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Abstract 

 

In an era of rapid global change, conservation managers urgently need improved tools for 

countering declining ecosystem condition. This need is particularly acute in the marine realm, where 

threats are out-of-sight, inadequately mapped, cumulative, and poorly understood, thereby 

generating impacts that are inefficiently managed. Recent advances in macroecology, statistics, and 

the compilation of global data will play a central role in improving conservation outcomes, provided 

that global, regional and local data streams can be integrated to produce locally-relevant and 

interpretable outputs. Progress will be assisted by 1) expanded rollout of systematic surveys that 

quantify the distribution of marine species, including through assistance of citizen scientists, 2) 

improved understanding of consequences of threats through application of recently-developed 

statistical techniques to ƐƉĞĐŝĞƐ͛ distributional data and associated environmental and socio-

economic covariates, 3) development of reliable ecological indicators for accurate and 

comprehensible tracking of threats, and 4) improved data-handling and communication tools. 

   

 

INTRODUCTION 

 

New approaches to the collection and analysis of data have immense potential to transform 

conservation management, including through application of novel tools borrowed from such diverse 

fields as genomics, statistics, socio-economics, philosophy, demography and biogeography. For 



marine environments, this revolution will arguably be led by the application of ͚ďŝŐ͛ ecological data, 

given the hidden nature of aquatic realms and the paucity of existing data. Until recently, data 

describing the distribution and abundance of marine organisms have been sparse, disconnected, 

largely qualitative, and expensive to collect. Without dense and reliable information, the tools to 

quantify environmental health, or adequate techniques for synthesising and visualising that 

information, managers have had little alternative other than to act intuitively when allocating 

limited resources to minimise threats to marine life.  

 

The logistical challenges associated with collecting data on marine organisms and environments has 

in the past resulted in a focus in ecology on small-plot manipulative experiments in intertidal and 

shallow subtidal depths, where the scale of the study is limited to access by car or small boats. More 

recently, investigations have progressed towards study of large-scale (i.e. national or global) 

macroecological processes, with individual surveys undertaken at a variety of local scales, in part 

depending on the complexity of observations (Fig. 1). These multiple scales of investigation have 

been key to the development of a deeper understanding of marine ecology. While local-scale 

investigations frequently show strong influences of specific factors, such relationships often break 

down when re-assessed over regional scales. By contrast, numerous examples exist of strong 

relationships between ecological patterns and environmental covariates that emerge clearly only 

when multinational-scale data are considered (e.g., Mora et al 2011, Webb et al 2009). Thus, 

alongside the traditional manipulative plot experiment, regional- to global-scale data are now 

recognised as fundamental to progress in ecology (Keith et al 2012, Kerr et al 2007).  Excitingly, the 

costs associated with collecting and analysing such data have declined dramatically due to the 

development of improved tools for the collection, communication, and analysis of data, as well as 

the lowering of key logistical barriers such as cost of air travel, acquisition and training of volunteer 

workers, and open-sourcing of software and data.   

  



Because of difficulties monitoring species across broad scales, much effort to the present has been 

directed at using habitat and aggregate assemblage attributes as surrogates for species-level 

patterns, including through satellite and aerial remote sensing, acoustic surveys, and image analysis 

(e.g., MODIS, Fig. 1). Nevertheless, surrogates frequently show poor congruency between different 

biodiversity elements (Mellin et al 2011, Rodrigues & Brooks 2007), and much variation remains 

concealed within mappable habitat features, yet innovative tools are available for censusing 

individual species and communities. For example, field survey data can now be integrated with high-

resolution remote-sensing techniques to generate fine-resolution predictive maps, at least for 

shallow environments (Leaper et al 2012). Such biodiversity maps provide a necessary foundational 

layer for integrated coastal zone planning.  

 

We here review new approaches for the collection of marine ecological data, with emphasis on 

species-level data that encompass regional to global scales. We also discuss analysis and 

interpretation of these and existing data to better inform management, with the ultimate goal of 

reduced anthropogenic impacts and improved environmental outcomes (Fig. 2). 

 

Management need for big ecological data 

 

As marine ecology evolves to understand the importance of global-scale processes and the fact that 

local studies may simply be unable to resolve meaningful patterns, so too has marine management 

embraced the multi-scale paradigm of ecosystem processes. Global-scale data facilitates 

management, in part through an improved awareness of how broader processes tie into observed 

local-scale trends, and also through lessons learned elsewhere. Threats to marine biodiversity are 

typically interactive and non-linear, consequently an empirical understanding of these threats 

requires replicated systematically-collected data from hundreds to thousands of sites. Such a span of 

sites is rarely available within a single jurisdiction, but instead requires multi-national coverage.  



 

For example, marine protected areas represent the most reliable set of reference sites against which 

to assess fishing impacts.  Yet too few marine protected areas (MPAs) exist within any individual 

country to allow analytical separation of interacting influences associated with key MPA design 

features (e.g. size, multi-zoned or single zone, proximity to other MPAs, fishing permitted within and 

nearby, level of compliance required, age).  By contrast, influences of the different features can 

potentially be disentangled through coordinated global analyses of tens to hundreds of MPAs, 

thereby benefitting MPA planners worldwide (Edgar et al 2014). 

 

Thus, detailed broad-scale information on changing patterns of marine biodiversity and associated 

threats are integral to improved management planning and assessment. The need for such data is 

particularly urgent in an era when threats ƚŽ ƚŚĞ ŚĞĂůƚŚ ŽĨ ƚŚĞ ǁŽƌůĚ͛Ɛ ŽĐĞĂŶƐͶpollution, 

overfishing, habitat destruction, climate change, introduced pests Ͷare universally recognised to be 

serious, pervasive and diverse (see, e.g., Halpern et al 2012, Halpern et al 2008, Jackson 2008). 

Moreover, the development of technology for new exploitative activities, such as deep-sea mining, 

translates to threats extending ubiquitously, including oceanic areas that were previously 

inaccessible.  The existence of regional- and global-scale ecological data can greatly assist 

management in a variety of areas, including: 

 

 Assessment and reporting of ecological condition through ͚state of the environment͛ 

indicators, including progress of countries towards achieving international targets agreed 

under the Convention of Biological Diversity (Jones et al 2011). 

 Identification of data gaps and management research priorities (Agardy et al 2011). 

 Tracking of effects of changing climate (e.g., Bates et al 2014). 

 Improved understanding of impacts of climate change on biodiversity heritage and 

ecosystem services (e.g., Graham et al 2015). 



 Tracking of the spread of invasive species and better understanding impacts (e.g., 

Ruttenberg et al 2012). 

 Improved understanding of impacts of fishing, including ramifications through food webs 

(e.g., Edgar et al 2011). 

 Mapping distribution of biota for integrated coastal planning, including optimization of the 

location of marine protected areas and key biodiversity areas within a matrix of other zones 

(Edgar et al 2008, Leaper et al 2012). 

 Provision of contextual information during assessment of the likely impact of local-scale 

developments on conservation values, including the level of irreplaceability of impacted 

zones (Raiter et al 2014). 

