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WE INVESTIGATE THE ROLES OF THE ACOUSTIC

parameters intensity and spectral flatness in the model-
ing of continuously measured perceptions of affect in
nine diverse musical extracts. The extract sources range
from Australian Aboriginal and Balinese music, to clas-
sical music from Mozart to minimalism and Xenakis;
and include jazz, ambient, drum n’ bass and perfor-
mance text. We particularly assess whether modeling
perceptions of the valence expressed by the music, gen-
erally modeled less well than the affective dimension of
arousal, can be enhanced by inclusion of perceptions of
change in the sound, human agency, musical segmen-
tation, and random effects across participants, as model
components. We confirm each of these expectations,
and provide indications that perceived change in the
music may eventually be subsumed adequately under
its components such as acoustic features and agency.
We find that participants vary substantially in the pre-
dictors useful for modeling their responses (judged by
the random effects components of mixed effects cross-
sectional time series analyses). But we also find that
pieces do too, while yet sharing sufficient features that
a single common model of the responses to all nine
pieces has competitive precision.
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M OST PREVIOUS WORK ON PERCEPTIONS OF

affect expressed by music has used at least the
two dimensional circumplex model of affect

developed by Russell, in which one axis is arousal and
the other is valence, the latter of which concerns degrees of
perceived positivity or pleasantness (Russell, 1980, 2003).
Most work has concerned retrospective ‘‘summary’’

perceptions of the affect expressed in short (often 30
seconds or shorter) sonic extracts and has been well
reviewed (Juslin & Sloboda, 2001, 2011; Juslin & Västfjäll,
2008). There is less work on continuous perceptions of
affect in music, though it has a long tradition (Coutinho
& Cangelosi, 2009, 2011; Madsen & Fredrickson, 1993;
McAdams, Vines, Vieillard, Smith, & Reynolds, 2004).
The resulting time series of moment-by-moment percep-
tual data can then be modeled in a bid to understand the
dynamic factors that shape perceived affect. In the case of
analyses of continuous responses (Schubert, 1996, 1999,
2004), the resultant statistical models of the data have
been moderately good in predicting the arousal response,
but notably worse with the valence response (Bailes &
Dean, 2012; Coutinho & Cangelosi, 2009, 2011; Dean &
Bailes, 2010a). Even in the much larger set of studies that
measure discrete retrospective perceptions (which are
necessarily much simpler, and contain far fewer data
elements to be modeled), the same disparity exists,
though there are occasional dramatic exceptions, where
the use of a large enough panoply of musical components
as predictors or simplified musical stimuli has evinced
success. For example, using short simple (pitch-centered)
tonal items that were algorithmically composed to permit
parameter control, 77-89% of variance in the compo-
nents of the circumplex model, though labeled differ-
ently, could be explained by six musical cues: mode,
tempo, dynamics, articulation, timbre, and register
(Eerola, Friberg, & Bresin, 2013).

Our previous work led us to envisage that continu-
ously perceived valence might be much more individu-
alistic in origin than perceived arousal. We suggest this
may partly reflect individuals’ overall liking for a piece
and for music at large, as suggested by data correlations
in the case of both musicians and nonmusicians listen-
ing to the music we studied previously. This music com-
prised electroacoustic pieces by Wishart, Xenakis, and
Dean, and piano music by Webern (Bailes & Dean,
2012). It follows that techniques that can model differ-
ences between individuals (so called ‘‘random effects’’:
see Results section for further description of the ‘‘mixed
effects’’ aspect of our analyses) might provide better
models of valence. As we showed recently in detail for
perceived arousal (Dean, Bailes, & Dunsmuir, 2014a,
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2014b) cross-sectional time series analysis (CSTSA) is
a mixed effects technique. So CSTSA might bring mod-
els of arousal and valence into a relation approaching
equality.

We also previously found indications that perceptions
of agency, particularly human agency (Bailes & Dean,
2012; Dean & Bailes, 2010a), could provide predictors
that are useful for valence modeling. By agency we here
refer primarily to the broad idea that some acoustic
events have physical origins that a listener can detect or
at least imagine (for example, waves, wind, or breaking
glass), and among these, some have human or animal
origins (vocal sounds, clapping). Other sounds, such as
some electroacoustic components, can be devoid of such
agency, particularly when a listener is unable to deduce
the means by which the sounds were produced. We also
consider the secondary extension of this concept of
agency, in which the entry of a singer within a performed
sonic texture, or of a pianist (concerto soloist) within an
orchestral texture, might be perceived as the addition of
a new source of human agency. Naturally, the degree of
activity of such an agent is likely to be perceptible and so
a measure of this could provide a continuous predictor
variable related to agency, and not just a present/absent
dichotomous variable.

It is important to distinguish physical properties of an
acoustic stream from what is perceived among those
properties (Leman, 2008; Leman, Vermeulen, de Voogdt,
Moelants, & Lesaffre, 2005). For example, variations in
acoustic intensity are perceived as variations of loudness
with quite high precision and little delay, whereas timbral
changes or pitch fluxes may be more ambiguous and
perceived with lower precision. Broadly, the more robust
components in terms of their influence on listeners are
those such as acoustic intensity, which feature in the cue
redundancy hypothesis, a cross-cultural view of their
impact (Balkwill & Thompson, 1999; Balkwill, Thomp-
son, & Matsunaga, 2004). In essence this theory suggests
that the robust features may operate regardless of the
cultural origin of either the music or the listener.

Overall, listeners’ perceptions of the acoustic features
of music are the factors that might bear most on their
perception of affect, rather than the acoustic features per
se. To address this we have repeatedly assessed listeners’
continuous perceptions of ongoing ‘‘change in the sound’’
and used this measure successfully as a predictor in our
models. Since we give no instructions as to what consti-
tutes change, because we wish to understand listeners’
perceptions themselves, it has always been apparent that
perceived ‘‘change’’ probably comprises many compo-
nents that eventually can be isolated, so that such
a parameter might no longer be necessary for models.

