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ABSTRACT

Accurate prediction of the commencement of local rainfall over West Africa can provide vital information

for local stakeholders and regional planners.However, in comparisonwith analysis of the regional onset of the

West African monsoon, the spatial variability of the local monsoon onset has not been extensively explored.

One of themain reasons behind the lack of local onset forecast analysis is the spatial noisiness of local rainfall.

A new method that evaluates the spatial scale at which local onsets are coherent across West Africa is pre-

sented. This new method can be thought of as analogous to a regional signal against local noise analysis of

onset. This method highlights regions where local onsets exhibit a quantifiable degree of spatial consistency

(denoted local onset regions or LORs). It is found that local onsets exhibit a useful amount of spatial

agreement, with LORs apparent across the entire studied domain; this is in contrast to previously found

results. Identifying local onset regions and understanding their variability can provide important insight into

the spatial limit of monsoon predictability.While local onset regions can be found overWest Africa, their size

is much smaller than the scale found for seasonal rainfall homogeneity. A potential use of local onset regions

is presented that shows the link between the annual intertropical front progression and local agronomic onset.

1. Introduction

Accurate forecasting of the West African monsoon

(WAM) is a topic of great importance for local stake-

holders and the wider forecasting community. More

than 65% of the West African workforce works in the

agricultural sector providing about 32% of gross do-

mestic product (Fitzpatrick 2015). The majority of

farmland in West Africa is not irrigated, meaning that

the success of a harvest is strongly dependent on con-

tinuous and sufficient rainfall suitable for crop growing

(Ingram et al. 2002; Ewansiha and Singh 2006).

In addition to agricultural impacts, previous work has

linked the seasonal cessation of meningitis infections

to the advancement of monsoon-related moisture

(Molesworth et al. 2003; Sultan et al. 2005b); there is

also a link between seasonal increase in malaria and

dengue fever cases and precipitation increase during

boreal spring and summer (Mera et al. 2014). Com-

pounding the risk of disease is the clear link between
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malnutrition and mortality rates of common diseases

(measles, cholera, mumps, etc.; West Africa Regional

Health Working Group 2012). The need to provide so-

cieties across West Africa with accurate, relevant, and

usable information on the local and regional monsoon

condition is evident.

Of particular interest to local stakeholders is the

timing of the WAM onset (Ingram et al. 2002; Sultan

et al. 2005a), as well as the timing of societally useful

local precipitation [defined as more than 4mmday21 by

Lélé and Lamb (2010)]. Over 17 definitions for the

WAM onset have been published (Fitzpatrick et al.

2015, their Tables 1 and 2). Definitions have been cre-

ated over different length scales, using different metrics

and analyzed with different datasets over various time

periods (see, e.g., Sultan and Janicot 2003; Fontaine and

Louvet 2006; Marteau et al. 2009; Gazeaux et al. 2011).

Local agronomic onset definitions such as that pro-

posed by Marteau et al. (2009) can provide the most

relevant information for local and national planners in

West Africa. The agronomic onset definition (AOD)

given in Marteau et al. (2009), henceforth AODM, was

made in conjunction with local and regional stake-

holders in Senegal,Mali, andBurkina Faso. TheAODM

requires a predetermined and relevant set of rainfall

thresholds to be met in order to be triggered.

There exists a particular disparity in the literature

between the timing and interannual variability of re-

gional onsets (onsets calculated on a supernational scale

following the zonal maximum of precipitation and con-

vection) and local onsets (threshold-based onsets eval-

uated at the subnational scale). In particular, there

appears to be little to no correlation between the annual

transition of the zonal maximum rain belt and agro-

nomic onsets across West Africa at the local scale [see

section 2 herein; see also Fitzpatrick et al. (2015)]. This

presents an interesting conundrum for forecasters and

stakeholders when trying to disseminate how useful re-

gional onset forecasts are formore localized needs. Here

focus is given exclusively to local onset variability.

In the current literature on WAM dynamics, the effect

of dynamical drivers on local onsets has been vastly

underresearched. Over West Africa there is research into

how seasonal precipitation totals or the annual shift of the

maximum precipitation belt are affected by many drivers.

These include but are by no means limited to sea surface

temperatures (e.g., Caniaux et al. 2011; Rowell 2013), the

Saharan heat low (Lavaysse et al. 2009) and associated

modulation in forcing by midlatitude Rossby waves

(Roehrig et al. 2011), the phase and intensity of the

Madden–Julian oscillation (Maloney and Shaman 2008;

Lavender andMatthews 2009), dry-air intrusions from the

Mediterranean tied to the Rossby wave response of the

Indianmonsoon onset (Flaounas et al. 2012a,b), orAfrican

easterly waves (Berry and Thorncroft 2005; Bain et al.

2014), among other examples. However, how these drivers

affect local onset variability has rarely been explored.

The most likely reason for the dearth in local onset

variability studies is that local precipitation and local

onsets are deemed too spatially and interannually vari-

able to warrant detailed study (alluded to in several pa-

pers; e.g., Maloney and Shaman 2008). Indeed, Marteau

et al. (2009) conclude that their local onset definition does

not seem to be driven on a large scale by any coherent

mesoscale, synoptic-scale, or planetary-scale features.

There is little spatial or interannual agreement in onset

date variability found across their study region. However,

given that Marteau et al. (2009) also find a clear increase

in mesoscale convective activity over rain gauges after

local onset is triggered, it seems natural that local onset

has some larger scale mode of variability. Here we hy-

pothesize that there is some degree of spatial coherence

present that can be measured using a different approach

to those used inMarteau et al. (2009). It is not possible to

begin assessment of the interannual variability of local

onsets before quantification of the spatial limits of local

onset predictability is known.

In this paper we attempt to answer the question ‘‘On

what spatial scale can the commencement of local pre-

cipitation onset be viewed as sufficiently homogeneous

for practical purposes?’’ Clearly if local variability in

precipitation dominates over regional coherence across

all West Africa, the predictability of local onsets is likely

to be poor and of little use to forecast users. Once the

spatial limit of local onset homogeneity is known, it may

be possible to assess the causes for local onset variability

over clearly defined boundaries. This will provide the

most useful data for local forecast users and regional

planners directly affected by the timing of local onset.