 Assessment of local-scale impacts of oil spills, typhoons and other broad-scale threatening 

processes that act stochastically, through comparisons of impacted versus pre-impacted and 

reference sites (e.g., Edgar & Barrett 2000). 

 Identification of threatened species and tracking trends in population recovery and decline 

(Richards 2014). 

 

COMPILATION OF GLOBAL ECOLOGICAL DATA  

  

Historical approaches to compilation of marine ecological data 

 

The intimate association between human civilisation and the sea has resulted in a long history of 

observation of our marine environment and its biological inhabitants. This has been largely 

motivated by social and economic need. For instance, seafood has constituted an important element 

of global human diets for centuries, with the numbers and types of fish brought to market at various 

ports regularly documented. Many of these statistics have been collated by national and 

international organisations (e.g. Food and Agriculture Organisation: http://www.fao.org; 



International Council for the Exploration of the Sea: http://www.ices.dk), and have subsequently 

been applied in studies of long-term changes in marine ecosystems (e.g., Callaway et al 2007, 

Engelhard et al 2014, Pauly et al 2005). 

 

Many countries have also invested heavily in formal stock assessments, annual scientific surveys, 

and other long-term monitoring programmes aimed at understanding the dynamics of commercially-

important fish species as well as their competitors, predators, and prey (e.g. Ricard et al 2012, 

Richardson et al 2006, Simpson et al 2011). Equally important, however, much marine biological 

exploration has been borne out of simple curiosity. For instance, the Challenger Expedition of 1873-

76, which set out to document life on the deep sea bed, was a voyage of pure discovery with the 

ǀĞƌǇ ďƌŽĂĚ ǌŽŽůŽŐŝĐĂů ƌĞŵŝƚ ƚŽ ĚŽĐƵŵĞŶƚ ͙͞ƚŚĞ ŶĂƚƵƌĞ ĂŶĚ ĚŝƐƚƌŝďƵƚŝŽŶ ŽĨ ƚŚĞ ĨĂƵŶĂ ŽĨ ƚŚĞ ŽĐĞĂŶ 

ďĂƐŝŶƐ͕ ĂŶĚ ƚŚĞ ĨŽƌŵ ƵŶĚĞƌ ǁŚŝĐŚ ůŝĨĞ ǁĂƐ ŵĂŝŶƚĂŝŶĞĚ ƵŶĚĞƌ ĚŝĨĨĞƌĞŶƚ ƉŚǇƐŝĐĂů ĐŽŶĚŝƚŝŽŶƐ͟ (Thomson 

1880). Countless other natural historical investigations, fisheries surveys, and research projects of 

varied geographic scope and temporal extent have additionally left an enormous legacy of 

observations on the distribution and variety of life in our seas. This data legacy contains crucial 

information regarding the past status of marine life, and its interactions with people and climate 

(Roemmich et al 2012). Nevertheless, the preponderance of presence-only observational data, and 

the relative scarcity of systematic surveys, mean that innovative methods are needed to fully exploit 

these data sets. Perhaps even more limiting, at least initially, is the fact that historical data have 

been scattered across multiple institutions and stored in many different formats (few of them 

digital), making it difficult for the research and conservation community to access and analyse this 

invaluable record of life in our seas.  

 

 

Quantitative global scale data as a basis for marine ecological monitoring 

 



Biodiversity data for marine systems now lie in online data meta-repositories developed over 

decades and involving global collaboration (Supplementary Table 1).  Species lists (i.e., presence 

data: Fig. 1) generated, for instance, by the Ocean Biogeographic Information System (OBIS; 

http://www.iobis.org, and see OBIS case study box) and the Global Biodiversity Information Facility 

(GBIF; http://www.gbif.org) are invaluable for identifying biogeographic patterns but are much less 

useful for tracking change. Global effort towards enumerating species presence will inevitably vary 

through time in any set of amalgamated ad hoc surveys. Available ecological datasets in the marine 

realm have been conducted for a variety for different reasons through application of a variety of 

different methodologies, leading to sources of bias that may be difficult to pinpoint and thus 

account for in analyses. 

 

Yet understanding the distribution and magnitude of ecological change is an urgent priority for 

human society, with management responses clearly hampered by the massive current shortfall of 

relevant monitoring information, high costs for targeted field surveys, and limited access to deep-

water systems (Richardson & Poloczanska 2008). Nevertheless, following the lead from 

oceanographers, where international agreement on deployment of Argo floats has revolutionised 

their science (Durack & Wijffels 2010, Hosoda et al 2008, Roemmich et al 2009), standardised 

quantitative methodologies for monitoring marine biodiversity are increasingly applied over large 

scales, including efforts to coordinate among cabled observatories (e.g., International Ocean 

Network: http://msg.whoi.edu/ION). 

 

A model example of cross-institutional collaboration in marine biodiversity observation involves 

deployment of the continuous plankton recorder (Fig. 1), with consistent species-level data on 

plankton densities now routinely obtained through ships of convenience travelling in European, 

North American, Australian and Antarctic seas (Fort et al 2012, Hosie et al 2003, Richardson et al 

2006). Multi-national networking and data sharing between animal tracking groups, most notably 

http://www.iobis.org/


the Global Tagging of Pelagic Predators program (TOPP; http://www.gtopp.org/), comprises another 

key example of accelerating scientific understanding gained through collaboration (Bessudo et al 

2011, Block et al 2011), where integrated outputs equal more than the sum of parts. 

 

Citizen science possesses arguably the greatest potential for scaling up biodiversity monitoring 

globally, to achieve coordinated species-level observations across scales otherwise impossible to 

cover because of impractical cost for professional research teams. Most citizen science activities will, 

however, be confined to species and systems where relatively simple observations can be made, 

particularly for semi-aquatic species such as birds, mammals and intertidal dwellers, and also for 

macroscopic organisms living in shallow subtidal habitats accessible by divers. 

 

Coordination of species-level observations across regional scales has been pioneered largely by 

amateur bird-watchers, with leadership from Birdlife International and its national partners (BirdLife 

International 2004a). Outputs of these programs not only possess major scientific significance, but 

have also catalysed coordinated conservation planning and management at continental to global 

scales (Eken et al 2004, Langhammer et al 2007, Stattersfield et al 1998). While most of this effort is 

directed at terrestrial habitats, huge datasets are also accumulating for shore- and seabird species, 

including ocean wanderers (BirdLife International 2004b). 

 

The number of citizen science initiatives involving divers is also accelerating rapidly, with Reef Check 

(www.reefcheck.org/) (Hodgson 1999), Reef Environmental Education Foundation (www.reef.org/) 

(Francisco-Ramos & Arias-González 2013), and Reef Life Survey (www.reeflifesurvey.com/) (Edgar & 

Stuart-Smith 2014), in particular, all gathering standardised biodiversity observations and extending 

globally in reach. Compromises are required by citizen science organisations when setting the 

balance between volunteer engagement and complexity of methods (Holt et al 2013). At one end of 

the spectrum are organisations with primary focus on public participation and educational outputs, 

http://www.reef.org/


which therefore employ simple methods that are manageable by all. At the other extreme, Reef Life 

Survey concentrates on quality of scientific outputs, training a small set of enthusiastic divers to a 

scientific level in underwater visual census techniques, but at the cost of wide engagement (see RLS 

case study box). 