For example, intensity changes are a dominant driver of
perceived change, and if they were the only driver they
would render the perceived change variable unnecessary.
Intensity changes also substantially drive perception of
affect in most pieces, and we showed with an empirical
intervention that changing the intensity profile of certain
pieces could correspondingly change the perception of
their expressed arousal (Dean, Bailes, & Schubert, 2011).

Our focus here is on listeners who are not trained
musicians, and on choosing works that will be individ-
ually unfamiliar, including some genres to which parti-
cipants may well have been exposed. Thus we are mainly
dealing with novel listening experiences. Our previous
work showed that the compositional structure and musi-
cological segmentation (in time blocks generally of 15-30
seconds) of the wide range of pieces studied here was
largely reflected (implicitly) in our nonmusicians’ con-
tinuous perceptions of change (Dean & Bailes, 2014).
This was true across the range of nine highly diverse
pieces: the music ranged from Aboriginal and Balinese,
to a group of Western pieces (classical, jazz, minimal
music, drum n’ bass, and ambient), and included a piece
of performance text using a constructed language. There
was some emphasis on Western music since 1950. The
observed behavior is unlikely to be simply because inten-
sity profiles align completely with the compositional seg-
ments, because these are actually constituted by a range
of other features, such as harmonic shift and agency
change. Scope remains for further dissection of the com-
ponents responsible for perceived change, ultimately with
a view to dispensing with this poorly defined variable.
Here we continue to pursue this, in one case again
through the consideration of agency.

We sought to gain a broader impression of the utility of
acoustic parameters, perceived change, agency, and
implicitly identified structural features for predictive
models of arousal and valence. Our hypotheses were as
follows:

1) That acoustic features such as acoustic intensity
(and spectral flatness) are the main predictors of
perceived affect, while perceived change is subor-
dinate and may be dispensable when both its effec-
tors and musical segments are fully defined. (H1a:
Consequently, the fewer the perceptual segments,
which are based on perceived change analyses, or
musicological segments, the less the influence of
perceived change will be in models.)

2) That segments defined on the basis of the agency of
human-derived sounds influence both perceived
arousal and valence. They do so in conjunction
with acoustic features.
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3) That perceived structural blocks in the music
influence perceived affect, again in conjunction
with acoustic features. (H3a: Given H1-3, it may
be expected that pieces that are perceptually
homogeneous — that is, lack structural segmenta-
tion — will also have more homogeneous acoustic
features and hence their perceived affect will be
poorly modeled.)

4) That there are considerable interindividual differ-
ences in responses to the pieces (this can be
reflected in individually different autoregressive
parameters and/or parameters of responses to
specified predictors).

5) That liking and overall valence will correlate, and,
given hypothesis 4, that taking account of individ-
ual differences in valence response mechanisms
may allow its enhanced modeling.

6) That in spite of the dramatic musical (and cul-
tural) differences between the pieces studied, the
perceived affect they induce will all be reasonably
predicted by a shared model whose performance is
at least comparable with those of models of indi-
vidual pieces.

Later in the paper, our results permit us to develop an
additional hypothesis, which, unlike the above, was not
predefined. We refer to these hypotheses below as H1-H7.

We first use conventional univariate autoregressive
time series techniques to model the grand average of
responses for each piece, as is also routinely done in
neuroscience and in previous continuous response
work. Then we follow this up using the newer technique
of cross-sectional time series analysis (CSTSA), which
retains the integrity of each individual participant’s
responses in the modeling. We have introduced the
technique for comparison of models of individual par-
ticipants’ continuous affect responses, and provided
a technical elaboration in a recent pair of papers (Dean
et al., 2014a, 2014b). CSTSA is also known as ‘‘panel’’ or
‘‘longitudinal’’ analysis: these latter terms are most often
used when the data comprise relatively few time points,
whereas the present data series each contain around 120
time points. Besides preserving the integrity of every
data series, CSTSA also operates as a mode of mixed
effects multilevel analysis, allowing us to distinguish
fixed effects (representing shared properties of the par-
ticipants), from random effects, statistical descriptions
of variabilities in predictors and/or in autoregression
features between participants. Random effects are com-
monly studied across samples of participants. Thus if
the data show a fixed effect dependence on the magni-
tude of a stimulus for their response to it (for example,

the magnitude of acoustic intensity influencing percep-
tions of loudness), then there may be two kinds of ran-
dom effects across individuals. Firstly, they may vary in
the level of loudness they perceive to attach to the lowest
level of acoustic intensity: this would constitute a ran-
dom effect across participants on the intercept for
loudness response to intensity. Secondly, they may vary
in the degree to which increases in intensity induce
increases in their perception of loudness: this would
correspond to a random effect across participants on
the coefficient for the loudness response to intensity.
In each case, for any individual, the predictor relevant
to their individual response would be the sum of the
estimated population fixed effect, and their individual
random effect. Thus the analysis often achieves a con-
siderable enhancement of precision and reliability over
their conventional counterparts (e.g., in a circumstance
where an ANOVA might be conventional). Additionally,
the random effects are expressed as sample normal dis-
tributions, and thus characterized by two parameters
(mean and SD), constituting a quite economical addi-
tion of degrees of freedom to the models.

In the present work, the random effects we present are
all of the second kind, upon coefficients for predictors.
This is to be expected, since all but one analyses concern
differenced time series, and hence the intercept ‘‘bias,’’
the random effect across individuals, has been largely
removed. The populations represented by our data are
both that of participants and sometimes also that of
pieces of music (represented by our nine diverse items).
CSTSA provides best linear unbiased predictor (BLUP)
estimates of the realization of its model for each indi-
vidual unit analyzed (in our case, participants or pieces).
Thus the random effects reveal the varied nature of
action of the factors studied. We have simplified the
presentation of the details of the resultant statistical
models (such as all the individual coefficients or the
standard deviation of random effect terms), so as to
make the key interpretative aspects as visible as possible.

