b1, b2, b3, b4)h = (b4, b3, b2, b1). Observe
that h fixes W setwise, and in fact, can be chosen to fix W pointwise. Then as
Y is b1b2b3-definable, the set Y ∪ Yh is b1b2b3b4-definable. The claim follows, as
W :=M \ (Y ∪ Yh). �
By Claim 6, we now suppose that in the formula φ3(x, ȳ), the tuple ȳ has length
4. We shall show that either φ3 uniformly defines the family of cones, or it fails to
do so in a very special way, and can be modified to give a formula which uniformly
defines the set of cones.
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1104 MANUEL BODIRSKY ANDDUGALDMACPHERSON

Claim 7. Suppose that there is b̄ ∈M 4 such that φ3(M, b̄) is nonempty and is not
a cone. Then there are adjacent vertices w1, w2 and disjoint cones W1,W2 at w1, w2
such that φ3(M, b̄) = W1 ∪W2. Furthermore (re-ordering b̄ if necessary), we may
supposeD(b1, b2; b3, b4) holds, and w1, w2 lie on the path between vert(b1, b2, b3) and
vert(b1, b3, b4) which are at distance 3.

Proof. We may suppose thatD(b1, b2; b3, b4) holds. Let u := vert(b1, b2, b3) and
v := vert(b1, b3, b4), and let L be the path in T between u and v. Also let V1, V2 be
the cones at u containing b1, b2 respectively, and V3, V4 be the cones at v containing
b3, b4 respectively.
For each i = 1, . . . , 4, there is no cone U containing bi such that U \ {bi} ⊆
φ3(M, b̄). For otherwise, asM′ |= �3(b̄), there would be c̄ such thatM \φ3(M, b̄) =
φ3(M, c̄).AsM′ |= ¬φ3(bi , b̄) (since�1(b̄)holds),wewouldhaveφ3(bi , c̄), sobi �∈ c̄
(again as �1(c̄) holds). Let V be any subcone of U containing bi and disjoint from
c̄. Then φ3(M, c̄) ∩ V = {bi}. As V is a Jordan set, this is impossible: indeed, if
d ∈ V \ {bi} pick g ∈ Aut(M)(M\V ) with b

g
i = d ; then c̄

g = c̄, so φ3(d, c̄) holds,
a contradiction.
It follows from the last paragraph andLemma 4.1 that there is t such thatφ3(M, b̄)
is a union of disjoint cones at vertices at distance at most t from u or v. (We do not
here claim that t is independent of b̄; the existence of t follows from the finiteness
of the number of cones in Lemma 4.1, and the fact that if A = {b1, b2, b3, b4} then
the only A-centres are u and v.) The argument now falls into two subcases.
Subcase (i). Suppose that φ3(M, b̄) contains a subconeW of some Vi , say of V3.
Let w := vert(W ). We may suppose that w ∈ S(v, b3), and that W is chosen to
minimise d (v,w).
Suppose first that φ3(M, b̄) ⊂ V3. In this case, as φ3(M, b̄) is not a cone, there
is some w ′ �= w on S(v, b3), and a cone W ′ ⊂ φ3(M, b̄), with vert(W ′) = w ′.
Note that by minimality of d (v,w), w ′ ∈ S(w, b3). We may choose g ∈ Gb1b3
(a translation along the b1b3 line) with W ′g = W . Then bg2 , b