 

 

 

 

A case study in compilation of diverse observational data: OBIS 

 

The lack of a sufficient system for the retrieval of marine biological data was recognised at the 

outset of the decade long Census of Marine Life (CoML) (Grassle 2000). One of the major outcomes 

of the CoML was the creation and maintenance of a central, standardised and open access portal, 

the Ocean Biogeographic Information System (OBIS; www.iobis.org). OBIS has since established 

collaborative links with the Global Biodiversity Information Facility (GBIF) and developed into the 

largest primary provider of spatial records of marine biodiversity data at a global scale, with ~42 

million geo-referenced records of the occurrence of marine taxa (February 2015, Fig. 3), >75% of 

them resolved to species level or better.  

 

OBIS has become an invaluable source of marine biodiversity data for research, used extensively 

(>900 citations listed in Google Scholar) to assess, for example, the degree to which various 

environmental factors predict global marine biodiversity and the spatial congruence between 

biodiversity and human impacts (Tittensor et al 2010). OBIS has also been used to validate models of 

marine species distributions (Ready et al 2010), and to parameterise models of predicted range 

shifts of exploited fish and invertebrate species (Jones & Cheung 2014). Further, analysis of OBIS 

data can help to identify knowledge gaps, documenting taxonomic and spatial biases in data 



availability (Appeltans et al in press, Miloslavich et al in press), which reveal chronic under sampling 

ŝŶ EĂƌƚŚ͛Ɛ ůĂƌŐĞƐƚ ďŝŽŵĞ͕ ƚŚĞ ĚĞĞƉ ƉĞůĂŐŝĐ ŽĐĞĂŶ (Webb et al 2010). 

 

Despite these high levels of use, the full potential of OBIS has yet to be realised. For instance, OBIS is 

a significant repository of historical data, with an average of 1,800 observations daily since the 1960s 

(Appeltans et al in press). Some analyses have used this temporal dimension to document trends in 

component datasets within OBIS that focus on specific taxa or communities (e.g., Dornelas et al 

2014), but comprehensive analyses of changes in biodiversity through time at regional and global 

scales have yet to be attempted. OBIS data may also contribute to specific objectives in marine 

spatial planning (Caldow et al 2015), and we expect such management and policy applications to 

increase with the maturation of the science of biodiversity informatics (Costello & Vanden Berghe 

2006, Hardisty et al 2013). 

 

The strengths of OBIS include its size and its taxonomic and geographical breadth, with occurrence 

records for ~160,000 marine taxa in all major marine regions of the world. Importantly, all data are 

freely accessible through the existing web portal, with advanced access possible through the 

underlying PostgreSQL database and web services in development. However, OBIS is an amalgam of 

>1,700 separate datasets, gathered by different research groups with varying goals and 

methodologies. The result is an unstructured database with variable data quality. OBIS records 

require geographic and taxonomic information, with additional variables such as date and depth of 

recording, environmental variables, and method of data collection sometimes available, although 

often some or all of these are lacking. Values also vary in precision, with clear errors in distribution 

records reported (e.g., Robertson 2008). Some of these problems are addressed by the quality 

control procedures employed when adding data to OBIS (www.iobis.org/node/47), and the 

additional tests recently developed and implemented to automatically quality control marine 

biogeographic databases including OBIS (Vandepitte et al 2015). This will go some way to ensure 



data are adequately structured and complete where required, however the onus remains on the 

user to perform appropriate data control and manipulations when developing a dataset suitable for 

any specific analysis. 

 

In addition to the unstructured nature of the data and the spatial and taxonomic biases present in 

OBIS, another important issue is that of imperfect detectability, i.e., the ability to separate true 

absence of a species from an area from instances where it was present but undetected. Large-scale 

analyses often assume that the absence of a species in the data represents a true absence (i.e., that 

its detection probability is 1, Kéry et al 2010, Monk 2014). Clearly, this is rarely the case. In marine 

data, detection probabilities are likely to be substantially <1 as a consequence of the logistical 

challenges of surveying (Bates et al. 2014). Moreover, because sampling is not uniformly effective, 

catchability varies among individuals and species, as well as over space and time (see, e.g.,  Fraser et 

al 2007, Royle et al 2007). Multiple statistical methods exist to account for imperfect detection (see 

Table 1; Bird et al 2014), and applying them to OBIS data ʹ where the contribution of numerous 

datasets likely means a large effect of detection bias in the final database ʹ is likely to lead to 

substantial increases in the utility of this vast database to marine conservation science. 

 

  

A case study in compilation of systematic quantitative data: Reef Life Survey  

 

The Reef Life Survey program (RLS) represents a large-scale standardised approach to surveying and 

monitoring marine biodiversity through the engagement of committed recreational SCUBA divers 

(Fig. 4, Edgar et al 2014). It provides a structured framework in which trained recreational divers 

provide observations that allow tracking of changes in subtidal habitats for scientific and 

management applications. RLS is based on a model that primarily emphasises generation of large 



quantities of scientific-quality data, rather than the broad public outreach central to most marine 

citizen science programs.  

 

RLS evolved from a pilot project funded by the Australian Government through its Commonwealth 

Environmental Research Facilities program from 2007-2010, which saw the training of an initial team 

of divers, and assessment of the suitability of methods, data quality, and cost-effectiveness of the 

approach. Survey methods were based on visual census techniques applied over two decades by 

University of Tasmania and tropical eastern Pacific researchers in MPA monitoring studies (Barrett et 

al 2009, Edgar et al 2011, Edgar & Barrett 1999). The RLS model successfully allowed data collection 

over greater geographic and temporal scales than possible by professional scientific teams, without 

sacrificing taxonomic resolution and other detail. Following the pilot project, the not-for-profit Reef 

Life Survey Foundation (http://www.reeflifesurvey.com/) was formed to train committed divers in 

systematic underwater visual census surveys, refine data entry procedures, and operate ongoing 

field activities through a combination of targeted field campaigns and ad-hoc surveys of local and 

vacation sites by trained divers.  

  

RLS methods cover four major components of biodiversity along 50-m long transect lines set on 

subtidal rocky and coral reefs ʹ fishes, large mobile macro-invertebrates, sessile invertebrates, and 

macro-algae. The abundances and sizes of all fish species sighted within 5 m x 50 m belts either side 

of the transect line are recorded by divers, and the number of all mobile invertebrates 

(echinoderms, crustaceans and gastropods) >2.5 cm in length, and cryptic fish species, are counted 

within narrower 1 m x 50 m belts during close searches of the substrate. Digital photoquadrats are 

also taken every 2.5 m along the transect lines for later estimation of the cover of sessile 

invertebrates, macrophytes and abiotic habitat types using appropriate software (e.g. Coral Point 

Count, Kohler & Gill 2006).  