Although we chose some commercial music (drum n’
bass, ambient) and some potentially familiar classical
music (Mozart), our musical sample was intended to
include a majority of relatively unfamiliar works (e.g.,
Aboriginal music, Balinese music, Xenakis, perfor-
mance text), as we indeed found. The reason for this
is that the behaviors in which we are interested include
those of coming to grips with new and potentially unfa-
miliar pieces and styles during music listening. In
accord with our hypotheses H4/5 we particularly envis-
aged that taking account of interindividual variations in
response mechanisms would allow valence to be mod-
eled roughly as well as arousal.
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Method

PARTICIPANTS

Twenty-one female undergraduate psychology students
between the ages of 17 and 34 years (M ¼ 21.1, SD ¼
5.1) participated for course credit. One participant
achieved a score greater than 500 on the Ollen Musical
Sophistication Index (Ollen, 2006) questionnaire (665),
while all others had scores less than 500 out of a possible
1000 (M ¼ 113.6, SD ¼ 73.9), qualifying them as not
musically sophisticated, as we intended. We included
data from the musically sophisticated participant in the
analyses. Written informed consent was gained in
accordance with the University of Western Sydney
Human Ethics Research Committee’s stipulations.

STIMULI

The pieces are described in full in our preceding paper
on this set of works (Dean & Bailes, 2014). In brief, the
pieces were chosen to represent a wide range of periods
(from traditional1 Aboriginal music to the present day),
of cultures (Aboriginal, Balinese, African-American,
Popular, Art Music) and genres (such as the piano con-
certo, jazz, minimal music, ambient music, and perfor-
mance text). We restricted the number of pieces under
study to nine in order to balance stylistic breadth with
the tradition within CSTSA to model such a number of
items. An implication of hypotheses H2 and H3 is that
the fewer perceived or musicologically defined segments
a piece has, the more dominant acoustic intensity and/
or spectral flatness will be as predictors (in comparison
with perceived change or the segmentation itself). Given
that we have some pieces that are somewhat homoge-
neous (such as the ambient and minimal music works)
we have organized the results presentation with the
pieces ordered first by number of ‘‘perceptual segments’’
based on a changepoint analysis of listeners’ continuous

ratings of perceived change, and second by ‘‘musico-
logical segments’’ based on a musicological analysis of
the number of segments, from small numbers to larger
(as described in the preceding paper, Dean & Bailes,
2014). This results in the sequence (number of percep-
tual segments, number of musicological segments) as
follows:

ACOUSTIC ANALYSES

As previously, we assessed two continuous acoustic
properties of the music: intensity (sound pressure level,
dB, on a log scale) and spectral flatness (Wiener’s
entropy), a global acoustic parameter of the perceptual
attribute timbre, expressed on a log scale from 0 to
minus infinity. Methods for analyzing these have been
detailed (Bailes & Dean 2009).

PROCEDURES

Our methods for determining continuous perceptions
of musical change, expressed arousal, and valence have
been detailed previously (Bailes & Dean 2012). Briefly,
at the outset, participants learned to use the computer-
ized continuous response system, by means of a practice
trial in each of the ‘‘structure’’ and ‘‘affect’’ tasks. In the
structure task participants freely move a computer
mouse if they perceive ‘‘change’’ in the sound, and rates
of movement are averaged at 2Hz. No guidance was
provided as to what constitutes change. The other task
provides continuous perceived affect measures,
expressed using the 2D-emotion space, around which
participants move the mouse to represent their percep-
tions. Participants heard the pieces twice, once for each
of the two counterbalanced tasks. The order of pieces
within each task block was randomized.

Listeners were asked to rate their familiarity and liking
for each piece after hearing it for the first time, in a coun-
terbalanced order. Likert scales from 1-5 were used: for
liking, ranging from strongly dislike to strongly like with
a neutral midpoint; for familiarity, the markers were1 The origins of this traditional Aboriginal music are unknown.

TABLE 1. Perceptually and Musicologically Defined Segments in the Stimulus Pieces

Piece Style Perceptual Segments Musicological Segments

Eno, Unfamiliar Winds Ambient 0 0
Glass, Gradus Minimal music for solo saxophone 1 0
Smith/Dean, Runda Performance text 1 0
Xenakis, Metastaseis 20th century, orchestra 1 1
Art of Noise, Camilla The Old Old Story Drum n’ bass 2 0
Miles Davis, Tutu Jazz 2 2
Munduk Balinese gamelan 3 2
Mozart, Piano Concerto 21 Classical, orchestra 3 3
Bushfire, Buffalo Australian Aboriginal music 4 3
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labeled such that 1¼ I have never heard anything like this
before, 2 ¼ I have heard something like this but not this
piece before, 3 ¼ I have heard this piece, 4 ¼ This piece is
very familiar to me, and 5 ¼ I often listen to this piece of
music

DATA MODELING

Autoregressive time series analysis with external predic-
tors (ARX). We previously presented extensive tutorial
and descriptive introductions to this univariate tech-
nique and to multivariate vector autoregression (VARX)
describing their application in our field (Bailes & Dean,
2012; Dean & Bailes, 2010a). We have focused on mod-
eling continuous perceptual responses to music. In the
current study, we first undertook ARX with grand aver-
age (unweighted) perceptual series, together with acous-
tic and structural predictors. In essence, ARX is the
primary technique applicable to modeling and analyz-
ing time series that are autocorrelated, such as most
continuous measures related to music. An ARX model
represents the impact of autocorrelation (where earlier
values of a parameter are predictive of subsequent ones
over a certain range of time lags); together with the
impact of any predictor variables in the form of a so-
called ‘‘transfer function.’’ We discuss the overall models
involving both components in this paper. One benefit of
ARX (or of VARX as discussed in previous work) is that
continuous perceptual variables (such as perceived
change) may, if appropriate, also be used as predictors
of other perceptual responses. One of our purposes here
was to seek to eliminate the perceived change variable to
the extent possible. We consider the possible influences
of continuously perceived change in a piece on the other
perceptual responses we measure, as elaborated previ-
ously. This allows investigating our hypotheses about
the role of perceived structural segmentation in the per-
ception of affect; structural segmentation in turn has
been determined by analyses of perceived change series
(Dean & Bailes, 2014). Model selection for the ARX
models in this paper is primarily based on minimizing
the Bayesian Information Criterion (BIC), which pena-
lizes for the addition of increasing numbers of predic-
tors, weighing this against the improved model fit
(lower BIC indicates a better model). Data series were
stationarized when necessary (by taking the first differ-
ence series). In essence stationarizing involves ensuring
that variance and covariance are constant across the
time series (it does not involve removing them). The
first-differenced form of a series name is termed dname
here. All series needed to be stationarized in this fash-
ion, with the sole exception of the perceived change
series used in the ARX model of valence for the piece

by Smith/Dean featured in Table 4. Acceptable ARX
models were required to give white noise residuals that
lacked autocorrelation.