To achieve our aims, a new approach to quantifying

onset coherence is introduced. To quantify the spatial

limit of temporal homogeneity of local onset, subregions

of West Africa are sought for which either the year-to-

year timing of, or interannual variability of, local onsets

is consistent. It is desired that a representative time se-

ries of onsets, such as annual median onset over the

subregion, can be used to describe interannual vari-

ability across the subregion. This allows for local onsets

to be represented within defined boundaries, much the

sameway that current research constructs regional onset

(e.g., Sultan and Janicot 2003; Fontaine et al. 2008;

Vellinga et al. 2013). The homogeneous regions found

are termed local onset regions (LORs) and all grid cells

within an LOR are termed the LOR’s constituents.

Because of the lack of research on local onset vari-

ability, predictors for local onset have not been studied
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extensively. One potential predictor is the seasonal ad-

vancement of moist cool monsoon winds into continental

West Africa (Ilesanmi 1971; Hastenrath 1991; Lélé and

Lamb 2010). The northernmost extent of the southwest-

erly monsoon winds is characterized by the intertropical

front [ITF; also referred to as intertropical discontinuity

(ITD) in the literature], sometimes thought of as the

northernmost extent of the monsoon (Walker 1957; Lélé
and Lamb 2010). An assessment of the potential link

between ITF advancement and local onset variability is

offered in this article, providing information on a poten-

tial necessary condition for monsoon onset to occur.

Section 2 will give a brief overview of the onset defi-

nitions used and datasets employed with section 3 high-

lighting the methods for identifying LORs and for the

ITF onset. Sections 4 and 5 will give results for the spa-

tially uniform (year-to-year onset date homogeneity) and

interannual (year-to-year onset variability coherence)

methods, respectively. Section 6 highlights the use of in-

terannual LORs in finding a link between the ITF and

local precipitation onset. Section 7 summarizes the

identification of LORs for use in analyzing the WAM.

2. Data and definitions used

To identify and appreciate the level of spatial homo-

geneity of local onset, the definition chosen has to be

applicable across thewholeWestAfrican domain (taken

here as 88–168N, 208W–208E) and identify an important

time in the local precipitation time series. For this study,

the AODM is used, although the methods employed in

this paper are also valid for other local onset definitions

(e.g., Omotosho et al. 2000; Yamada et al. 2013).

a. Data

Daily rainfall totals for the season April–August have

been taken from the high-resolution (0.258 3 0.258) Trop-
ical Rainfall Measuring Mission 3B42 v7 precipitation

dataset for the period 1998–2014 (TRMM v7; Huffman

et al. 2007). To study the seasonal ITF movement, 2-m

dewpoint temperatures for 0600 UTC have been taken

from the ERA-Interim dataset for the months March–July

of 1998–2014 (Dee et al. 2011). To use data on a compar-

ative length scale to precipitation observations, the in-

terpolated 0.258 3 0.258 dataset from ERA-Interim was

chosen as opposed to the native T255 horizontal grid. The

earlier period for dewpoint observations allows for identi-

fication of whether the ITF is a climatological precursor to

local agronomic onset with pragmatic lead time for local

and regional planners. Hence, the ITF is observed prior to

the local agronomic onset of rain for this assessment.

One potential issue with using the TRMM v7 dataset is

the relative briefness of available data compared to more

coarse datasets (such as the Global Precipitation Clima-

tologyProject or a rain gauge network). Thedecision to use

TRMM v7 data was made due its higher resolution com-

pared to other datasets, which was considered sufficiently

advantageous for analyzing the spatial variability of local

onset over West Africa. An assessment of whether the

results presented can be considered representative of

longer-termAODMhomogeneity is provided in section 3c.

b. Local West African monsoon onset definition
(Marteau et al. 2009)

The AODM is defined as the first rainy day (pre-

cipitation greater than 1mm) of two consecutive rainy

days (with total precipitation greater than 20mm) and

no 7-day dry spell with less than 5mm of rainfall during

the subsequent 20 days.

Figure 1 shows the mean onset dates and local vari-

ability of the AODM across West Africa for the period

1998–2012. The mean onset date for the AODM ranges

from earlyMay in the southernmost parts of our observed

region to mid-to-late July farther north (Fig. 1a). The

AODM is triggered every year across most locations in

West Africa except toward northern West Africa (148–
168N). Interannual variability in the AODM is high over

much of continental West Africa with local standard de-

viations of more than two weeks being common (Fig. 1b).

Conversely, in the longitude bound 108–208W, local

standard deviation of the AODM is generally lower than

elsewhere within our studied region. The high variability

of the AODM found over much of West Africa suggests

that climatological local onset dates are not useful for

local stakeholders in these regions. A clear understanding

of the limits of predictability is therefore sought.

A considerable issue for local and regional planners is

the lack of interannual agreement between local and

regional WAM onset dates at the local scale. The most

popular regional onset definition applied comes from

Sultan and Janicot (2003). Fitzpatrick et al. (2015) ex-

amine the interannual correlation at the local scale be-

tween the AODM across West Africa and the regional

onset date (averaged across 108W–108E), from Sultan

and Janicot (2003) for the years 1998–2012 using TRMM

v7 data. It is found that there is minimal significant

correlation at the 80% level acrossWest Africa between

the two definitions. This result implies that un-

derstanding the interannual variability of regional on-

sets will have minimal use for understanding local onset

variability. This result provides the motivation for this

paper to exclusively focus on the AODM.

c. Intertropical front onset

The ITF marks the northernmost limit of the moist,

cool monsoon winds into continental West Africa and is
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defined here following Lélé and Lamb (2010) by ob-

serving the northward extent of the 158C 2-m dewpoint

temperature isodrosotherm. We wish to establish

whether there is a link between themedianAODMdate

of a LOR and the progression of the ITF toward and

beyond that LOR. Therefore, a local ITF onset metric

measured for every LOR (denoted ITFL) is given as

follows:

d ITFL at LOR L occurs when the zonally averaged

(across the longitudinal limit of L), 10-day averaged

2-m dewpoint temperature at a given distance (de-

noted D) northward of L is equal to 158C.

The distanceD is readily modifiable in order to assess

the spatial difference in the link between the ITF and

local onsets. The results shown here are figurative of the

general link between local onsets and the ITF. A re-

gional version of the local preonset (ITFL) has also been

computed. This regional definition (denoted ITFR)

follows the same method as the ITFL, but it zonally

averages the 2-m dewpoint temperature across 108W–

108E prior to computation of the onset date.