 



Individual training is provided to selected recreational divers, following initial screening for diving 

experience and commitment. Trainees follow experienced divers along transect blocks, duplicating 

surveys, then receive feedback on elements requiring improvement until data collected by trainees 

closely match those of the trainer (Edgar et al 2014). An analysis of data quality showed that for data 

collected on the same dives, the variation between newly trained divers and experienced scientists 

was negligible (<1%) in comparison to differences between sites and regions (Edgar & Stuart-Smith 

2009). In addition, a degree of self-regulation of data quality was observed where initial data quality 

upon completion of training was positively related to ongoing involvement and productivity of RLS 

divers following their training (Edgar & Stuart-Smith 2009). Thus, the most enthusiastic recreational 

divers tend to also collect the most accurate data, participate more frequently, and stay involved in 

survey activities for longer. More than 100 active RLS divers participate at present, and standardised, 

quantitative data have been collected at >2,500 sites, including >500,000 abundance records for 

>4,500 species. Many sites have been surveyed on multiple occasions, in some cases annually each 

year since 2007, and these numbers continue to grow.  

 

The global RLS data not only provide broad context to local surveys and monitoring data, but also 

allow exploration of patterns in biodiversity where species-level resolution over large scales is 

needed (e.g., Stuart-Smith et al 2013), or that have not been possible previously due to insufficient 

commonality when amalgamating multiple datasets collected using multiple methods. In addition, 

the standardised nature of RLS data facilitates the analysis of data over large spatial scales by 

removing some observer-related sampling biases that may be present in citizen science programs 

with less stringent training requirements. 

 

In a global assessment of ecological differences between MPAs and fished locations, Edgar et al. 

(2014) were able to include an order of magnitude more MPAs than any previous study based on 

standardised data, allowing quantitative comparisons not achievable through approaches such as 



meta-analyses. They found that fish communities in most of 87 MPAs investigated were 

indistinguishable from reference fished communities and so largely ineffective; however, MPAs 

characterised by no-fishing regulations, high levels of enforcement, established more than 10 years, 

large in area, and isolated from fished areas by habitat boundaries, were extremely effective, with 

substantially elevated biomass of large fishes.  

 

The continually expanding RLS dataset should prove invaluable as a baseline for assessing changes in 

global shallow-water marine biodiversity associated with accumulating and expanding threats, and 

for allowing the identification and tracking of the trajectories of threatened species populations. In 

the field of macroecology, it allows investigations on how whole communities of mobile macroscopic 

organisms from multiple phyla (Chordata, Echinodermata, Arthropods, Mollusca) and classes 

interact at landscape levels (Webb 2012). The terrestrial analogue would be a global dataset that 

combines quantitative co-located surveys of mammals, birds, reptiles, amphibians, insects, spiders, 

myriapods and gastropods. The RLS dataset also provides unique opportunities for tracking 

international marine conservation targets (Group on Earth Observations Biodiversity Observation 

Network 2011) and the effectiveness of national and international policy, as well as local and 

regional management strategies. 

 

 

 

Looking forward: global-scale manipulative experiments 

 

While accurate mapping of patterns of biodiversity at regional to global scales represents a huge 

advance in ecological knowledge, it will inevitably lead to more questions than answers about 

underlying causes. Nevertheless, embedded within broad-scale spatial and temporal datasets is 

much information about ecological process. This ĐĂŶ ďĞ ŝŶĨĞƌƌĞĚ͕ ŝŶ ƉĂƌƚ͕ ƚŚƌŽƵŐŚ ͚ŶĂƚƵƌĂů 



ĞǆƉĞƌŝŵĞŶƚƐ͛, where factors of interest exhibit gradients; however, causality can rarely be attributed 

in such studies because of the range of environmental covariates that are typically also inter-

correlated with the primary factor. 

 

Thus the coordination of experimental networks represent an emerging class of broad-scale 

investigation, where controlled manipulative experiments are replicated in different regions. Such 

networks typically include researchers from a variety of countries, all agreeing to apply the same 

experimental or mensurative survey protocol in order to combine the rigor of experiments with 

observational data on environmental gradients that cannot be manipulated. 

 

An example of this approach is provided by the Zostera Experimental Network (ZEN, 

www.zenscience.org), which seeks to understand how complex regional and local processes interact 

to affect community and ecosystem structure in eelgrass (Zostera marina) beds (Fig. 1). In one 

experimental ZEN study where standardised nutrient addition and grazer reduction treatments were 

applied at 15 locations in 7 countries, algal biomass was generally found to be locally controlled 

more by top-down (grazing) rather than bottom up (nutrient fertilization) processes, but with global-

scale patterns of biodiversity (grazer and eelgrass richness) strongly influencing local-scale outcomes 

(Duffy et al 2015). 

 

Global coordination has the potential to address some of the greatest conservation challenges of our 

time.  In particular, management interventions repeated across the seascape, such as MPAs, 

comprise a related class of observational experiment. Each intervention represents a deliberate 

manipulation of the natural environment, consequently the sum of such interventions is a direct 

analogue of the classical ecological experiment with replication, but one that usefully has been 

conducted at an appropriate scale for improved management understanding (Walters & Holling 

1990).  

http://www.zenscience.org/


 

Studies of human manipulations are, however, often confounded when the management action is 

not randomly distributed across the seascape but is located in a preferred combination of 

environmental conditions, such as fish farms in deep sheltered embayments, sewage outfalls on 

headlands with good current flow, and MPAs in locations with few exploitable living resources. In 

such situations, reference sites should be selected to match environmental conditions at the 

intervention sites, or environmental conditions at the set of reference and intervention sites 

quantified, and their effects then modelled and partitioned separately from the reference versus 

intervention comparison. 

 

Moreover, management actions at different locations are rarely identical; rather, they are generally 

modified to suit the particular set of local circumstances. Such modifications add statistical noise to 

analyses if the intervention is categorically regarded as either present or absent; however, when 

local information is explicitly recognised and modelled, this variability often becomes of prime 

scientific interest amongst analytical outcomes. For example, the fact that fish biomass recovers 

within MPAs is now well-recognised, consequently scientific and public interest is more directed 

towards understanding how this recovery is affected by such factors as MPA size, boundary 

configuration, governance framework, level and type of community support, and policing (Daw et al 

2011). Similarly, important questions related to fish farms and sewage outfalls include how 

environmental impacts are modified by type of treatment, current flow and nutrient loads. 

 

Viewed from a satellite, broad-scale experimental networks highlight the pseudoreplication involved 

when outcomes of small-scale ecological experiments are generalised widely, given that 

experimental plots are traditionally dispersed over a local area of <10 km span, and coalesce into a 

single point when viewed from high altitude. Progress in ecology clearly depends on improved 

general understanding derived from experiments with worldwide span. Coordinated experimental 



networks clearly have potential to greatly assist this process by providing the maximum possible 

generality in inference. Nevertheless, to achieve this, replication needs to be sufficiently large to 

overwhelm statistical noise introduced by idiosyncratic local-scale environmental variability at each 

site investigated.   