Cross-sectional time series analysis (CSTSA) of indivi-
duals’ continuous responses of arousal and valence. We
tested our hypotheses further using CSTSA: this
mixed effects technique is outlined above and elabo-
rated in Dean et al. (2014a, 2014b). We adopted a stan-
dard analytical procedure. Starting with the best
model of the grand average data for a particular piece
and response (from Tables 3 and 4 below) as the
potential fixed effect component of CSTSA, we tested
for the possible utility of random effects on intensity,
spectral flatness, and perceived change, and/or their seg-
ments, and on the autoregressive components (that is,
the lags of the response being modeled). When there
were such random effects, the fixed effect component
was reoptimized by addition or subtraction of terms.
Model selection cannot be primarily based on BIC dur-
ing CSTSA since it cannot deal with random effects
parameters. Thus, selection was based on maximizing
model log likelihood, and as far as possible minimizing
residuals (to two decimal places of their standard devi-
ation). Over-fitting simply to give the best fit in these
terms was avoided by attempting to eliminate individual
predictors whose coefficients were not significant, and
individual random effects whose standard deviation esti-
mates were less than 2.5 times the standard error
(because otherwise the real standard deviation value
might well be zero). Some predictors/random effects
were required for the preferred model even though the
coefficients/SD were not individually significant (these
are asterisked in the results Tables). All models that
included random effects were required to have a highly
significant likelihood ratio test against the fixed effects
only model (p < .001); that is, to produce a dramatic
increase in model likelihood.

We used STATA’s xtmixed command as the main
modeling vehicle, though some analyses were also
undertaken or confirmed in R. In xtmixed, which is
fundamentally a mixed effects multilevel analysis tool,
the autoregressive components can be added as predic-
tors by constructing the relevant lagged versions of the
variable in question.

Not surprisingly, some best linear unbiased predic-
tions (BLUPs) for individual responses made by the
CSTSA models gave residuals that still contained auto-
regression and were not white noise. This is an index of
the fact that individuals did vary substantially in their
responses and in the factors that influenced them, as the
models show.
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Results

LIKING AND FAMILIARITY

Table 2 shows that our expectations that the pieces would
be individually unfamiliar were fulfilled, while the works
from more widely experienced genres, such as drum n’
bass, ambient music, and jazz did attract higher liking
ratings than most of the pieces. Only the Mozart piece

attracted a familiarity rating as high as halfway up the
scale from 1-5, indicating, ‘‘I have heard this piece.’’
There were distinctions between familiarity and liking
(also on a 1-5 scale): for liking, five pieces were above
the halfway point; for example, Eno and Glass pieces
ranked higher in the liking response table than for famil-
iarity, while the Xenakis piece ranked relatively lower.
Nevertheless, liking and familiarity correlated (r ¼ .73,
p < .03). Given the differences in the scales used, this
result should not be over interpreted. We tested for cor-
relations between mean continuous response valence
across all participants, and their mean liking (H5) find-
ing, r ¼ .94 (p < .0005) was consistent with our hypoth-
esis. Familiarity and mean continuous valence were not
significantly correlated, r ¼ .57, p ¼ .11, consistent with
the observed distinctions and the weaker correlation
between familiarity and liking.

PERCEPTUAL RESPONSES: MODELING GRAND AVERAGE PERCEIVED

AROUSAL AND VALENCE

We first modeled the grand average responses for each
piece using the acoustic predictors and continuous per-
ception of change alone (Table 3). This approach primar-
ily addresses our hypothesis H1: that, as observed

TABLE 2. Mean Familiarity, Liking, and Valence Ratings of Each
Piece, with Standard Deviations

Artist/Piece
Familiarity

M (SD)
Liking

M (SD)
Valence
M (SD)

Eno 1.90 (0.89) 3.52 (0.93) 18.52 (6.09)
Glass 1.52 (0.83) 3.14 (0.96) 26.89 (3.49)
Smith/Dean 1.10 (0.30) 1.95 (1.07) �17.67 (6.93)
Xenakis 1.90 (0.83) 2.05 (0.92) �26.43 (13.75)
Art of Noise 2.19 (0.98) 3.29 (1.15) 22.81 (3.93)
Miles Davis 2.24 (0.94) 3.57 (0.75) 21.32 (3.93)
Munduk 1.76 (0.54) 2.76 (1.14) 7.78 (5.11)
Mozart 2.81 (0.81) 3.81 (0.75) 32.68 (5.31)
Bushfire 2.05 (0.59) 2.90 (1.00) 11.87 (7.73)

Note. Familiarity and liking ratings for the nine pieces are shown for n¼21 parti-
cipants, ranked by segmentation (see methods). Valence is measured continuously
on a scale from �100 to þ100.

TABLE 3. Optimized Grand Average Autoregressive Time Series Analysis Models (ARX) using Continuous Acoustic Features and Perceived
Change as Candidate Predictors.