The definition of the ITFL has spatial limitations. As

the 158C isodrosotherm is representative of the location

where cool moist winds from the Gulf of Guinea meet

dry warm air from the continent, this definition is not

valid over the western extent of the region studied

(roughly 108–208W). Therefore the ITFL analysis is

done on the shortened longitudinal range 108W–208E.
As the ITFR is defined between 108W and 108E, such a

restriction is not required.

There is a need to distinguish the timing at which

dewpoint temperature data are taken. During the day,

sensible heating allows for vertical mixing of the

boundary layer across West Africa giving a well-

established ITF, suggesting that 1200 UTC data are

preferable. By contrast, cooling overnight allows for the

ITF to penetrate farther northward near the surface,

partially due to the influence of gravity currents

(Flamant et al. 2007; Bou Karam et al. 2008). Forecast

centers often track the ITF location at 0600 UTC, when

the convergence line is sharpest. The link between the

ITF and local onset has been assessed using both 0600

and 1200 UTC dewpoint data. As results for both times

are similar, only 0600 UTC is presented here.

3. Method for identifying local onset regions

Regions are sought where there is spatial coherence of

local onset variability (LORs). These LORs can provide

practical forecast skill for local and regional stake-

holders. Two general modes of variability are assessed.

For regional planners, it is useful to identify regions

where local onsets consistently occur around the same

FIG. 1. Statistics forAODM. (a)Mean onset dates of theAODMusing TRMMv7 dataset for

the years 1998–2012. (b) Standard deviation in days of local onset (AODM) from local average

onset for the period 1998–2012 using TRMM v7 precipitation data. White regions denote lo-

cations where the AODM onset date was found for less than 5 of the 15 years studied. Large-

scale rivers and lakes within the study domain are included for reference.
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time each year (or where local onset anomalies are

consistently bounded). These regions allow for forecast

users to give a window when local onsets occur across

the LOR with a reasonable amount of confidence given

knowledge of what affects local onset variability within

the LOR. The first LOR method is termed the spatially

uniform LOR method.

Additionally, regions are sought where regardless of

the range of onset dates within the LOR the interannual

variability of onsets is consistent. This information

would allow regional planners and forecast users to gain

insight as to whether an onset will be relatively early or

late across a defined region for a given year. This second

LORmethod is henceforth referred to as the interannual

LOR method. The two methods should be treated

independently.

Themain advantage of the interannual LORmethod is

the ability to identify regions where onsets occur over a

wide temporal range. The location of an LOR where

variability is consistent despite a wide temporal range of

AODM onset dates along topographic or climate gradi-

ents gives the potential for inherent prediction of onset

within an LOR. In effect, observing the variability of the

earliest onset dates within a LOR could give insight into

the variability of later onsets across the LOR.

To identify LORs, we have devised a relatively simple

method designed to be repeatable and practical for de-

pendent stakeholders in contrast to more statistically

complex methods such as cluster analysis. The methods

used to identify spatially uniform and interannual LORs

follow the same pattern with different criteria. For each

grid cell in the tested domain we first take the onset

dates and spatial median of those dates within a 3 3 3

grid point LOR centered about the chosen grid cell. The

LOR is tested using the spatially uniform or interannual

criterion (see sections 3a and 3b, respectively). In

principle, a given grid cell can have both types of LORs

centered about it. Upon passing the chosen criterion, the

LOR is expanded and tested again. If the criterion is not

met, the LOR size and location are recorded. Expansion

of LORs is done first by testing whether the LORwould

pass the criterion with latitudinal extension (one row of

grid cells added to the north and the south) and longi-

tudinal extension (one column added to the east and

west). If this new LOR does not pass the criterion, we

test whether a latitudinal or longitudinal extension

would provide a valid LOR. Failing this, the LOR is

allowed to extend along any of the four axes. The order

of testing chosen for this analysis is to add from the

north, east, south, then west of the LOR. Reordering of

these criteria has nominal effects on the results (not

shown). If any of the above extensions pass the criterion

tested, we repeat the process from the start.

It is inherently implied that a grid cell can belong to

multiple LORs. Intuitively if a grid cell has coherent

onset variability with its neighbors, then some of the

neighbors will also have coherent variability with the

original grid cell. We therefore note the largest LOR

each grid cell is contained within as well as the location

of all LORs. Using the method presented here, there is

opportunity for LORs to overlap (this is in contrast to

other methods such as cluster analysis). General

grouping of LORs gives insight into the level of spatial

homogeneity and provokes further discussion and

analysis as opposed to the exact locations of single

LORs, which may be too isolated to have a substantial

impact for forecast users.

For both methods presented, there is an inherent

requirement for LORs to be identified over regions

where onset frequently occurs. Therefore it is required

for both spatially uniform and interannual LORs to

have at least 80% of grid cells exhibit an AODM onset

date for at least 10 of the 15 years assessed. Comparing

LORs found with and without this restriction shows

that many of the LORs over the region 148–168N are

not present when one demands that onsets frequently

occur (not shown). Outside of this area, there is mini-

mal difference between the LORs found (not shown).

For the rest of this paper, the restriction is therefore

applied.

a. Spatially uniform LOR methods

Spatially uniform LORs identify subregions of West

Africa where the timing of onset is largely in agreement

across the LOR each year. Two potential methods are

provided for spatially uniformLORs, one using absolute

onset dates and one using onset anomaly data.

First, we highlight regions where the absolute onsets

dates are consistently bounded (i.e., onset dates across

the LOR occur within a preset range of each other year

to year). The exact timing of onsets is allowed to vary

interannually as long as the range of onset dates remains

consistent.

Second, we highlight regions where the onset anom-

alies across the LOR are bounded (i.e., removal of the

local mean onset date prior to LOR assessment). In

some circumstances it will be more important to assess

consistency of relative onset dates (anomalies) rather

than absolute dates and thus both methods are

considered.

For spatially uniform LORs, we identify areas where

onset dates (or anomalies) for a certain percentage of

grid cells (P), taken as 50% but modifiable (see section

4a), lie within a given range R of the LORmedian onset

(median local anomaly) forY years. The variablesR and

Y are modifiable. Understanding the balance between
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maximizing the trustworthiness of spatially uniform

LOR formation for stakeholders in West Africa, while

not being too restrictive in creating LORs, is important

in making practical advances for onset comprehension.