 

ANALYSIS OF GLOBAL ECOLOGICAL DATA 

 

Integrating varied data types and sources  

 

Conservation science demands strategies that are coherent, trans-disciplinary and integrated, with 

access to data that tracks meaningful patterns and trends (Pressey et al 2007). Socio-economic 

frameworks are also required for statistical and conceptual models, with input of data spanning 

spatial scales, trophic levels and organism lifespans (Bestelmeyer et al 2011). Consequently, 

ecological datasets alone are insufficient for answering many of the major outstanding questions in 

conservation science (Sutherland et al 2009), but need to be combined with covariate data from 

physical, social and economic domains (see Supplementary Table 1 for relevant online datasets). 

 

Ecological data relevant to population dynamics still primarily rely on visual census methods for 

abundance and taxonomic accuracy, regardless of significant developments in the field of 

automated detection of biotic components (Mallet & Pelletier 2014). Despite increasing operational 

costs, in situ visual survey methods, such as RLS (see RLS case study box), the Australian Institute of 

Marine Science Long Term Monitoring Program (Sweatman et al 2011), and the U.S. National Park 

Service Kelp Forest Monitoring Program (Rogers-Bennett et al 2002), tend to be best established 

because of their wide utility. They are non-destructive and can incorporate multiple methods 

focused on a wide range of species, such as vertebrate and macro-invertebrate observations, plus 

detailed image analyses.  



 

Supplementary to these programs are destructive methods such as scientific benthic trawls and 

netting that have a longer history than SCUBA-based approaches. For deep and visually-constrained 

areas, destructive methods are the most cost effective option (McKenzie et al 2012, Varjopuro et al 

2014). Videos and cameras designed to capture visual data without the complication of human 

submersion complement these approaches (Clarke et al 2012, Mallet et al 2014). 

 

Surveys of organisms such as corals or fish schools can be aided by the use of multibeam sonar 

(Zieger et al 2009), while automated sampling of surface waters through the ships of opportunity 

program tend to focus on planktonic densities (Williams et al 2006).  While raw data continue to 

remain with the collecting institutions, an imperative exists for the data to be standardised in terms 

of units of measurement (species identity, metric sizes and weights, abundance bin classes, site geo-

positioning accuracy and coordinate system). Online portals of taxonomic information such as 

FishBase (http://www.fishbase.org/), IUCN (http://www.iucnredlist.org/), WoRMS 

(http://www.marinespecies.org/) and Corals of the World (http://coral.aims.gov.au/) permit the 

standardised description of species where taxonomic resolution allows (Supplementary Table 1). 

These portals also include, or are developing, attribute information necessary for many size-based 

trophic models and conservation vulnerability estimates, although data on attributes such as 

biological traits and conservation status are lacking for the majority of marine species (Tyler et al 

2012).   

 

The rapid growth of sophisticated remote sensing tools and analytical techniques has enabled the 

provision of global datasets describing the physical, biological and chemical environments for the 

surface waters (Andréfouët & Hochberg 2005, Collin et al 2012). Satellites that polar circumnavigate 

the planet provide daily recordings of radiation and reflectance detailing changes in ocean colour, 

temperature, light attenuation, wave heights, flood plumes, ice coverage, storm activity and cloud 

http://www.iucnredlist.org/


cover (Chassot et al 2010, Devlin et al 2012, Tyberghein et al 2012, Young et al 2011).  Secondary 

products derived from these observations using sophisticated algorithms include models of isolation 

from disturbance, circulation patterns, tidal dynamics, chlorophyll concentrations, nutrient 

concentrations, temperature anomalies and oxygen saturation levels (Basher et al 2014). 

Extrapolation of these models to past and future time periods is also available for marine modellers 

seeking to implement scenario-based predictions.  

 

DǇŶĂŵŝĐ ƉƌĞĚŝĐƚŝŽŶ ƐǇƐƚĞŵƐ ďĂƐĞĚ ŽŶ ƚŚĞƐĞ ĚĂƚĂ ŶŽǁ ƉƌĞƐĞŶƚ ŐůŽďĂů ͚ƌĞĂů-ƚŝŵĞ͛ ŵĞĂƐƵƌĞŵĞŶƚƐ ŽĨ 

marine dynamics such as vulnerability to thermal stress (e.g., NOAA Coral Reef Watch, Liu et al 

2012). The spatial resolution is a compromise between image extent, temporal cycle and radiation 

attributes rather than specifically aligned to ecological scales. While agencies such as NASA continue 

to provide data online, the emergence of collected datasets in web portals has stimulated marine 

research: Bio-Oracle (Tyberghein et al. 2012) and GMED (Basher et al. 2014) are two leading 

examples. Supportive information on the physical structures of the marine environment such as 

coastlines, bathymetry, infrastructure, political boundaries, activity zoning boundaries and shipping 

routes are now easily downloadable at fine resolution (see Reefs at Risk; 

http://www.wri.org/resources/data-sets/reefs-risk-revisited), with research ongoing to make climate and 

geographic data more accessible, such as through the FetchClimate portal 

(http://research.microsoft.com/en-us/projects/fetchclimate/).   

 

High temporal intensity, high spatial definition data for specific programs is obtained through in situ 

loggers/sensor networks (Hendee et al 2012, Kininmonth 2007, Marin-Perianu et al 2008). Argos, 

with their global network of ocean drifting buoys and mobile sensors, is certainly the most 

comprehensive, although other national infrastructure initiatives such as the Australian Integrated 

Marine Observation System (http://www.imos.org.au) are noteworthy. Sensor data is expensive 

primarily due to the maintenance schedule in the harsh marine environment, but the capacity to 

http://www.wri.org/resources/data-sets/reefs-risk-revisited
http://research.microsoft.com/en-us/projects/fetchclimate/


record precision data at depth has unrivalled value, especially in the oceanographic modelling arena 

(Bondarenko et al 2010).  

 

Marine data specific to human impacts are disjointed and sparse, often reflecting the national 

interest rather than contributing to a global repository. Economic data are varied in quality across 

the globe, including in the fisheries industry, despite their high importance (Bodin & Österblom 

2013, Folke 2015). Data required to compare basic human extraction practises, such as proportion of 

fish traded nationally or internationally (Cinner et al 2013), are not consistently available.  

International corruption indices (e.g., Transparency International; http://www.transparency.org/) 

are available for national scale analyses dealing with governance effectiveness, but associating this 

social measure to ecological processes is difficult due to the scale mismatch.  