Piece

Modeled
response

(DV) Acoustic/perceptual predictors
Autoregressive

components BIC
% Sum of
squares fit

Correlation
predicted series:

data series

Eno darousal L4.dspectralf Ar(1) 568.3 6.79 .24
dvalence L5.dintens Ar(1) 669.3 4.22 .20

Glass darousal L5.dspecf Ar(1) 603.9 6.30 .25
dvalence L(3,5,10).dchange No Ar 587.0 6.41 .25

Smith/Dean darousal L9.dspectralf Ar(1) 461.1 13.18 .36
dvalence L8.dintens*, constant Ar(1,3) 425.3 12.75 .32

Xenakis darousal L(2,3,4,8*).dintens, L2.dspectralf Ar(1) 884.5 23.57 .48
dvalence L(4,5,6*).dintens, L1.dchange Ar(1) 878.2 25.87 .51

Art of Noise darousal L6.dintens, L(2,3).dspectralf, l5.dchange Ar(1) 719.0 10.21 .32
dvalence L8.dintens* Ar(2) 780.7 8.74 .30

Miles Davis darousal L(6,8).dspectralf, L(4,7).dchange Ar(1-3) 761.2 22.00 .47
dvalence L8.dintens, L8.dchange Ar(2,3) 825.2 24.81 .50

Munduk darousal L(3-7).dchange Ar(1,3) 926.4 25.54 .51
dvalence L(5*,6*).dintens Ar(1) 822.8 2.70 .16

Mozart darousal L(3,5).dintens Ar(1) 943.9 11.34 .34
dvalence L3.dintens, L6.dspectralf, L7.dchange* No Ar 874.9 3.59 .19

Bushfire darousal L1.dintens, L(3,7*).dspectralf Ar(1) 545.2 16.09 .40
dvalence L(7,9).dintens Ar(1/2) 646.3 12.41 .35

Note. The response variables are all stationarized by first-differencing. The ARX models all have white noise residuals free of autocorrelation. DV: dependent variable. L(n)
indicates lag n of the variable listed after the dot. Ar(n): the list of autoregressive terms. BIC: Bayesian Information Criterion, which can be meaningfully compared only
between different models of the same response series. spectralf and intens are abbreviations for spectral flatness and intensity. *predictor required for the BIC-optimized model,
but not individually significant at p < .05. ‘‘Constant’’ indicates that a constant was required only in this Smith/Dean model. The % sum of data series squares fit is a stringent
criterion, the correlation less so: it is presented for comparability with previous work. The sum of squares fit refers only to the modeled part of the series (the first few events
cannot be modeled, depending on the number of lags of variables in the model).
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previously, changes in acoustic intensity and spectral flat-
ness are recurrent external predictors of continuously
perceived arousal and valence.

Arousal is only moderately well modeled in every
case, given the stringent criteria presented, and the two
pieces with no perceptual segments are very poorly
modeled (consistent with H3a). Changes in intensity
are the most common significant predictor, sometimes
complemented or replaced by spectral flatness. Per-
ceived change contributes to only three of the nine
arousal models. Valence is, unexpectedly, as well mod-
eled as arousal with just two exceptions (Munduk and
Mozart, where the models are much worse). Again,
intensity and spectral flatness contribute to valence
models, and perceived change contributes in four cases.
H1 is strongly confirmed by these results, and they are
also in agreement with our suggestion (H1a) that the
fewer the change segments, the less common the per-
ceptual parameter of change would be as a predictor.
Thus for the pieces with no perceptual segments (the
first three in the table), only 1 of the 6 optimized models
involved perceived change as a predictor; whereas for
the remaining pieces (the final six pieces in the table,

with two models per piece), each involving at least some
perceived segmentation, 7 of the 12 models involved
change.

Tables 3 and 4 show the parameters that were
included in successful models of perceived arousal and
valence. Table 3 reveals models of valence that are only
slightly worse in general than those for arousal, whereas
in the pieces we studied elsewhere (i.e., three pieces of
electroacoustic music; Wishart, Xenakis, and Dean; and
Webern, an atonal piano work), several cases showed
valence models that were much inferior in quality to
those for arousal. In the present work the valence mod-
els were mostly still worse than those for arousal, but
not always and not substantially so: in all but two cases
% squares explained for arousal and valence were
within 5% of each other. The two exceptions, Munduk
and Mozart, have models that fail to correlate more than
.20 with the data. They share only the feature of clear-
cut human agency changes (singing entries, soloist
entries). This suggests that further investigation of influ-
ences of structural segmentation and agency may
improve our understanding of these pieces in particular,
and we pursue this in what follows. Thus it is of interest

TABLE 4. Autoregressive Time Series Analysis Models (ARX) Improved by Incorporating Perceptual Segmentation

Piece

Modeled
response

(DV)

No. perceived
structural

changepoints/
musicological

segments Model details (if model better)

BIC
(if model

improved)

BIC of
original
model

% Sum of
Squares fit
(if model

improved)

Eno darousal 0/0 568.3
dvalence 669.3

Glass darousal 1/0 603.9
dvalence 587.0

Smith/Dean darousal 1/0 L9.dspectralf1, L8.dchange1, ar(1) 457.8 461.1 26.13
dvalence L8.change1, ar(1,3) 420.8 425.3 13.65

Xenakis darousal 1/1 L(2,3,8).dintens1, L(2,3,4).dintens2,
L2.dspectralf2, ar(1)

868.7 884.5 33.17

dvalence 878.2
Art of Noise darousal 2/0 719.0

dvalence 780.7
Miles Davis darousal 2/2 L6.dspectralf2, L6.dspectralf3,

L10.dspectralf4, L4.dchange4, ar(1-3)
739.0 761.2 25.75

dvalence 825.2
Munduk darousal 3/2 L(11).dintens L(3/5,7).dchange3

L(7).dchange4, ar(1,3)
912.6 926.4 26.25

dvalence L6.dintens, L(1,3).dchange2, L1.dspectralf1,
L(1,4).dspectralf3, L4.dspectralf4, ar(1)

812.6 822.8 18.46

Mozart darousal 3/3 943.9
dvalence 874.9

Bushfire darousal 4/3 545.2
dvalence 646.3

Note. DV: dependent variable. Ar(n): the list of autoregressive terms. BIC: Bayesian Information Criterion, which can be meaningfully compared only between different models
of the same response series. dpredictor1-n describes the predictor separated into segments 1-n corresponding to the perceptual segments defined in the perceived change
response to the piece (n segments is one more than the number of changepoints detected).
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to consider whether these models, and indeed the mod-
els in general, are enhanced by the use of distinct seg-
ments of the piece as separate predictors (H2/3). As we
will see in Table 4, the valence model of Munduk (but
not Mozart) is improved by taking account of this
segmentation.