g
4 �∈ φ3(M, b̄), and

φ3(M,b1b
g
2 b3b

g
4 ) meets φ3(M, b̄) in a proper nonempty subset on φ3(M, b̄). This

contradicts that �2(b̄) holds.
Thus, we may suppose φ3(M, b̄) �⊂ V3. Choose z on S(v, b3) nearest to v so
that if U is the cone at z containing b1, then φ3(M, b̄) ⊂ U . Let Z be the cone
at z omitting b1 and b3 (so Z ∩ φ3(M, b̄) = ∅), and pick b5 ∈ Z. Let z′ be the
neighbour of z on the vz-path, and let Z′ be the cone at z′ not containing b1 or b3,
so Z′ ⊂ φ3(M, b̄) (by minimality of d (v, z)). Choose a vertex z′′ between v and z′,
as near to z′ as possible such that the cone Z′′ at z′′ not containing b1 or b3 does
not lie in φ3(M, b̄), and choose b6 ∈ Z′′ with b6 �∈ φ3(M, b̄). (Possibly, z′′ = v and
Z′′ = V4, in which case we choose b6 = b4.) Observe thatD(b1, b6; b3, b5) holds. Let
g ∈ G with (b1, b6, b3, b5)g = (b3, b5, b1, b6), so g interchanges z and z′′. Then b̄g is
disjoint from φ3(M, b̄), and Z′ ⊂ φ3(M, b̄) ∩ φ3(M, b̄g ); indeed, if z′′′ is the vertex
between z′′ and z adjacent to z′′, andZ′′′ is the cone at z′′′ not containing b1 or b3,
then Z′′′ ⊂ φ3(M, b̄) (by choice of z′′) and Z′ = (Z′′′)g ⊂ φ3(M, b̄) ∩ φ3(M, b̄g ).
However, φ3(M, b̄g ) lies in the cone at z′′ containing b3, so is contained in V3 so
disjoint from the nonempty set φ3(M, b̄) \ V3. This contradicts that �2(b̄) holds.
Subcase (ii). Suppose that φ3(M, b̄) is a union of cones at vertices of L. We
consider first the case when there is a vertex w �∈ {u, v} but lying on L, such that
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REDUCTS OF STRUCTURES ANDMAXIMAL-CLOSED PERMUTATIONGROUPS 1105

φ3(M, b̄) contains no cone at w. In this case, letW be the cone at w not containing
any bi , so φ3(M, b̄) ∩W = ∅. We may suppose that φ3(M, b̄) contains a cone at a
vertex strictly between w and v. It follows that φ3(M, b̄) does not contain any cone
W ′ at a vertex between w and u. For otherwise, pick g ∈ Gb3,b4 with bg1 , bg2 ∈ W
and let b̄′ := (bg1 , b

g
2 , b3, b4). Then b

g
1 , b

g
2 �∈ φ3(M, b̄) and φ3(M, b̄′) ∩ φ3(M, b̄) is

a proper nonempty subset of φ3(M, b̄) (proper as it omitsW ′), contradicting that
�2(b̄) holds. This argument, and appropriate choice of w to minimise d (w, v),
reduces us to the case when there is w ′ either equal to v or strictly between w and
v on the line between them, such that φ3(M, b̄) is exactly the union of the cones
(by assumption, more than one of them), not containing any bi , at vertices strictly
between w and w ′. In this case, let u′′ be the neighbour of u on L and v′′ be the
neighbour of v on S(v, b3). Choose b′′2 in the cone at u

′′ which does not meet b̄,
choose b′′4 in the cone at v

′′ which does not meet b̄, and let b̄′′ := (b1, b′′2 , b
′′
4 , b3).

There is h ∈ G with b̄h = b̄′′, and for such h we have uh = u′′ and vh = v′′
(in the induced action of h on T ). Again, we find that φ3(M, b̄) ∩ φ3(M, b̄′′) is a
proper nonempty subset of φ3(M, b̄). As b̄′′ is disjoint from φ3(M, b̄) (by its choice),
this contradicts that �2(b̄) holds.
Thus, φ3(M, b̄) is the union of all cones at vertices of Lwhich do not contain any
bi . In particular, we have shown that any nonempty set of form φ3(M, c̄) which is
not a cone has this form.
To prove the claim, we must now show d (u, v) = 3. As φ3(M, b̄) is not a cone,
d (u, v) ≥ 3 and the complement M \ φ3(M, b̄) is a union of two cones at distinct
vertices. As �3(b̄) hold, there is b̄′ ∈ M 4 such that M \ φ3(M, b̄) = φ3(M, b̄′).
However, if d (u, v) > 3, then the set φ3(M, b̄′) cannot have the forms described in
the last paragraph. �
We may now suppose that there is b̄ ∈ M 4 such that φ3(M, b̄) is a union of two
disjoint conesU1, U2 at adjacent vertices u1, u2 respectively, as described in Claim 7;
indeed, if there is no such b̄, then by Claim 7 the formula φ3 (with �3) uniformly
defines the set of cones inM′, and then Claim 1 completes the proof. We claim that
Aut(M) is transitive on the collection S of all sets of the form U ∪ V where U,V
are disjoint cones at adjacent nodes with U ∪ V �= M ; indeed, for two such pairs
(U,V ) and (U ′, V ′), there is g ∈ Aut(M) withUg = U ′, and h ∈ Aut(M)(U ′) with
(V g)h = V ′, and (U,V )gh = (U ′, V ′). Thus, every such set (in S) has the form
φ3(M, b̄′) for some b̄′.
Define �(ȳ) to be the L′-formula (with l(ȳ) = l(z̄) = 4)

�3(ȳ) ∧ ∃z̄(∃uφ3(u, z̄) ∧ ∀x(φ3(x, ȳ)→ ¬φ3(x, z̄))
∧ ∃≤1i φ3(yi , z̄) ∧ ∃w̄∀x(φ3(x, w̄)↔ (φ3(x, ȳ) ∨ φ3(x, z̄)))

)
.