 

However, many indicators of human density, activity and wellbeing can be captured irrespective of 

national priorities. In particular, the application of remotely-sensed images to measure light 

intensity as a surrogate of industrial activity and population density has helped to determine relative 

impacts of coastal developments (Pesaresi et al 2013).  Transport activity in the marine environment 

can also be estimated through shipping vectors, although fishing fleet activity is more difficult to 

remotely observe and requires the use of vessel monitoring systems (Gerritsen & Lordan 2011, Lee 

et al 2010).  Population census data defining the density of people is more robust and available at a 

finer scale, such as 30 arc-second grid cells for GPWv4 (Center for International Earth Science 

Information Network 2014) and 100 m cells for Worldpop (www.worldpop.org). This also includes 

indices of human poverty (Stevens et al 2015), albeit lacking in functional attributes, such as the 

number of fishers.  

 

Capacity to define the functional aspects of human society is presented by demographic health 

surveys (www.dhsprogram.com), which obtain data through dense, nationally-representative 

http://www.worldpop.org/
http://www.dhsprogram.com/


household surveys across a range of topics. Social boundaries such as Exclusive Economic Zones are 

defined but seldom have rigid behavioral impacts. Even well-defined marine protected areas have 

issues with enforcement (Edgar et al. 2014). International policy agreements (ECOLEX; 

www.ecolex.org) are available for interrogation but down scaling these documents to match 

ecological processes is conceptually difficult (Treml et al 2015). Developing large-scale data on social 

activities and interactions has seen the collection of communication data from mobile phones 

(Deville et al 2014), internet software (e.g., Facebook), bank transactions, credit card usage and 

money transactions (Barabási 2005, Song et al 2010), yet the specific applications to the marine 

environment remain sparse. Similarly, many industrial activities in the marine environment (such as 

wind farms, fish farms and oil platforms) require rigid environmental monitoring in order to fulfill 

operational licensing requirements, but the data remain in the private domain and are rarely cross-

referenced. 

 

To counteract this data paucity in the face of increasing levels of extraction and destruction (Halpern 

et al 2008), conservation efforts have attempted to specifically identify key processes that 

contribute to the decline in marine health and spatially describe them. Reefs at Risk (Burke et al 

2011) and Status of the Coral Reefs (Wilkinson 2008) supply damage estimates with contributing 

factors.  In recent years the focus on regime shifts has spawned online databases seeking to collate 

case studies (e.g., Resilience Alliance and Santa Fe Institute 2004). While these meta-data portals 

provide a start, much greater communication, coordination and data provisioning is needed across 

disciplines to address global change challenges. 

 

New approaches to statistical analysis of big ecological data 

 

Analytical approaches to emerging global marine datasets will need to accommodate two main data 

challenges. First, the data will be increasingly complex, requiring novel statistical solutions. Second, 



the size of many new datasets will lead to storage and computational challenges. Here we outline 

some of these challenges as they relate to the analysis of marine ecological datasets. 

 

Most early statistical analyses were designed under the assumption that all samples were collected 

under similar conditions and inference was aimed at determining the effect of one or two factors. 

However, this scenario is increasingly unlikely in datasets that cover large areas, have many distinct 

observers, occur over long time periods, or have many predictor variables. Furthermore, distinct 

sampling units may have differing sampling conditions that influence the quality, quantity or error 

structure of data. If not accounted for, these differences can lead to significant bias and erroneous 

conclusions (Diniz̺Filho et al 2003, Kühn 2007). 

 

Many of the issues related to sampling bias can be addressed using hierarchical models, an umbrella 

term for a class of parametric analyses in which model parameters are themselves considered to be 

drawn from some probability distribution (Wikle 2003). Mixed-effects models are gaining popularity 

in ecological research (Bolker et al 2009), while in global datasets, the use of metadata such as 

location, sampling conditions and survey team experience can be used to partition and account for 

sources of variability (Bird et al 2014). In addition, hierarchical models are extremely useful in a 

meta-analytical context, where data from large numbers of independent studies can be integrated 

into a unified analysis. 

 

Ecologists are now more acutely aware that samples taken closer together are likely to be more 

similar than those taken farther apart (Bivand 2014, Cliff & Ord 1968), and a wide range of 

approaches have been developed to address this issue (e.g., Dormann et al 2007) (Table 1). Perhaps 

most significantly, user-friendly and open source statistical packages are making such analyses more 

accessible. Bayesian models can be used to model complex spatio-temporal dependencies within the 

data using conditional likelihoods, resulting in models that better reflect the ecological processes of 



interest. However the Bayesian approach is not often applied to large-scale data analyses due to the 

computational burden of Monte-Carlo Markov Chain methods used for inference. A more efficient 

approach to Bayesian inference is Integrated Nested Laplace Approximation (INLA, Table 1). INLA 

uses approximate inference to arrive at the posterior distributions that would normally be inferred 

using MCMC, but arrives at a solution much more quickly (Raudenbush et al 2000).  

 

Another important source of bias in abundance or occurrence datasets is failed detection (see OBIS 

box), where recorded absences of species are partly due to sampling error (Tyre et al 2003). 

Approaches to correcting for this bias rely on a modified sampling procedure, in which replicate 

observations are used to separately model the process of interest (such as presence/absence) and 

the probability of accurately detecting a species given that it is present. By estimating the rate of 

detection, the overall probability of occurrence is adjusted accordingly (MacKenzie et al 2002). 

 

Occupancy detection models belong to a class of state-space models (SSMs), in which observations 

are assumed to be dependent on some underlying state.   Conceptually, this idea can be extended to 

a wide range of scenarios, allowing for modelling sampling-related biases such as misidentification of 

species, uncertainty in location, or variation in life-history stages or other ecological processes (e.g., 

Borchers & Efford 2008). SSMs are increasingly used in a Bayesian context, as they allow complex 

hierarchical models for ecological processes of interest (e.g., King 2012). A challenge with SSMs is 

that they can be computationally intensive, given that analyses must impute values for all hidden 

parts of the model (see Table 1).  

 

Machine learning (ML) approaches offer an alternative to parametric models. ML has the advantage 

that it does not rely on distributional assumptions in order to make predictions, and has been used 

to identify global-scale biodiversity patterns from gridded raster datasets and geo-located survey 

data (e.g., Stuart-Smith et al 2013). More recent ML approaches such as Quantile Regression Forests 



(Meinshausen 2006) and Boosted Regression Trees (Elith et al 2008) can provide confidence 

intervals around predictions, or infer linear relationships between variables and covariates. Because 

they do not rely on distributional assumptions, Random Forest approaches have been used with re-

weighting procedures to convert available low-resolution areal data to predictions at high 

resolutions (Deville et al 2014, Leyk et al 2013). In the context of large and complex datasets, ML 

approaches can suffer as the number of model nodes increases exponentially with the number of 

observations, rapidly overwhelming the capacity of many computing systems. A more recent 

development is the use of decision jungles, which modify traditional random forests using a 

probabilistic method of merging nodes in a directed acyclic graph (Shotton et al 2013). 

 

Another class of ML model is Gaussian Process Models (GPMs). GPMs are essentially a smoothing 

technique in which the response data are modelled as the outcome of some multivariate Gaussian 

process - any set of functions with a joint Gaussian distribution and zero mean (Rasmussen 2006). 

GPMs can be fit to data in multidimensional space and then used to construct Bayesian priors for 

expected response values in unsampled space (Banerjee et al 2008). 