Subsequently, we next assessed our Hypotheses 2/3
that perception of large-scale structural elements in the
pieces — as defined by changepoint-segments (which
determine whole segment differences) in the perception
of change response series (Dean & Bailes, 2014; Dean,
Bailes, & Drummond, 2014) — influence perception of
affect. The changepoint analysis we developed under-
takes a principled assessment of whether a time series of
perceived change is best considered a single segment, or
benefits from subdivision into several segments. It does
this by comparing autoregressive models of the series as
a whole, versus models of optimized sets of segments,
within defined probabilistic limits, and hence allows
determination of whether the whole series does or does
not comprise a sequence of segments. Note that the
name of the process (and the R package employed),
‘changepoint’ analysis, is slightly misleading, since the
analysis does not focus on change at a point, but rather,
distinction between successive segments. For all pieces
in which perceptual segments had been detected, we
assessed whether the acoustic predictors differed in
their influences across these segments by determining
whether their predictive impact could be enhanced
comparing models with or without distinct segmented
predictors. Table 4 indicates the previously detected
perceptual and musicological segmentations, and shows
what differences were detected by this new approach.
Only models that provide improvement through the use
of segments are specified. Comparing the BIC for a given
response between Table 4 and Table 3 indicates the basis
for this. The BICs in Table 4 are better (lower) than the
corresponding value in Table 3, so the segmented vari-
able(s) specified can effectively replace (and improve
on) the corresponding individual unsegmented variable.
Because the addition of variables itself increases the BIC
through the penalty system, this means that the seg-
mented variables are more powerful individually as pre-
dictors than their unsegmented competitors.

It can be seen in Table 4 that for three of the eight
pieces in which perceived segments were detected, these
were influential in models. For the three pieces where
perceptual segments were detected but not musicologi-
cal segments (Smith, Glass, Art of Noise) segmental
influence was detected in one. Overall, the data are
consistent with the idea that perceptual segments may
influence perceptions of arousal and valence (H2/3), but

at this level of analysis, continuously perceived change is
a more powerful predictor (probably simply because it
contains so much more data, and includes the data that
itself is indicative of the perceived segmentation), often
rendering the perceived segmentation secondary. When
segments were effective in the models, this was because
the impacts of the acoustic parameters and/or the per-
ceived change differed between the segments.

At this stage of the analyses, Eno and Glass, together
with the Mozart valence response series, remain partic-
ularly poorly modeled. It should also be noted that per-
ceived change is limited in Eno and Glass. The simplest
interpretation is that perceptions of affect in these pieces
are primarily influenced by other factors than changes
in intensity and/or spectral flatness. However, an alter-
native possibility (Hypotheses 4/5) is that assessing
interindividual variation in responses and response
mechanisms using CSTSA can provide a better model
still based on the acoustic predictors. This is part of the
objective of the next section.

CSTSA OF INDIVIDUAL PIECES

In this section we assess first whether the grand average
models for each piece as just defined, are confirmed, mod-
ified, or overturned when the analysis is done on all the
individual participant data series taken together. More
importantly, the approach also allows an assessment of
interindividual variation in response, quantitatively and
qualitatively. For CSTSA models, the significance and
coefficient value of individual predictors, the model log
likelihood, and the overall fit become the primary selec-
tors towards model parsimony (see Method). The like-
lihood ratio test indicates whether the random effects
improve the fixed effects alone model, and only models
where p < .001 for this test are shown. When the model
in Table 5 shows substantial improvement over those in
Tables 3/4 — which is the case for the first three pieces
that show no pre-defined musicological segments —
this shows that interindividual variation was very large
but well modeled. In Table 5, the only data series that
remains very poorly modeled is the members of the
Mozart perceived valence series set.

It may be helpful to summarize the interpretation of
CSTSA models such as those in Table 5. In each case,
autoregressive lags of the modeled response (depen-
dent variables arousal and valence respectively) are
required. The ‘‘fixed effect’’ predictors are those that
apply to the group of listeners as a whole, as in most
analyses. In contrast, the ‘‘random effects’’ represent
differences between individual listeners. This forms
a distribution of differences in relation to the specified
effectors. Thus, in the first entry for Eno, the random
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effects on L5.dchange mean that across the population
of listeners there were substantial differences in the
degree to which this parameter influenced the outcome
perceived arousal, and that representing this in the
model enhanced it significantly. The random effects
on L(1-3). darousal similarly indicate that listeners
differed substantially in the degree to which the spec-
ified autoregressive lags of the modeled darousal (the
dependent variable) were influential.

The models shown in Table 5 broadly confirm those
from grand average analyses: showing the importance of
intensity and perceived change for models of arousal,
and lesser roles for spectral flatness. For valence, per-
ceived change was generally less important than for
arousal, whereas other factors were similar. Note that
Eno and Glass, both lacking perceptual segments and

previously poorly modeled, now allow quite good mod-
els. However, Mozart valence remains inadequately
modeled. The results strongly support hypotheses H1,
H4, and H5.