The second conjunct says there is z̄ so that the nonempty set φ3(M, z̄) is disjoint
from φ3(M, ȳ) and contains at most one of y1, y2, y3, y4 and φ3(M, ȳ)∪ φ3(M, z̄) is
in the family of sets defined by φ3 (so is a cone or the union of two disjoint cones at
adjacent vertices).
It can be checked that if φ3(M, c̄) is a cone then �(c̄) holds. Indeed, if φ3(M, c̄)
is the cone U at u, then as l(c̄) = 4 there is a vertex v adjacent to u in T and not
lying in U , and a cone V at v disjoint from U and containing at most one element
of c̄. Let V = φ3(M, c̄′). Then c̄′ is a witness for z̄ in the second conjunct of �. Also
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1106 MANUEL BODIRSKY ANDDUGALDMACPHERSON

U ∪ V is the union (not equal toM ) of two disjoint cones at adjacent vertices so
has the form φ3(M, c̄′′) for some c̄′′ as required; here c̄′′ is a witness for w in �(c̄).
However, it can be checked that for b̄ as above, with U1, U2 cones at adjacent
vertices u1, u2 as above, �(b̄) does not hold. Indeed, consider any nonempty set
of the form φ3(M, b̄′) which is disjoint from φ3(M, b̄) = U1 ∪ U2, and contains
at most one element of b̄. Then φ3(M, b̄′) is a cone V at a vertex v or the union
of two disjoint cones V1, V2 at adjacent vertices v1, v2. By the second assertion of
Claim 7, the vertex v (or v1, v2) cannot lie in {u1, u2}. It can now be seen that
φ3(M, b̄) ∪ φ3(M, b̄′) is not a cone or the union of two disjoint cones at adjacent
vertices.
Thus, the L′-formula φ3(x, ȳ) ∧ �(ȳ) uniformly defines the family of all cones;
that is, in Claim 1 we may take φ(x, ȳ) to be φ3(x, ȳ) ∧ �(ȳ), and �(ȳ) to be
�3(ȳ) ∧ �(ȳ). By Claim 1, this completes the proof of the theorem. �

Remark 4.2. 1.We expect that the valency 3 assumption on (T,R) is not needed,
and that the D-relation arising from any regular combinatorial tree has no proper
nontrivial definable reducts, but have not checked this. The assumption in Theo-
rem 1.1 that the tree (T,R) has degree 3 is used in various places in the proof, since
we often use the facts that the complement of a cone is a cone, and the union of two
cones at a vertex is a cone. It can be checked that if (T,R) is any regular tree of degree
at most ℵ0 and at least three,M is a dense set of ends of T , and D is the induced
D-relation on M , then (M,D) has no proper nontrivial group-reducts. For the
proof, a small adjustment is needed in the proof of Theorem 1.1(1) in the case when
a closed supergroupH of Aut(M ) preserves a D-relation D′; we omit the details.
2. It may be possible to obtain part (2) of Theorem 1.1 from a version of the proof
of (1), done in a saturated model of Th(M), arguing as in Proposition 5.1 below.
(Such a countable saturated model exists and has analogous symmetry properties,
with the two-way lines in the underlying betweenness relation carrying the linear
betweenness relation induced from a countable saturated model of (Z, <).) Indeed,
ifM had a proper nontrivial definable reduct, this would hold in any elementary
extension. The automorphism group of a saturated elementary extensionM′ ofM
would also be a 3-transitive Jordan group, and would have (as in the proof of (1))
to preserve a D-relation. It would appear that the only ‘other’ possible D-relation,
apart from the natural one, would be the one obtained by identifying elements of
the underlying betweenness relation (definable inM′ as in [2, Theorem 25.3]) which
are finitely far apart; this D-relation onM′ is not definable. Some further work is
needed, and we view our proof of (2) above, not dependent on the very intricate
structure theory for primitive Jordan groups, as of independent interest.