 

However in all of the above applications, the size of databases ʹ both for observation data and 

predictor covariates ʹ is increasingly a limiting factor. In particular, datasets generated by electronic 

tagging (e.g., Block et al 2011), video (e.g., cabled observatories: Matabos et al 2014), acoustic 

recorders (Korneliussen & Ona 2002), or environmental monitoring packages  designed to measure 

multiple physical parameters (such as temperature or fluorescence), can rapidly grow to terabytes of 

data. In many analyses, high performance computing (HPC) clusters and cloud computing provide 

solutions by allowing large prediction problems to be split into many small tasks through model 

fitting of subsets of the prediction dataset. Platforms such as Microsoft Azure, Google Compute 

Engine, and Amazon Elastic Cloud Compute are all suited to this kind of task, which has been 



ĚĞƐĐƌŝďĞĚ ĂƐ ͚ĞŵďĂƌƌĂƐƐŝŶŐůǇ ƉĂƌĂůůĞů͛ (Wilkinson & Allen 1999), meaning the data and analyses can 

be subset into smaller independent packages without influencing the result. 

 

Where analysis of the complete dataset is limited by memory, map-reduce algorithms such as 

Hadoop split data according to some criteria prior to performing analyses separately on data subsets 

on separate cores.  The results are then combined. Many kinds of problems can be approached in 

this way, particularly where data first need to be classified or sorted, then aggregated using some 

calculation. In these cases, algorithmic analyses such as data mining are useful for isolating particular 

patterns in the data.  

 

Alternatively, where analysis of the dataset as a whole is required, distributed computing splits the 

analysis task between cores of a HPC cluster as in an embarrassingly parallel computing environment, 

with the difference that the nodes in the cluster use a message passing interface in order to allow 

different parts of the algorithm to interact with one another. A simple example of distributed 

computing in an environmental context might be the aggregation or down-sampling of ecological 

data from a large network of sensors (Porter et al 2012). Finally, some researchers are turning to 

crowdsourcing of analytical tasks by asking internet-based volunteers to perform image processing 

tasks that can be done easily by people but are complex for computers (Shamir et al 2014).  

 

As ecological research becomes increasingly data intensive, and involves crowdsourcing of data 

processing (e.g., digitising raw data), we will be challenged to maintain the integrity of our 

workflows; data acquired and integrated across multiple scales will require multiple data formats, 

statistical approaches and software packages (Levy et al 2014). Staying on top of such diverse 

sources of information and their respective complexities may require a unified framework for 

analysis, allowing greater reproducibility of research as well as iterative learning when new data 

become available (Michener & Jones 2012). In addition, the availability of data is often now 



outpacing its usability by managers, with many of the datasets described here requiring significant 

technical expertise to access and use. In this case, simulation programs such as Ecopath (Pauly et al 

2000) and systematic conservation planning tools such as MARXAN and C-Plan (Carwardine et al 

2007) can be invaluable for distilling dense ecological data into actionable management goals. 

 

 

Trend indicators for marine biodiversity and associated threats  

 

Tracking trends in marine biodiversity in relation to national and international biodiversity 

conservation targets requires the summary of complex ecological responses to anthropogenic 

threats withŝŶ ͚ƐƚĂƚĞ͛ ŝŶĚŝĐĂƚŽƌƐ (Jones et al 2011, Smale et al 2011). Thus, information that is 

multispecies and multidimensional needs to be reduced to comprehensible units that can be 

mapped or graphed. In order to best guide policy and management, indicators need to not only be 

understandable to the public and policy-makers, but also respond to particular threats in a 

predictable manner, allowing assessment of the success of mitigation efforts directed at that threat 

(Collen & Nicholson 2014). 

 

Despite decades of research focussed on the development and selection of indicators for this 

purpose (e.g., Fulton et al 2005, Rice 2000), challenges remain when (a) balancing the need for 

comparability across large scales without losing substantial ecological detail (Pereira et al 2013), (b) 

establishing empirical links between indicator values and threats (Collen & Nicholson 2014), and (c) 

quantifying the specificity of indicators to threats (Link et al 2010). Broad-scale indicators of 

ecosystem state which respond exclusively to a particular threat may not exist, but identifying those 

that are most responsive to each threat and that can quantify and account for interactions among 

threats remains an important research goal (Nicholson et al 2012). 

  



The investigation of broad-scale indicators for marine biodiversity has disproportionately focussed 

on ecosystem responses to commercial fishing, where management targets are often clearly defined 

and data most readily available. Substantial empirical and theoretical support exists for indicators 

based on the size or biomass spectrum of the whole fish community (Graham et al 2005, Jennings & 

Dulvy 2005), for example. However, spatial variation in the importance of environmental drivers and 

community structure in determining size spectra have not been evaluated at the global scale, and 

gear selectivity and methodological inconsistencies have imposed substantial barriers to broad-scale 

application and interpretation (Shin et al 2005). In addition, responses in community size spectra to 

changes in fishing pressure have been suggested to be too slow to direct fisheries management 

responses, which often occur on a year-to-year basis (Nicholson & Jennings 2004). Thus, size-spectra 

are arguably most useful for guidance on medium-term policy (Jennings & Dulvy 2005). 

 

Broad-scale indicators for threats associated with climate change, pollution and invasive species 

have been more poorly studied, with little guidance on sensitive indicators, let alone understanding 

of specificity or how response times compare with timeframes for management options. Current 

management and policy targets are also necessarily vague for such threats, and understanding of 

their relative importance is currently based primarily on expert opinion (Halpern et al 2007). Refining 

these targets with explicit quantitative goals is largely dependent on the availability of informative 

indicators to measure progress against these targets. Likewise, prioritising management and 

directing policy is dependent on research which incorporates threat indicators and can identify 

critical interactions, non-linearities, and links between threats and ecosystem functions and services.  

 

CONCLUSION 

 

Our living marine heritage is declining at an accelerating rate (McCauley et al 2015), in part because 

changing ecological patterns occur below the sea surface, and so are largely invisible to the public, 



including scientists, managers and policy makers. Even basic information, such as how well countries 

are complying with international commitments to the Convention on Biological Diversity, is 

essentially lacking. The general lack of systematic ecological monitoring data for tracking trends in 

marine condition, and scarcity of comprehensive analyses of existing data, contribute significantly to 

this situation.  

 

Survey data are needed that can be used to describe patterns of biodiversity at regional- to global-

scales, and that also link to fine-scale ecological data. Monitoring programs must accommodate 

study designs that are systematic, species-level, and spatially intelligent, while also anticipating the 

use of the new wave of ecological and geostatistical modelling approaches for analysis, including 

protocols that account for missing data. Conservation science needs a large-scale and long-term 

view of 1) data that are necessary for tracking responses and impacts, 2) fundamental metrics 

needed for reporting, and 3) ways to integrate past, current and future methods to provide both the 

fine-scale inference required for policy and intervention, and an integrated view of the global 

picture. 