For every piece and response, random effects were
significant, and it is recognizing and modeling this that
permits all of the individual data series for a particular
piece/response to be described together in single models
of reasonable quality. The random effects are most com-
monly expressed on the autoregressive component, but
also often on the acoustic variables belonging to the
transfer function, and the perceived change continuous
(or segmented) variable. Perceptual segments are
important locales of random effects (i.e., variations in
responses across individuals) for several of the pieces in
which they were detected (but not for those lacking

TABLE 5. Optimized Cross-Sectional Time Series Analysis (CSTSA) Models of all Individual Response Series Using Only Continuous Acoustic
Features and Perceived Change as Candidate Predictors

Piece

Modeled
response

(DV)

Acoustic/
perceptual
Fixed Effect
predictors

Autoregressive
lags of DV Random Effects

% Sum
of

squares
fit

Correlation
fitted values:

modeled
data

Eno darousal 1,2 L5.dchange, L(1-3).darousal 20.21 .45
dvalence 1,2 L3.dintens, L(1,2).dvalence 25.89 .44

Glass darousal L7*.dchange 1 L(1-4).darousal 16.00 .40
dvalence L5.dintens 3 L(4,5).dintens, L(1,4).dchange,

L(1,2,4).dvalence
13.26 .37

Smith/Dean darousal L9.dspectralf,
L(1,3).dchange

1 L(9).dspecf, L(1-2).dintens,
L(1/5).darous

21.40 .47

dvalence 1 L2.dchange, L(1-3,5).dvalence 33.58 .58
Xenakis darousal L(6,8).dintens,

L(0).dchange
1-3 L(2,3).dintens, L(3).dchange,

L(1-5).darousal
24.74 .50

dvalence L5.dintens 1,2 L(1-5).dintens, L(1,3,4).dspecf,
L(0,2).dchange, L(1,2).dvalence

16.18 .40

Art of Noise darousal L6.dintens, 1,2,5 L(0,1,3,4).dchange, L(0-2).dchange3,
L(1-5).darousal

20.37 .45

dvalence L8*.dintens 1,2 L(0).dchange, L2.dchange1,
L2.dchange2, L(1,3-10).dvalence

18.91 .44

Miles Davis darousal 1,3 L(6,8,10*).dspectralf, L(2).dchange,
L(1/2).darousal

39.32 .63

dvalence L(8).dintens,
L(7,8,10*).
dchange

5,8 dchange, L(2-4,7,9).dvalence 27.13 .52

Munduk darousal L(6,7).dchange,
L(4,5).dintens

1 L4.dchange2, L4.dchange3,
L(1,3).darousal

13.09 .36

dvalence L2*.dintens 1 L(1-5).dvalence 13.42 .37
Mozart darousal L5.dintens, 1,6 L4.dintens, L4.dspectralf,

L(1-10).darousal
19.91 .45

dvalence L8*.dchange 1,3 L(1,2,4).dvalence 6.55 .26
Bushfire darousal L3.dspectralf 1,3 L(1,4,10).dintens, L(1,2).darousal 15.44 .39

dvalence L(7).dintens 1 L(1,2,3).dvalence 10.30 .32

Note. DV: dependent variable. darousal refers to the first difference of arousal: dvalence and dchange similarly to the first differences in valence and change. dchange1 (or 2, 3)
refer to successive segments of the dchange series as used in earlier models. The optimized CSTSA models provide best linear unbiased predictors (BLUPs) for each individual
response series, which passed Bartlett’s white noise residuals test, but in some cases autocorrelations remained. Asterisks indicate individual predictors which were required for
the optimal model but whose coefficients were not individually significant. Only correlation coefficients significant at p < .05 are shown; but these need to be treated with
caution, since autocorrelation remains in some of the BLUPS, and hence the coefficient is not entirely reliable.
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musicological segments, whether or not there were any
perceptual segments). Interestingly, when segments are
involved in random effects it is through the continuous
(segmented) perceived change response, showing that
this is an important mediator of interindividual differ-
ences as well as fixed effects. These results support H4/5
(and are reasonably consistent with H3a).

Note that the random effect component for an indi-
vidual is added on to the corresponding fixed effect
component, which is for everyone, when there is such
a fixed effect. The consequence is that predictors of
perceived affect found either or both in the fixed and
random effects parts of the model are impacting on the
final model output, and hence putatively on the mech-
anism of response. Hence it is fair to say overall that
acoustic and perceptual change parameters are con-
firmed as important and widespread contributors to
models of continuously perceived affect. Indeed, in
Table 5, every model requires either perceived change
or an acoustic variable at the minimum as a predictor
(H1). Thus, we later test the general applicability of
these types of model (Hypothesis 6) across the pieces
in a different way, using CSTSA to assess how the dif-
ferent pieces require the predictors to be modified in
a communal model.

ANALYZING THE IMPACT OF AGENCY: DISSECTING PERCEIVED

CHANGE FURTHER

We next investigate a specific aspect of H2, concerning
human agency. Continuous perception of change in the
music has been found largely to reflect the musical
structure of the piece, including the sectionalization of
a piano concerto represented by the entries of the solo-
ist. But as indicated in the introduction, perceived
change most probably rolls together many different per-
ceptions. For example, changes in perceived loudness
and timbre, which we have studied here through their
acoustic counterparts intensity and spectral flatness, can
contribute to this, as we showed previously. Note again
that intensity and spectral flatness are not simply and
entirely congruent with perceived loudness and timbre.
Thus, it is of interest to continue to apportion the per-
ception of change, ultimately with a view to being able
to dispose of it, representing it fully in more specific
subcomponents. As we have noted already, one sub-
component that it seems to represent is agency, in the
specific sense of the apparent presence or absence of
a particular human activity (such as vocal sounds, or
a concerto soloist), and possibly the distinct narrative
agency of musical development (such as perhaps expo-
sition, development, or tonal shift). Another subcom-
ponent is rhythmic flexibility, which has been proposed

to be a predictor (Chapin, Jantzen, Kelso, Steinberg, &
Large, 2010), but not previously analyzed in our studies.
In Chapin et al. (2010), removing expressive timing and
dynamic variations together resulted in diminished
affective responses, so their relative effects were not
discriminated. Thus in this section we assess whether
the agency of the soloist in our Mozart piano concerto
extract can be quantitated, so as to provide a predictor
which enhances our modeling of perceived arousal and
valence.