§5. Other possible examples. We discuss here some further approaches to con-
structing infinite non-�-categorical structures with no proper nontrivial reducts,
focussing particularly on strongly minimal structures (defined in the introduction).
The main result here is Theorem 5.6.
In the next proposition, the collection of definable reducts of a structureM is
partially ordered by putting M1 ≤ M2 if M2 is ∅-definable in M1; the group-
reducts ofM are partially ordered by inclusion of groups. We remark that ifM
is strongly minimal over a countable language, then the first-order theory T of
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M is categorical in all uncountable cardinalities (Corollary 5.7.9. in [30]) and, in
particular, for every infinite cardinal κ, T has a saturatedmodelN of cardinality κ.

Proposition 5.1. LetM be a saturated structure. Then the following hold.
(i) The natural map taking a definable reduct ofM to the corresponding group-
reduct induces an embedding of the partial order of definable reducts ofM into
the partial order of group-reducts ofM.

(ii) IfM has no proper nontrivial group-reducts, thenM has no proper nontrivial
definable reducts.

Proof. (i) First observe that any definable reduct of a saturated structure is
saturated. We show that ifM1 andM2 are distinct definable reducts ofM, then
Aut(M1) �= Aut(M2), and hence that ifM2 is a proper definable reduct ofM1

(both reducts ofM) then Aut(M1) < Aut(M2). To see these, let k be least such
that there is some k-ary relation R which is ∅-definable inM1 but not inM2. Then
by compactness and saturation, there are ā, b̄ ∈ Mk such thatM1 |= Rā ∧ ¬Rb̄
and tpM2

(ā) = tpM2
(b̄). It follows by saturation that ā and b̄ lie in the same orbit

of Aut(M2) but in distinct orbits of Aut(M1).
(ii) This is immediate from (i). �
Remark 5.2. Part (2) of Theorem 1.1 cannot be deduced from part (1) and
Proposition 5.1, since the structureM = (M,D) is not saturated, or even recursively
saturated; however, see Remark 4.2(2). The structure (M,D) is homogeneous in the
sense that any elementary map between finite substructures of M extends to an
automorphism, but this property might not a priori hold in definable reducts.

In this paper, we have considered definable reducts of a structureM up to inter-
definability over ∅, and group-reducts, with two group-reducts identified if they have
the same automorphism group. However, it is also possible to mix the two notions,
and consider group-reducts ofM (structuresM′ with the same domain asM such
that Aut(M′) ⊇ Aut(M)) with two group reductsM1 andM2 identified if each
is ∅-definable in the other; that is, group-reducts considered up to interdefinability.
Under this notion, the answer to the question of Junker and Ziegler mentioned in
the introduction is positive.

Proposition 5.3. LetM be a countable structure over a countable language and
suppose thatM is not �-categorical. ThenM has 2ℵ0 distinct group-reducts up to
interdefinability.
Proof. Let k be least such that Aut(M) has infinitely many orbits onMk , and let
these orbits be {Pi : i ∈ �}. For eachS ⊂ � letMS be the structurewith domainM
and with a single k-ary relation interpreted by

⋃
i∈S Pi . Then Aut(M) ≤ Aut(MS),

so MS is a group-reduct of M. As there are 2ℵ0 such group-reducts and only
countably many formulas in each of the languages, the result follows. �
Next, we make an elementary observation on maximal-closed subgroups of
Sym(N).

Lemma 5.4. Let G be a maximal-closed subgroup of Sym(N) which acts
imprimitively on N. Then G acts oligomorphically on N.

Proof. If G is intransitive on N then as G is maximal-closed, it is the setwise
stabiliser of a proper subset A of N, and A must be finite or cofinite. Likewise, if G
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1108 MANUEL BODIRSKY ANDDUGALDMACPHERSON

is transitive but imprimitive on N then G is the stabiliser of a partition of N into
parts of the same size, so is a wreath product of symmetric groups. In either case,
it is routine to check (directly, or via the Ryll-Nardzewski Theorem) that G acts
oligomorphically on N. �
We turn now to strongly minimal examples. The goal is to find examples of
strongly minimal sets which are not �-categorical but have no proper nontrivial
reducts (in either of our two senses). In a strongly minimal set, the algebraic closure
operator gives a pregeometry, and there is an associated dimension assigned to any
subset of M . The strongly minimal structureM is degenerate if, for all A ⊂ M ,
we have acl(A) =