While in an idealized setting there would be clear re-

gions where all onset dates lie within a strict threshold

for all years, in reality this is not the case (see section 4a).

Here we investigate the variability of spatially uniform

LOR coverage over West Africa for different values of

R and Y.

b. Interannual LOR method

1) OUTLINE OF GENERAL METHOD

The spatially uniform LOR methods presented in

section 3a focus specifically on the absolute range of

LOR constituent onset dates or anomalies each year. By

contrast, the interannual method finds regions where

LOR constituent onset dates share similar interannual

variability. The interannual method can therefore be

thought of as a natural extension to the spatially uniform

method using anomaly data.

For each grid cell across the observation region we

identify the largest possible LOR centered at that lo-

cation for which the following criterion is met:

d The onset time series of at least ncrit% of all grid cells

show correlation (at the x confidence level) with the

median onset date time series of the LOR.

The parameter ncrit is a modifiable percentage of the

total number of grid cells within the LOR (denoted as

N). The threshold x is also modifiable.

Interannual LORs are allowed to expand even if the

test criterion is not passed as long as a larger LOR

containing all the grid cells currently included passes.

This allows for LORs up to 1.58 larger to be considered

when assessing whether LORs can be found. The num-

ber of LORs affected by this added level of complexity is

approximately 10%, which tend to be smaller in-

terannual LORs (not shown).

2) SENSITIVITY OF PROBABILISTIC LORS TO

CONFIDENCE INTERVAL SELECTION

The probability that two random time series correlate

at a given confidence level, x (e.g., the 80%, 90%, or

95% level), is p5 (12 x). However, given the criterion

presented in section 3b(1), the creation of an LOR en-

compassing many random time series is much less likely.

Taking an LOR containing N grid points each with as-

sumed random and independent time series of AODM

and assessing the probabilityP that this LORwould pass

our criterion, it can be shown using the binomial distri-

bution that

P5 �
N

r5ncrit

NC
r
(p)r(12 p)N2r , (1)

where ncrit is rounded up to the nearest integer. Table 1

shows a comparison of the expected number of random

LORs for differing N and x with ncrit fixed at 80% if we

accept the assumption that all grid cells have in-

dependent AODM triggering. For reference there are

approximately 5500 grid cells in the studied domain. The

number of expected random LORs is dwarfed by the

total number of LORs found in section 5a.
For regional planners the existence of an LOR implies

that at least a given percentage of locations have in-

terannual variability consistent with the medianAODM

variability with confidence x. Pragmatically this means

that for every grid cell within an interannual LOR, a

regional planner is able to give a probability that onset

will occur later than, or earlier than average given

knowledge of the median onset date variability (which

can be attained through future research into local onset

variability including our section 6). Table 2 gives some

example probabilities (here again we presume that the

probability for each grid cell is independent).

While it would be preferable to maximize x and ncrit,

in reality it is reasonable to expect some leeway. We

therefore compare the size and coverage of LORs found

using three different confidence intervals: 95%, 90%,

and 80%. For these three confidence intervals the

probability of the AODM variability at each LOR

constituent grid cell following the median AODM var-

iability is still greater than 0.5, meaning LORs can pro-

vide relative skill over a random forecast. Section 5b

considers the variation of interannual LORs with re-

spect to the parameter ncrit.

c. Suitability of TRMM v7 as precipitation dataset for
analysis of LORs

Precipitation over West Africa is known to have large

decadal variability [see Fig. 1 in Lélé and Lamb (2010)

and further references]. Given the relative briefness of

the TRMM v7 dataset, it is fair to ask whether TRMM

TABLE 1. Probability of getting a random interannual LOR of size N.

No. of

grid

cells in

LOR (N)

Confidence

interval x

ncrit
(%)

Probability

of random

LOR

Expected

No. of

random

LORs

9 80% 80 0.0003 2

9 90% 80 3.0 3 1026 0.02

9 95% 80 2.6 3 1028 0.0001

25 80% 80 2.0 3 10210 1.0 3 1026
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v7 can be considered a sufficiently representative data-

set from which to infer the variability of the AODM.

To test the robustness of dataset choice, the spatially

uniform and interannual methods were applied on two

7-yr subperiods of TRMM v7 data. LORs were found in

the same locations using the shorter time periods and the

full TRMM v7 dataset, although the size of LORs is

often smaller for the former (not shown). We therefore

posit that the results of this paper give a realistic rep-

resentation of the spatial variability of the AODM, al-

beit with the restriction of observational biases.

4. Spatially uniform LORs across West Africa

a. LORs found using absolute onset dates

Figure 2 shows the number of spatially uniform LORs

identified using absolute onset dates against different

values of Y. The large number of LORs is consistent

with the fact that each grid cell may have its own LOR.

As expected, increasing Y decreases the number of

LORs found. For example, when R 5 7, the first large

numerical decrease in the quantity of spatially uniform

LORs occurs betweenY5 8 andY5 9 years. Afterward

the number of LORs identified roughly decreases by 500

with each additional year Y. When R 5 7, there are

relatively few LORs for which onsets lie within a close

range for many years (i.e., Y 5 14), even at the 3 3 3

gridcell scale.

The number of LORs found is also affected by the size

of the observation window R. As would be expected,

fewer LORs are identified when the variable R is re-

duced. In addition, the size of LORs is generally smaller

for lower R (not shown). For higher values of R (such as

R 5 10 or R 5 14 shown in Fig. 2), there appears to be

little change in the number of LORs found for in-

creasing Y, suggesting that the LORs found for high R

values are resistive to the impact of Y found for R 5 7.

The question must be asked whether LORs with such

high values of R can be pragmatic.

In addition, the proportionate variable P also impacts

the amount and size of LORs found. The number of

LORs found for given R and Y roughly halves from P5
50% to P 5 80% (not shown). The AODM across

subregions of West Africa may exhibit some level of

spatial coherence, but is evidently not universally

coherent.

Figures 3a and 3b show scatter distributions of the

spatial scale of LORs found for Y 5 7 and Y 5 9, re-

spectively, with R 5 7 days and P 5 50%. Spatially

uniform LORs found using absolute onset dates tend to

TABLE 2. Confidence of LOR constituent having similar variability

to median onset date for varying confidence intervals.