 

Prioritisation of conservation actions requires, amongst other inputs, maps of the world delineating 

the state and trends for various conservation-related metrics. The framework exists to achieve this 

goal by embracing the 'big data' nature of the problem, and incorporating a wide perspective into 

the design of studies.  Important next steps include 1) recognition that biodiversity conservation 

depends fundamentally on persistence of species, and that monitoring trends in species population 

numbers is pivotal to conservation strategies, 2) consideration of spatiotemporal biases present in 

survey outputs, 3) augmentation of existing sampling protocols with new approaches to help 

overcome these biases, including expanded programs that leverage latent support from citizen 

scientists, 4) utilisation of large-scale covariate datasets, which are  becoming increasingly available, 

5) applying new methods of modelling that are facilitated by the massive recent increase in 



computational power, and 6) broadcasting ecological monitoring results in a way that makes them 

globally available and locally relevant. 

 

FUTURE ISSUES 

1. Conservation science and ecology will both greatly benefit from expanded global data-gathering 

and experimental networks, and new mechanisms for rapid retrieval and collation of marine 

biodiversity monitoring data. 

2. Improved coordination and communication is needed among disciplines, so that physical, 

biological, economic and social data are available at matched and relevant spatial and temporal 

scales to address global environmental challenges. 

3. Big data techniques used in other disciplines should be adopted more widely in conservation 

science, as well as new research collaborations established to develop tools for storing, 

managing, accessing, linking, visualizing and analysing data. 

4. Biodiversity targets that are meaningful in the context of global change need to be identified, 

along with appropriate metrics that can be reliably used to track progress towards these 

targets. 
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Fig. 1. ‘ĞůĂƚŝŽŶƐŚŝƉ ďĞƚǁĞĞŶ ƐƉĂŶ ŽĨ ƌĞƉůŝĐĂƚĞ ŽďƐĞƌǀĂƚŝŽŶƐ ;͚ŐƌĂŝŶ͛Ϳ ĂŶĚ biological detail obtained 

;͚ĐŽŵƉůĞǆŝƚǇ͛Ϳ ĨŽƌ ŵĂũŽƌ ŐůŽďĂů ŵĂƌŝŶĞ ŽďƐĞƌǀŝŶŐ ƐǇƐƚĞŵƐ ĚŝƐĐƵƐƐĞĚ in this review. High complexity is only 

achieved by systematic observation systems with small grain, such as the Zostera Experimental Network 

(ZEN), where plots of 50 cm diameter are manipulated. By contrast, MODIS coverage of ocean colour, a 

proxy for phytoplankton biomass, fully encompasses the globe. RLS: Reef Life Survey; CPR: Continuous 

Plankton Recorder; REEF: Reef Environmental Education Foundation; GTOPP: Global Tagging of Pelagic 

Predators; OBIS: Ocean Biogeographic Information System; GBIF: Global Biodiversity Information Facility. 
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Fig. 2. Flow chart describing links between environmental condition and the observation, analysis and 

management elements that constitute this review. 

 

  

 

  



 

 

 
 

Fig. 3. DŝƐƚƌŝďƵƚŝŽŶ ŽĨ ůŽĐĂƚŝŽŶƐ ǁŝƚŚ OBIS ƐƉĞĐŝĞƐ͛ ƌĞĐŽƌĚƐ.  Comment [GE2]: Note to editor: 

this figure can be deleted if paper 
overlength 



 

 

 
 

Fig. 4. Diving citizen scientist undertaking Reef Life Survey fish count. 
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Table 1. Useful analytical and data management approaches for large marine ecological datasets 

 

Statistical 

Method 

Application 

Description 

Example  

Hierarchical 

models 

Accounting for conditional dependence in the 

variance of the data 

 

Mixed effects Uneven variability is partitioned using metadata (Bird et al 2014) 

GAM(M) Response data are modelled as a function of 
smoothed prediction data 

(Fewster et al 2000) 

Occupancy 

detection 

Replicate observations within sampling units 

allows estimation of probability of detecting a 

species given its presence 

(O'Connell et al 2006) 

Capture-

recapture 

Replicate attempts to capture tagged animals 

yields an estimate of capture probability 

(Cheney et al 2013) 

Multiple observer Estimate detection error by observing how well 

two independent observations of occurrence 

overlap 

(Spear et al 2004) 

Line-transect 

methods 

Infer density based on the assumption that 

probability of detection falls off with distance 

(Buckland et al 1993, 

Burnham et al 1980) 

Integrated 

population 

models 

Measuring the same population using multiple 

approaches allows more accurate inference on 

population size 

(Besbeas et al 2002) 

   

Spatial methods Accounting for the spatial non-independence of 

data points 

(Reviewed in Dormann 

et al 2007) 

Geographically-

weighted 

regression 

Performs linear regression at local scales to 

quantify relationships that vary in space 

(Brunsdon et al 1998) 

Kriging Predicted values between observed data points 

are interpolated using a gaussian process with 

pre-set parameters 

(Jiguet et al 2012) 



Bayesian 

Geostatistical 
models 

Formulating the spatial dependence of data 

points in a Bayesian framework allows 
exploration of complex hierarchical 

dependencies 

Chang and Yuan, 2014 

Integrated Nested 

Laplace 

approximation 

INLA allows Bayesian hierarchical models to 

converge more quickly by avoiding MCMC 

(Illian et al 2012, Rue et 

al 2009) 

Environmental 

envelope 

Observed species ranges are related to the range 

of environmental conditions experienced 

throughout their range. 

(Cheung et al 2009) 

Principle 

Components 

Analysis 

PCA allows detection and quantification of spatial 

patterns over different scales 

(Borcard & Legendre 

2002) 

   

Machine learning Exploration of how response data are explained 

by many predictors 

 

Random forests randomly allocated classification rules show how 

combinations of covariates predict response data 

(Stuart-Smith et al 2013) 

Quantile 

regression forests 

the distribution of branching algorithms chosen 

in random forests provides estimates of 

uncertainty in their  predictions 

(Meinshausen 2006) 

Random Jungles probabilistic clustering of branching rules allows 

efficient exploration of large sets of predictor 

variables  

(Shotton et al 2013) 

Boosted 

regression trees 

Classification algorithms performed on 

predictions from sequential trees allows for more 

robust predictions 

(Hochachka et al 2007) 

Gaussian Process 

model 

Smoothed relationships between response data 

and predictors are modeled as multinomial 

gaussian distribution in multidimensional space 

(Patil et al 2009) 

   

Data 

management 

  



HPC Splitting large computational tasks between 

multiple computers allows analysis and 
prediction in large datasets 

(Caruana et al 2006) 

Distributed 

analyses 

Analytical or processing tasks can often be 

divided between computers before being 

aggregated for a final analysis 

(Anderson et al 2002) 

Crowdsourcing Pattern recognition tasks can farmed out to 

volunteers over the internet 

(Shamir et al 2014) 

Hadoop The Map-reduce computing framework allows 

large data files to be logically processed across a 

distributed network of compute nodes 

(Zhao et al 2010) 

 