⋃
(acl(a) : a ∈ A). (Such strongly minimal sets are often called

trivial, but we use degenerate to avoid confusion with the notion of a trivial reduct.)
We sayM is locally modular if dim(A ∪ B) + dim(A ∩ B) = dim(A) + dim(B) for
all algebraically closed subsets A,B ofM with dim(A ∩ B) > 0. For more details,
see Section 4.6 of [13] or Appendix C of [30].
We make the following observations about reducts of strongly minimal sets.
Recall that a graph Γ is said to be vertex-transitive if for any vertices x, y of Γ there
is g ∈ Aut(Γ) such that xg = y. Also, the degree or valency of a vertex is its number
of neighbours. A graph is said to be regular if all vertices have the same degree, and
to be locally finite if each vertex has finite degree.

Remark 5.5. 1. IfM is strongly minimal, then every definable reductM′ of
M is strongly minimal. If in additionM is locally modular, then so isM′;
see e.g., [12, Corollary 6] or [28, Proposition 6.3], which show that any reduct
of a superstable one-based theory of finite U-rank is one-based. Also, ifM
is a locally modular but not degenerate strongly minimal set, then an infinite
group is interpretable inM – this is well known and follows for example from
Proposition 2.1 and Theorem 3(a) of [14]. By for example Theorem 4.5 of [33],
an infinite group can never be interpreted in a degenerate strongly minimal
set. Thus, a definable reduct of a degenerate strongly minimal set is always
degenerate.

2. Any vertex-transitive graph of finite valency is a degenerate strongly minimal
structure; see Lemma 2.1(ii), (iii) of [5]—the degenerateness follows from the
quantifier-elimination in (ii).

3. The vertex-transitive graph Z = (Z, R), where Rxy holds if and only if
|x − y| = 1, has infinitely many distinct definable reducts. Indeed, for any
integer n > 1, let Z (n) be the graph obtained from Z by making two vertices
adjacent if they are at distance n in Z . Then Z (n) is the disjoint union of n
isomorphic copies of Z , so if n �= m then Z (n) and Z (m) are distinct definable
reducts of Z . These are also distinct group-reducts.

4. Let (T,R) be any regular tree of finite valency t > 2. Let T (2) be the graph
with vertex set T , two vertices adjacent in T (2) if they are at distance 2 in
(T,R). Then T (2) is a proper nontrivial definable reduct of (T,R) (and also a
proper nontrivial group reduct), and is the disjoint union of two graphs, each
(denoted Γt−1,t in Theorem 5.6 below) consisting of copies of Kt joined in a
treelike way, so that each vertex lies in t copies of Kt .
There is a further group-reduct of (T,R) which does not correspond to a
definable reduct: let E be the equivalence relation on T , with two vertices
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equivalent if they are at even distance in (T,R). There are exactly two E-
classes, and Aut(T,E) ∼= Sym(N)WrC2. By strong minimality of (T,R), the
relation E is not definable in (T,R).
We do not know whether (T,R) has any other proper nontrivial definable
reducts or group reducts; note however that Γt−1,t has no proper nontrivial
definable reducts, by Theorem 5.6 below.

5. Let F be a field, and V be a vector space over F with |V | = ℵ0, viewed
as a structure V in the language (+,−, 0, (fa)a∈F ), where fa is the unary
function given by multiplication by a. Then V has quantifier elimination, and
is strongly minimal, and locally modular but not degenerate. If F is a finite
field of prime order Fp, then V is �-categorical so definable reducts and group
reducts coincide. Its automorphism group GL(ℵ0, p) has the affine group
AGL(ℵ0, p) = (V,+) � GL(ℵ0, p) as a closed supergroup, and the latter is
maximal-closed in Sym(V ). Indeed, AGL(ℵ0, p) is the automorphism group
of an �-categorical strictly minimal set, and these are classified and shown to
be the union of a sequence of ‘envelopes’ in [10] and [33]. Thus, to see that
AGL(ℵ0, p) is maximal-closed in Sym(V ) it is only necessary to observe that
for n > 0 the group AGL(n, p) is maximal in the finite symmetric group Spn –
see the main theorem of [22] for this. In fact, this argument shows that if q is
a prime power then AGL(ℵ0, q) has just finitely many closed supergroups.
IfF is countably infinite and of characteristic 0 thenV has a definable reduct
with a single binary relation R, with Rxy if and only if x, y are nonzero and
either x + x = y or y + y = x. This graph is a disjoint union of infinitely
many copies of the graph Z of (2) above, along with an isolated vertex {0},
so has infinitely many definable but isomorphic reducts, and hence so does
V . These are also distinct group-reducts. In the case when dimV = 1, see
also Proposition 5.7 for another construction of reducts. If F is infinite of
characteristic p with prime subfield Fp, then V has as a proper nontrivial
definable reduct (and group-reduct) the structure of a vector space over Fp,
and intermediate fields give intermediate reducts.