Confidence level x ncrit (%)

Confidence for each

grid cell in LOR

0.95 80 0.76

0.9 80 0.72

0.8 80 0.64

0.8 100 0.8

FIG. 2. Decrease in number of spatially uniform LORs for increasing Y and decreasing R.

Plotmeasures the number of grid cells for which at least a 33 3 (0.758 3 0.758) spatially uniform
LOR can be found against the number of years for which at least 50% of onset dates must lie

within R days of the median LOR onset date (denoted Y). Different columns for each value of

Y are for varying values for the temporal constraint R.
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be ‘‘wide and short’’ (i.e., longitudinal scale . lat-

itudinal scale). Given the latitudinal gradient of the

AODM, as well as the geographical constraints of the

study domain, this result is to be expected (see Fig. 1a).

Figure 3 also shows that the distribution of LOR sizes

remains roughly consistent between Y 5 9 and Y 5 7

despite the different quantity of LORs. This is due to the

existence of a group of LORs, which consistently pass

the spatially uniform LOR criterion for almost all years.

The understanding of how convective rainfall is trig-

gered within these LORs could provide insight into

practical prediction of theAODM.Given the findings of

Marteau et al. (2009), this research may distill into de-

termining the cause of early season mesoscale convec-

tive system genesis and development over LORs.

Figures 4a and 4b show the spatial scale of the largest

LOR containing each grid cell for Y 5 7 and Y 5 9,

respectively. The spatial distribution of LORs drasti-

cally changes with the increase of Y outside of a few

‘‘stable’’ regions. Large LORs are typically spatially

restricted to the eastern Atlantic and coastal regions as

well as low latitudes around Benin and western/central

Nigeria (green and yellow LORs in Fig. 4). It can be

concluded that these regions have the highest level of

spatial uniformity in absolute onset date. Local vari-

ability in the AODM over the eastern Atlantic and

Senegal is generally less than two weeks (see Fig. 1b).

Therefore the most significant highlight of spatially

uniform LORs in terms of potential impact is over the

longitude range 08–108E.
Over the rest of West Africa there is minimal cov-

erage of spatially uniform LORs for large Y. This is

particularly apparent around the region ;88W–08 and
over the eastern extent of our study region (Fig. 4b).

As the coverage of large spatially uniform LORs

within the monsoon region is minimal, regional aver-

aging of precipitation for onset formation potentially

overlooks natural localized subseasonal variability in

precipitation.

b. LORs found using onset anomaly data

As discussed in section 3, it is possible to construct

spatially uniform LORs using local onset anomaly data

instead of absolute onset dates. Figure 5 highlights the

dimensions of the largest spatially uniform LOR con-

taining each grid cell for the anomaly method and is

directly comparable to Fig. 4. Over the West African

coast and the eastern Atlantic Ocean, there is a much

larger region of spatial coherence for the anomaly

method compared to the findings of Fig. 3. This result is

not surprising given Fig. 1b. Large spatially uniform

LORs found with the anomalymethod exist where there

is low standard deviation of onset. Figure 5 shows that

the largest LORs occur where local standard deviation

FIG. 3. Distribution of size of spatially uniform LORs. LORs are identified where at least

50% of onsets lie within 7 days of median LOR onset for (a) Y 5 7 and (b) Y 5 9 yr. Longi-

tudinal and latitudinal length scale is in degrees. The color of each circle denotes the amount of

LORs found at each dimensional scale. For reference, the maximum possible latitudinal length

scale is 88 and maximum longitudinal length scale is 408.
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of onset is lowest over a large area (namely;208–108W;

see Fig. 1b). Probability density functions of onset

anomalies over subregions of West Africa validate this

fact (not shown). It is found that this region of high

spatial coherence over Senegal and Guinea is not solely

dependent on high agreement over the ocean (not

shown).

There are broad similarities between both spatially

uniform methods over the rest of West Africa. As seen

in Fig. 4, Fig. 5 highlights relatively large areas of co-

herence over the eastern parts of Benin andNigeria. The

consistency between Figs. 4 and 5 suggests that there

exist regions where onset dates are bounded but also

have consistent anomalies. However, there exist large

regions where the size of spatially uniform LORs is

small for both methods presented, suggesting that there

are regions where local variability dominates absolute

onset timings and relative anomalies. This information is

important for forecaster users, as it identifies where local

onsets may be less predictable.

The distribution of spatially uniform LOR shapes

found using the anomaly method is similar to that found

when using absolute onset dates (not shown). There are

larger LORs present when using the anomaly method;

however, the LORs are still typically wide and short.

This similarity is present despite the removal of the

latitudinal difference in mean onset dates when calcu-

lating LORs using the anomaly method.

Figures 4 and 5 show that spatially uniform LORs can

be diagnosed over West Africa using different funda-

mental methods. This work does not stress a preference

of method. Instead we highlight different techniques to

identify spatial coherence of local onset for planners and

forecast users in West Africa. The most suitable LOR

method should therefore be decided on a case-by-case

basis by forecast users. For example, local agronomic

stakeholders may prefer the information given by the

absolute onset date method over information on onset

anomalies.

Spatially uniform LORs provide information on the

year-to-year agreement of onset timing. While there is

not continentwide agreement in onset date on an in-

terannual basis, local onsets do show some level of

spatial homogeneity. This challenges the conclusion of

Marteau et al. (2009) that local onsets are too spatially

variable for application on a wider scale although the

difference in data used in Marteau et al. (2009) and this

work must be considered.

5. Interannual local onset regions over West Africa

a. Local onset region coverage for different
confidence intervals

Figure 6 shows the location of all interannual LORs

identified at three confidence intervals: 95% (Fig. 6a),

90% (Fig. 6b), and 80% (Fig. 6c), where 80% of grid

cells are required to correlate with the median onset

time series. It is noticeablemany interannual LORs exist

in contrast to the expected findings from Marteau

et al. (2009).

The number of interannual LORs found is inversely

proportional to the confidence level tested (cf. Figs. 6a

and 6c). There are five distinct regions where LORs are

clustered. These five regions, their spatial limits, and the

largest LOR within each region at the 80% confidence

FIG. 4. Spatial comparison of spatially uniform LOR sizes calculated using absolute onset

dates for with R5 7. Area of the maximum sized LOR containing each grid cell for (a) Y5 7

and (b) Y 5 9. For both plots area is given in units of 104 km2.
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level are given in Table 3. Outside of the five regions

found, the lack of LORs implies that local variability of

the AODM dominates over any regional coherence. It

can be seen that even at 80% confidence, LORs are not

found within the region 88–108N, 18W–18E (Fig. 6c). In

this region we reason that it is currently not possible to

give reliable information on the cause of AODM vari-

ability, as local noisiness of precipitation dominates

onset variability. The same conclusion can be proposed

for other areas where few or no LORs are present in

Fig. 6.

Themajority of interannual LORs in Fig. 6a cover less

than 30 000 km2 and so are relatively small in size com-

pared to the range used for regional onset assessment.

At lower confidence intervals the quantity and scale of

LORs increase. Figure 6b shows that at the 90% confi-

dence interval large (blue) LORs are present over the

coastal (CT), Niger/Nigeria (NN), and Cameroon

highland (CH) regions defined in Table 3. This is more

pronounced in Fig. 6c where large (blue) LORs are also

found over the Mali/Burkina Faso (MBF) and Benin/

Nigeria (BN) regions (also in Table 3). The existence of

large regions where local onset exhibits homogeneity

suggests that the interannual variability of local onsets

can be reliably assessed with regard to regional and

synoptic-scale processes using representative onset

dates across predefined regions. These processes may

include sea surface temperature teleconnections, Afri-

can easterly wave activity modulating rainfall, and the

impact of the Madden–Julian oscillation, among other

features.

Figure 7a shows the area covered by interannual

LORs, found at the 80% confidence interval, for every

point across the study domain. It is possible to distin-

guish the five main regions in Table 3 as the locations

where the largest interannual LORs are centered.

Figure 7b highlights the largest LOR that each grid cell

is contained within. Given the findings of Fig. 7b, we

suggest that the spatial homogeneity of local onset is

sufficiently large to be analyzed on a wider scale than

previously thought.

The existence of LORs across much of West Africa at

the 80% confidence interval suggests that some drivers

operating over hundreds of kilometers or greater are

affecting local onset across the entire region. The exact

processes responsible for local onset variability are not

currently confirmed; however, interannual LORs give a

method by which these processes can be identified and

analyzed.

Using interannual LORs, it is pragmatic to give rele-

vant information on agronomic onsets across the entire

West African domain studied given clear understanding

of the spatial constraints of local onset agreement. Local

onset regions allow for regional planners to give relevant

information on onset timing to people dependent on

such information with a built-in threshold of risk.

Likewise, local stakeholders are able to know with a

certain probability, expressed in Table 2, the relative

timing of onset at their location (here correct to a 1/48
square limit) compared to the local climatological mean.

This is a large advantage over current regional onset

forecasts.

b. Dependency of interannual LORs to restrictions in
their formulation

Figure 8 shows the scatter distribution of interannual

LORs found for the three confidence levels (95%, 90%,

and 80%) for four values of ncrit. It is apparent that ei-

ther an increase in confidence interval tested or ncrit
leads to smaller and fewer interannual LORs identified

FIG. 5. As in Fig. 4, but calculating spatially uniform LORs using onset anomaly data.
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(compare across rows in Fig. 8 for the variability due to

ncrit or down columns for the variability due to confi-

dence interval). It is seen that interannual LORs exist

even with the most stringent restrictions tested here

(Fig. 8d). It can therefore be concluded that the AODM

does exhibit spatial coherence in local interannual var-

iance over West Africa even at the highest levels of

specification presented here.With the exception of a few

wide and short LORs, interannual LORs tend to be

more ‘‘square’’ (similar longitudinal and latitudinal

scales) compared to the spatially uniform LORs (Fig. 3).

Given the latitudinal variability of the AODM seen in

Fig. 1a, this leads to the conclusion that interannual

LORs are capable of capturing variability over a greater

range of onset dates than spatially uniform LORs. This

is an advantage of interannual LORs, indicative of their

ability to capture the general variability of early mon-

soon flow instead of one specific moment in the mon-

soon season. For the remainder of this paper, unless

stated otherwise, analysis is done on LORs found at the

80% confidence interval with ncrit 5 80%.

c. Consistency of interannual LOR existence for 2013
and 2014

To verify the interannual LOR results, we have

assessed whether the LORs found for the time period

FIG. 6. Location of interannual LORs found at different confidence levels. Locations of local

homogeneity of the AODM onset found at (a) the 95% confidence interval, (b) the 90% in-

terval, and (c) the 80% interval. Color of LOR signifies the size of LOR. LORs of area less than

roughly 30 000 km2 are colored yellow, green LORs cover an area between 30 000 and

60 000 km2, and blue LORs cover area greater than 60 000 km2.

TABLE 3. Location of five main regions of interannual LORs.

Region (abbreviation) Spatial limit

Latitude and longitude of largest LOR

within region

Approximate area of largest

LOR within region (103 km2)

Coastal (CT) 88–168N 88–138N 337.5

108–208W 13.258–208W
Mali/Burkina Faso (MBF) 88–148N 12.58–15.58N 105

88–38W 7.58–48W
Benin/Nigeria (BN) 88–148N 108–12.258N 67.5

08–78E 28–58E
Niger/Nigeria (NN) 128–158N 118–148N 97.5

78–158E 7.258–10.58E
Cameroon highlands (CH) 88–128N 88–11.258N 268.125

88–208E 11.58–208E
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1998–2012 also display onset variability for the years

2013 and 2014. To test this, we consider each LOR

found for the period 1998–2012 individually and ana-

lyze whether the interannual criterion would hold for

2013 and/or 2014. In practice, if the median onset date

for an LOR for 2013 is later than the climatological

median onset date of that LOR, we assess whether the

constituent onset dates are also later than their re-

spective local long-term mean onset dates and vice

versa. Figures 9a and 9b show the LORs that validate

for 2013 and 2014, respectively. The majority of LORs

found for the period 1998–2012 are validated in 2013

and 2014 with LORs in four of the five main regions

highlighted in Table 3 present in Figs. 9a and 9b.

Figure 9a highlights that variability in the NN region in

2013 does not follow the pattern found for 1998–2012

with the entire region absent of LORs. The fact that all

NN LORs disappear shows the stability of the method

(it is expected that for 20% of years the LORwould not

be validated). This is also true for the MBF region in

2014. In both years the reason for this lack of homo-

geneity is a high spatial variability of AODM anoma-

lies within the regions (not shown).