6. Let F = (F,+,×) be an algebraically closed field. Then F is strongly minimal
and nonlocally modular. Of course, F has proper group and definable reducts
of the form (F,+) and (F,×). If F has characteristic zero, then we obtain
infinitely many definable reducts as in (5): define R on F , putting Rxy if and
only x + x = y or y + y = x.
Suppose instead that char(F) = p > 0. Then there are definable and group
reducts arising as above by viewing F as an infinite-dimensional vector space
(or affine space) over Fp. To obtain further reducts, define a binary relationR
on F , putting Rxy if and only if x, y �∈ {0, 1} and either y = xp or x = yp.
Then (F,R) is a graph with finitely many cycles of each finite length (viewing
connected components of size 1 and 2 as degenerate cycles), and infinitely
many two-way infinite paths. Thus, (F,R), and hence (F,+,×), has infinitely
many distinct definable reducts and group-reducts, by (2).

7. As pointed out by Anand Pillay, another natural place to look for examples is
the setting of G-sets – see e.g., [13, Exercise 4, p. 169 and Exercise 4 p. 177].
Given a countably infinite groupG acting regularly (sharply 1-transitively) on
a set X , we view X as a structure with a unary function symbol for each group
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1110 MANUEL BODIRSKY ANDDUGALDMACPHERSON

element, so X is essentially a Cayley graph for G with edges colored by group
elements. This is a degenerate strongly minimal set (see the above Exercises
in [13]), and, as noted by Pillay, proper definable reducts arise from proper
nontrivial subgroups ofG (which will always exist). The automorphism group
of the structure is exactly G in its regular action on X , and there will be a
proper nontrivial group-reduct corresponding to the action of G � Aut(G)
on X . (Here, we identify X with G by identifying some x0 with 1 and then
each xg0 with g; to define the action, if x ∈ X, g ∈ G and h ∈ Aut(G) (so
(g, h) ∈ G � Aut(G)), we put x(g,h) = (xh)g, where xh denotes the image of
x – viewed as an element of G – under the automorphism h.)

The two connected components of the graphsT (2) in Remark 5.5(4) above belong
to a larger family. Let k ≥ 2, l ≥ 2, and let Tk+1,l be the tree such that in the
bipartition given by even distance, vertices in one part have valency k + 1 and
vertices in the other part have valency l . Form the graph Γk,l whose vertex set is
a part of the bipartition consisting of l -valent elements of Tk+1,l , two adjacent if
they are at distance two in Tk+1,l . The graphs Γk,l are distance-transitive; that is,
they are connected and if u1, u2, v1, v2 are vertices with d (u1, u2) = d (v1, v2) then
there is g ∈ Aut(Γk,l ) with ug1 = v1 and ug2 = v2. In fact these, and regular trees,
are exactly the locally finite distance-transitive graphs classified in [17]. Informally,
Γk,l consists of copies of the complete graph Kk+1 glued together in a treelike way,
with l copies containing each vertex (so the neighbourhood of a vertex consists of
l copies of Kk).

Theorem 5.6. Let k, l ∈ Z with k ≥ 2 and l ≥ 3. Then the graph Γk,l has no
proper nontrivial definable reducts.