In conclusion, interannual LORs appear to have

some usefulness in highlighting areas where onset

variability is consistent each year. Understanding what

causes the modulation of LOR median onset in a given

year will allow for predictability of local onsets across

defined parts of West Africa. Identification of the

drivers behind local onset variability within the regions

highlighted in Table 3 should be an area of key im-

portance for West African research.

d. Cross correlation of interannual local onset regions

Figure 6c and Table 3 show that there are large-scale

LORs found in the five distinct regions. We investigate

here how independent the interannual variability of

each region is relative to the other regions.

Figure 10 shows the level of cross correlation pres-

ent between LORs across West Africa. Each of the

five regions identified previously have been assessed

separately. Figure 10a shows all LORs that cross

correlate at the 95% confidence level with the largest

LOR in the CT region; Figs. 10b–e show the same

correlations for the largest LOR within the MBF, BN,

NN, and CH regions, respectively. The interannual

LORs between the CT and MBF regions tend to cor-

relate, suggesting a connection between the dynamical

effects on monsoon onset variability across these two

regions (Figs. 10a,b). The exact reason for this link is

currently unknown, but there are indications that

westerly moisture flux from the eastern Atlantic coast

and other factors could play a role (Lélé et al. 2015).

Likewise, there appears to be a link between onset

variability over the NN region and the variability over

the MBF and BN regions (Figs. 10b–d). This again sug-

gests that there is a possible underlying connecting

driver or combination of drivers of local onset vari-

ability across a large section of West Africa. A poten-

tial explanation of the connection between the MBF

and NN regions is the development and westward mi-

gration of fast-moving squall lines generated over the

Jos Plateau. There does, however, appear to be a dis-

connection between variability of onset across the NN

FIG. 7. Area of interannual LOR (found at the 80% confidence interval) (a) centered at and

(b) containing each grid cell. Units for area are 104 km2.
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FIG. 8. Comparison of interannual LORs found for different ncrit values at different confidence intervals. Scatter

distribution of the spatial dimensions for interannual LORs found at all confidence intervals and values of ncrit
tested. Shown are LORs at the (a)–(d) 95%, (e)–(h) 90%, and (i)–(l) 80% level. Columns are sorted by values of

ncrit written above the top row. The color of each circle represents the number of LORs found at each dimensional

scale [legend in (l) holds for all panels]. Longitude and latitude scale are in degrees.
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and CH regions, suggesting that the factors that control

onset variability are different. This is likely due to the

topographical features in the CH region governing

local onset.

Cross-correlating LORs highlight that there may be

large-scale underlying causes for local onset variability

across sections of West Africa. For example, it may be

that the connection between the CH andMBF regions is

due to the African easterly jet and associated African

easterly waves bringing intense precipitation toward the

MBF region. This link has not been explicitly proven

with regard to local onset, but it has in a more climato-

logical sense (e.g., Fink and Reiner 2003; Bain

et al. 2014).

6. Correlation between local onset regions and the
intertropical front

Figure 11 shows the location of interannual LORs that

correlate (at the 90% level) with the ITFR onset date at

1.58 latitude north of the northernmost latitude of the

LOR (i.e., ITFR at 148N for an LOR with northernmost

extent at 12.58N; Fig. 11a) and the point when the ITF

reaches 158N (i.e., ITFR at 158N; Fig. 11b). Both

Figs. 11a and 11b show that the majority of LORs that

correlate with the ITFR onset are within the longitude

band 108W–108E, which coincides with the region where

the ITFR is calculated. The ITFR at 158N primarily

correlates with LORs across the MBF region (Fig. 11b).

This could highlight the fact that different dynamics

modulate agronomic onset within the five distinct re-

gions highlighted in Table 3. The link between the ITFR

at other distances north of each LOR have also been

investigated. It is found that the link between the ITFR

and local onsets in the MBF, BN, and NN regions is

stable; however, there is a more variable link found

across the CT and CH regions (not shown).

Later-than-average ITFR advancement is typically

concurrent with later-than-average AODM. Given

that a link between the ITF advancement and socie-

tally useful rainfall has already been found (Lélé and

Lamb 2010), the apparent link between ITFR and the

AODM across West Africa provides a potential nec-

essary condition for local onset to occur. Figure 11b

may also provide a missing link between local and

regional onset variability in the MBF region. Sultan

and Janicot (2003) define monsoon preonset across

the region 108W–108E as the date when the ITF rea-

ches 158N. The authors find minimal correlation (0.01)

between the timing of the preonset and their regional

onset date. This result, coupled with the findings of

Fitzpatrick et al. (2015) and Fig. 11b, suggests that the

timing of the monsoon preonset is a better indicator

for local onset variability than the timing of regional

monsoon onset within correlating LORs shown in

Fig. 11b.

Finally, in Fig. 11a, a link between theAODMand the

ITFR can be seen over the coastal region. The potential

for a teleconnection between local precipitation over the

coast and the advancement of moisture into continental

West Africa is intriguing. The dynamical understanding

of this link across all regions warrants further in-

vestigation [with the work of Lélé et al. (2015) providing
motivation].

Figure 12a compares the median onset of the AODM

within each LOR with the timing of the ITFL at 1.58
north of the northernmost latitude of that LOR (i.e.,

ITFL at 158N for an LOR with northernmost latitude of

FIG. 9. Verification of interannual LORs for 2013 and 2014. LORs found at the 80% con-

fidence interval for 1998–2012 are tested for the years (a) 2013 and (b) 2014. LORs highlighted

show regions where at least 80%of grid cells have onset variability relative to the grid cell mean

onset dates consistent with the relative variability of the median LOR onset date compared

with median LOR onset dates for 1998–2012. Shading of LORs is consistent with Fig. 6.
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13.58N). As for the ITFR, different latitudinal gaps be-

tween the ITFL and LORs have been examined with

consistent results (not shown). As mentioned in section

2c, the definition of the ITFL over the CT region is not

calculated. Over the four regions analyzed, there exists a

link between the interannual variability of the AODM

and the advancement of the ITFL. This result suggests

that measurements of dewpoint temperature over

clearly defined regions can give meaningful insight for

local planners into the variability of monsoon rains with

sufficient lead time for practical purposes.

Figure 12b shows that the lead time between the ITFL

onset and the AODM onset across LORs is frequently

much larger than two weeks, although the lead timemay

differ even across overlapping LORs. The standard de-

viation of this link is generally between 7 and 14 days

(Fig. 12c). There are, however, LORs where the

variability in the lag can exceed three weeks. Never-

theless, the standard deviation in Fig. 12c is often lower

than the high local variability of the AODM (Fig. 1b). It

can be proposed that the ITFL onset date can be used

as a predictor of local onset variability of the AODM

with sufficient lead time for practical purposes. Given

the variability in lead time seen in Fig. 12c coupled with

the existence of neighboring regions where the lead time

can differ, the ITFL may not be suitable for explicit

onset date prediction. Conversely, for probabilistic or

tercile analysis the link shown here would be of practical

use. The fact that a link exists between the ITFL and

AODM dates for many LORs is an improvement over

using regional onset dates to predict local onsets.

Apparently (and intuitively), the movement of mois-

ture toward and beyond correlating LORs is a necessary

condition for local onset to occur, however it is unclear

FIG. 10. Cross correlation of the five main locations of interannual LORs (found at the 80%

confidence interval). Location of LORs that cross correlate at the 95% confidence interval with

the largest LORs found within the (a) CT, (b) MBF, (c) BN, (d) NN, and (e) CH regions.

Orange LORs are the largest LORs found within each region with dimensions listed in Table 3.

Other colors of LORs are consistent with Fig. 6 (i.e., yellow, green, and blue LORs are rep-

resentative of LOR size).
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whether the ITFL or ITFR onset is a sufficient condition

for onset. The dynamical link between the deepening of

the continental monsoon layer across West Africa and

local agronomic onset requires further study. This find-

ing gives precedent for assessment of local onset pre-

dictability across most of West Africa.

7. Summary

The local onset of the West African monsoon is un-

derused by both the science community and in forecast

practices due to the complexity and inhomogeneity of

local rainfall. It is shown here that local onsets have

spatial coherence across sections of West Africa. These

areas are termed local onset regions (LORs).

There exist several local onset definitions applicable

over West Africa (Omotosho et al. 2000; Marteau et al.

2009; Yamada et al. 2013). The definition proposed by

Marteau et al. (2009) was selected for analysis here.

Local onset regions have been identified using two

methods, one focused on absolute onset dates or local

anomalies (spatially uniform LORs) and one centered

on local interannual variability of onsets (interannual

LORs). Bothmethods identify subcontinental regions of

local onset consistency across West Africa but also

highlight a distinct lack of widespread spatial agreement

in onset. The fact that so little of the monsoon region

[108W–108E from Sultan and Janicot (2003)] can be

captured within large LORs suggests that there are po-

tentially multiple combinations of dynamical and topo-

graphical factors affecting local onset within this region.

This is in contrast to, but does not contradict nor con-

trovert, earlier findings for regional onset variability.

Local and regional onsets occur over different regions

and over different observational time periods and

should be considered as separate entities.

There are clear advantages and disadvantages to the

spatially uniform LOR method. The identification of

regions where onsets occur at a similar time highlights

locations where a temporal trigger of onset may exist.

However, by setting a strict limit for proximity to the

median value of an LOR, the method inherently limits

LOR coverage and size across regions of high local

variability and where the gradient of local onsets is high.

As a result, spatially uniform LORs tend to be ‘‘wide

and short’’ (longitudinal length scale . latitudinal

length scale). Computing spatially uniform LORs using

onset anomaly data does not change the size or location

of LORs found with the exception of the region 208–
108W. By contrast, interannual LORs cover larger lat-

itudinal length scales than spatially uniform LORs and

therefore can give a useful view of homogeneity of onset

not observed in spatially uniform LORs.

LORs have been constructed to allow the median

onset date for each year to be considered as a repre-

sentative onset across the LOR. This makes practical

sensitivity assessment of local onset possible using a fi-

nite set of locations (e.g., a rain gauge network). This is

one of the main advantages of identifying LORs.

It is suggested here that the level of spatial agreement

between onset dates gives some insight into the nature of

potential dynamical or topographical onset triggers. In

theory, processes occurring on the synoptic scale (such

as the response to the Indian monsoon onset) will affect

onset dates over a large region if indeed they have any

effect on local onsets. By contrast, more localized

FIG. 11. Location of interannual LORs (found at the 80% confidence interval) that positively

correlate with regional ITF onset (i.e., later regional ITF implies later local onset).

(a) Significant correlation at the 90% confidence interval between ITFR onset at 1.58 latitude
north of the northernmost latitude of each LOR and median LOR onsets. (b) Significant

correlation between ITFR onset at 158N and median LOR onset. Color scale of LORs is

consistent with Fig. 6.
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processes (such as topographic triggering of convection)

will control coherence of onsets over a smaller area. The

interaction of different local onset triggers occurring

over varying scales (both temporal and spatial) needs

further investigation for accurate prediction of local

agronomic onset over West Africa to be feasible. The

location and size of LORs might give insight into the

features that modulate onset.

The interannual LORs found using precipitation data

from 1998–2012 are also verified using local onset dates

for 2013 and 2014 with the exception of one region in

each year. This suggests that despite the high temporal

and interannual variability of local onset dates, LORs

have much more consistent interannual variability.

Finally, the seasonal progression of the ITF, taken

here as the northward extent of the 158C isodrosotherm,

is shown to be directly linked to onset dates across West

Africa. Across almost all correlating LORs the average

lead time between the localized ITF advancement and

median local onset date is greater than two weeks, al-

though the exact dynamics for this link are not currently

understood. This result provides a link between local

agronomic onset and a readily measurable metric that

occurs prior to agronomic onset. The seasonal transition

of the ITF is less spatially and temporally noisy than

local precipitation and also less dependent on dataset

choice [cf. Fig. 5 in Roberts et al. (2015) to the findings of

Fitzpatrick et al. (2015)]. The link shown here supports

the findings of Ilesanmi (1971), who shows that station

rainfall totals are well correlated with the positioning of

the ITF. The identification of other similar links could

help improve local onset prediction.

The work presented here provides a first step in

bridging the gap between regional climate dynamics and

local onset variability. A better understanding of the

limits of predictability of local onset as well as the cause

of interannual variability of local onset will provide

relevant information for local stakeholders across the

region and help provide a platform on which future re-

search into local onset variability can be performed.
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