Proof. Let d denote the graph metric on Γk,l . We first observe that by
Remark 5.5(2), as Γk,l is vertex-transitive of finite valency, it is strongly minimal
and degenerate. It follows by Remark 5.5(1) that any definable reduct N of Γk,l
is also strongly minimal and degenerate. In particular, if N is a nontrivial defin-
able reduct then the algebraic closure in N of each singleton {a} has size greater
than 1. (Indeed, otherwise, by transitivity and degenerateness every subset of the
domainN ofN is algebraically closed inN , and it follows by strongminimality that
Aut(N ) = Sym(N) and N is a trivial reduct.) Thus, there is a formula φ(x, y) in
the language ofN such that for each vertex a, the set φ(N, a) is finite of size greater
than one. By distance-transitivity of Γk,l , there must be a finite subset {n1, . . . , nt}
of N such that φ(x, y) is equivalent to

∨t
i=1 d (x, y) = ni . We may suppose that

n1 < · · · < nt , and put n := nt .
Claim. If u, v are vertices of Γk,l , then d (u, v) ≤ 2n if and only if N |=

∃w (φ(u,w) ∧ φ(w, v)).
Proof of Claim. The direction ⇐ is immediate. For the direction ⇒, let m :=
d (u, v) ≤ 2n. We may suppose u �= v, as otherwise the result is immediate. If
m is even, say m = 2r, let z be the midpoint on the (unique) uv-geodesic, so
d (u, z) = d (v, z) = r. Since l ≥ 3 there is a neighbour z′ of z at distance r+1 from
u and v (so not adjacent to the neighbours of z on the zu or zv geodesics). Hence
wemay choosew so that d (w, z) = d (w, z′)+1 = n− r, so d (w, u) = d (w, v) = n,
andN |= ∃w(φ(u,w) ∧ φ(w, v)).
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Suppose instead that m = 2r + 1 > 1 is odd, and pick z so that d (z, u) = r and
d (z, v) = r + 1. Let z′ be the neighbour of z on the zv-path, and z′′ be a third
vertex in the copy of Kk+1 containing z and z′ (here we use that k ≥ 2). Thus
d (u, z′′) = d (v, z′′) = r + 1. We now argue as in the last paragraph to find w at
distance n− (r+1) from z′′ and at distance n from u and v. The argument ifm = 1
is similar. In that case, as k ≥ 2 there is z adjacent to u and v and we may choose
w distance n − 1 from z and distance n from u and v. �
If v is a vertex of Γk,l and s is a positive integer, let 
s denote the number of
vertices at distance s from v; this is clearly independent from the choice of v. Let
Bs (v) be the set of vertices at distance at most s from v. Then as Γk,l is locally finite,
each 
s and Bs (v) is finite; in fact, 
s = lks(l − 1)s−1 and

|Bs (v)| = 1 + lk (l − 1)
sks − 1

(l − 1)k − 1 .

There is also a fixed 
 such that if vertices u and v are adjacent in Γk,l then
|B2n(u) ∩ B2n(v)| = 
 (and in fact, 
 = |B2n(u)| − ((l − 1)k)2n). To see that the
adjacency relation of Γk,l is ∅-definable inN , it suffices now to observe that if vertices
u, v are distinct and nonadjacent, then |B2n(u) ∩ B2n(v)| < 
. This last assertion is
easily seen. In fact, for such u, v, if u′ is chosen adjacent to u and on the uv-geodesic
then B2n(u) ∩ B2n(v) is a proper subset of B2n(u) ∩ B2n(u′): the containment is
clear by considering possible uu′vx-configurations, and if d (u, x) = 2n − 1 and
d (u′, x) = 2n then x ∈ (B2n(u) ∩ B2n(u′)) \ (B2n(u) ∩ B2n(v)). �
When the first draft of this paper was written, we did not know any example
of a strongly minimal set which is not �-categorical, has no nontrivial reducts
of either kind, and is not degenerate (but see the remarks about [16] below). An
obvious potential example, now known by [16] to have no definable reducts (see
Theorem 5.9(2) below), is the 1-dimensional affine space AG1(Q), that is, the
structure (Q, f) where f is the ternary function defined by f(x, y, z) = x − y +
z. The automorphism group of (Q, f) is exactly the 1-dimensional affine group
AGL(1,Q) = (Q,+)� (Q∗, ·), and the following result shows that this group is not
maximal-closed in Sym(Q).

Proposition 5.7. The structure (Q, f) has at least ℵ0 proper nontrivial group-
reducts which have pairwise incomparable automorphism groups and are not definable
reducts.

Proof. For each prime p let vp denote the p-adic valuation on the field (Q,+, ·).
Define the ternary relation Cp(x;y, z) on Q, putting Cp(x;y, z) if and only if
vp(x−y) < vp(y−z). By [20, Proposition 4.10],Cp is aC -relation onQ admitting
AGL(1,Q) as a group of automorphisms. It is exactly the C -relation arising from
the first description of (M,D) in Example 2.1, but working with sequences from
{0, . . . , p − 1} rather than just {0, 1}. The group Aut(Q, Cp) is a closed subgroup
of Sym(Q) containing AGL(1,Q). It is a Jordan group and clearly uncountable, so
the containment is proper.
We leave it to the reader the check that ifp, r are distinct primes thenAut(Q, Cp) �=
Aut(Q, Cr). Finally, since (Q, f) is stronglyminimal and so stable, and the structures
(Q, Cp) are unstable, the relations Cp are not definable in (Q, f). �
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As mentioned in Lemma 2.7(viii), it is possible to define a D-relation Dp analo-
gously on PG(1,Q), using cross-ratio (see Theorem 30.4 in [2]). Thus, PGL(2,Q)
is not maximal-closed, as PGL(2,Q) < Aut(Q, Dp) < Sym(Q). Again, distinct
primes give distinct group-reducts. If p = 2 then (Q, Dp) is exactly the structure
(M,D) of Theorem 1.1, so the latter may be viewed as a group-reduct of the struc-
ture PG(1,Q) viewed in a language with a symbol P� (for every � ∈ Q ∪ {∞})
holding of quadruples with cross-ratio �.
We conclude with some questions.

Question 5.8. 1. Is there a nonlocally modular strongly minimal set with no
proper nontrivial definable reduct (or group-reduct)?

2. Do the graphs Γk,l of Theorem 5.6 have any proper nontrivial group-reducts?
Are their automorphism groups maximal in the symmetric group subject to
being locally compact? (For a closed subgroup of Sym(N), local compactness is
equivalent to the pointwise stabiliser of some finite set having all orbits finite.)

3. Classify the definable reducts and group-reducts of finite valency regular trees.

Two questions from an earlier draft of this paper were answered by Kaplan and
Simon with the following results, part (ii) also using an observation of Evans.

Theorem 5.9 ([16]). 1. For 2 ≤ d ≤ ℵ0 the group AGL(d,Q) is maximal-
closed in the symmetric group on the corresponding affine space.

2. If 1 ≤ n ≤ ℵ0 and f(x, y, z) = x − y + z, then the structure (Qn, f) has no
proper nontrivial definable reducts.

In particular, this yields countable maximal-closed groups. In an earlier version
of this paper we also asked whether the groups PGL(n,Q) (for 3 ≤ n ≤ ℵ0) are
maximal-closed, and more generally whether Sym(N) has any countable maximal-
closed groups. However, both these questions are answered positively in [7], where
it is shown that ifH > PGL(n,F) is closed (F any field) and contains a permutation
taking a collinear triple to a noncollinear triple, thenH is the full symmetric group.
We emphasise the broader question of findingmore examples of nonoligomorphic
maximal-closed subgroups of Sym(N), and flag up the following question from [19].
Note that by [19, Observation 3.3], Sym(N) is not the union of any chain of closed
proper subgroups.

Question 5.10 (Question 7.7 in [19]). Is it true that every closed proper subgroup
of Sym(N) is contained in a maximal-closed subgroup of Sym(N)?

Finally, we mention the following recent result of Agarwal and Kompatscher.

Theorem 5.11 ([3]). There are 2ℵ0 pairwise nonconjugate maximal-closed sub-
groups of Sym(N).

This result also answers a question in an earlier draft of this paper. The authors
find continuummany nonconjugate such groups arising as automorphism groups of
homogeneous ‘Henson digraphs’ determined by appropriately chosen sets of mini-
mal forbidden finite tournaments. They use aRamsey-theoretic approachdeveloped
in [6]. Indeed, by [23, Theorem 5.3], for any Henson digraph determined by a set
of forbidden finite tournaments, the class of its finite subdigraphs, expanded in all
possible ways by a total order, is a Ramsey class.
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Observe that 2ℵ0 is the maximal possible number of maximal-closed subgroups
of Sym(N), by easy counting. On the other hand, Sym(N) has 22

ℵ0 pairwise non-
conjugate maximal subgroups, since stabilisers of ultrafilters on N are maximal and
there are 22

ℵ0 distinct ultrafilters on N; see [19, Theorem 6.4 and Corollary 6.5].
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