We aimed to go beyond simply providing a predictor
variable that defined segments of agency (such 0 for the
absence of the soloist, 1 for the presence). As for the
structural predictors analyzed already, this would pro-
vide such a limited amount of information as to be
unlikely to be informative beyond segmenting the mod-
els. Rather we chose to assess whether the degree of
activity of the soloist might be predictive. The degree
of effort of a human agent might well be represented by
the number of events per unit time the agent initiates:
this would here correspond to event density of the
piano. The degree of expressive complexity and density
of an agent might relate to the variability of the duration
of such events, which may also create variations in event
density (number of events initiated per unit time). Thus,
we measured event density with a 2 Hz sampling rate to
provide a predictor that could be assessed in our mod-
els, using event counting in the music analysis and dis-
play software Sonic Visualiser (with some assistance
from its onset detection algorithms). After a brief
orchestral introduction, the piano soloist performs four
segments in alternation with the orchestra, including
the final segment of our extract. Virtually all the piano
event durations are in the range minim (half note) to
semiquaver (sixteenth note), and there are also some
trills, arbitrarily taken here as providing a note event
density one unit higher than the observed semiquaver
maximum density (which is 5 events per time slice). The
tempo of the performance fluctuates very slightly and
there are only two substantial cases of rubato (dramatic
elongations of a particular note at the expense of others,
with minimal overall tempo change in the phrase),
which are not represented in our analysis.

So our data-driven Hypothesis 7, an extension of H1-3
above, is that event density will be a predictor of per-
ceived arousal and valence, improving our models and
subsuming some of the predictive impacts of perceived
change. The Mozart piece is pertinent for this analysis,
as it is in general poorly modeled, and shows weak
influences of perceived change (and only on perceived
valence). The analysis is conducted on the grand aver-
age response series, developing from Table 3 (since the
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perceptually defined segments were not distinct in
terms of their time series model components for the
Mozart), and concerns event density of the solo piano
part. Overall, H7 was upheld: model quality (BIC) was
improved, though precision of fit was not. Furthermore,
perceived change was no longer a required predictor
in the optimal model for valence, thus being absent
for both models of arousal and valence in this case
(in support of H1). This suggests that indeed we had
succeeded in separating the components of perceived
change. For valence, even intensity was no longer
required in the optimal model, but its degree of fit
remained poor, and this observation is not powerful.
The result suggests that indeed event density may well
be influential particularly on the perception of arousal,
and that this hypothesis will bear further investigation
by means of experimental perturbation studies manip-
ulating event density, such as we have previously con-
ducted with acoustic intensity (Dean et al., 2011). In
the case of event density, such experiments will require
specially generated stimuli, or substantial segment by
segment speeding and slowing of audio stimuli.

TESTING FOR COMMONALITIES AND DISTINCTIONS BETWEEN CORE

PREDICTORS ACROSS GRAND AVERAGE RESPONSES FOR ALL PIECES

In Table 7 the grand average response series for each of
the nine pieces are taken together, in a distinct CSTSA
modeling approach that permits random effects to oper-
ate on the basis of the piece as unit, rather than the
individual participant as unit (as in the analyses sum-
marized in Table 5). This asks: do the pieces share pre-
dictors (mainly expressed in the fixed effects), and
hence potentially mechanisms, and do they reflect dif-
ferent emphases on some of those mechanisms (in the
random effects)? In order to make these interpretations
as clear as possible we show separately cross-sectional
models that only permit fixed effects, and those that
additionally allow random effects, both for the arousal
and the valence continuous perception responses.

The results support the implications of earlier models,
that intensity and spectral flatness are respectively com-
mon and less common predictors for both perceived
arousal and valence, while perceived change is sub-
ordinate, partly in that it is here a frequent predictor
for arousal only (H1). Thus, they support the idea of

TABLE 6. The Influence of the Event Density Time Series in Optimized ARX Models of the Mozart Piano Concerto Extract.

Modeled
response
(DV) Model Acoustic/perceptual predictors

Autoregressive
components BIC

% Sum of
squares

fit

Correlation
predicted series:

data series

darousal Original L(3,5).dintens Ar(1) 943.9 11.34 .34
Using soloist event density L(5).dintens, L(4*, 14).devents Ar(1) 873.0 9.66 .31

dvalence Original L3.dintens, L6.dspectralf,
L7.dchange*

No Ar 874.9 3.59 .19

Using soloist event density L(9*, 10*, 12*).devents No Ar 849.0 1.15 .11

Note. DV: dependent variable. Ar(n): the list of autoregressive terms. BIC: Bayesian Information Criterion, which can be meaningfully compared only between different models
of the same response series. An interpretive limitation here is that the models of arousal and valence including devents as predictor are respectively 9 and 6 events shorter than
those without it. devents refers to the first difference of the measured series of piano event density (attacks/0.5 s).

TABLE 7. Commonalities and Differences Among the Pieces in Relation to Models of Affect: CSTSA of Grand Average Responses to All Pieces
Taken Together, with Random Effects by Piece.

Modeled
response
(DV) Model Type

Acoustic/ perceptual
Fixed Effect predictors

Autoregressive
lags of DV Random Effects

% Sum of
squares

fit

Correlation
fitted values:
modeled data

darousal Fixed effects only L(2*,5,9*).dintens,
L(0-7).dchange

1,5 11.57 .34

Random effects allowed L(5,9*).dintens,
L(0-7).dchange

1,5 L(2,3).darousal 15.15 .39

dvalence Fixed effects only L(8).dintens,
L(3,4).dspectralf

1,2 5.60 .16

Random effects allowed L(3,4).dspectralf 1,2 L(5,8).dintens,
L(1-3).dvalence

11.41 .34

Note. DV: dependent variable. darousal refers to the first difference of arousal: dvalence and dchange similarly to the first differences in valence and change. The better darousal
model had white noise residuals in BLUPs for all pieces. The valence models did not, and thus were incompletely specified.
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considerable commonality in mechanisms of perception
of arousal and valence across the pieces. It must be
remembered that the number of pieces under study is
limited to only nine. However, they also show substan-
tial inter-piece differences through the random effects,
expressed in autoregression for both arousal and
valence, and in the roles of intensity for valence (H6).
Valence modeling is now comparably good to that of
arousal, providing random effects are included (but
note again that here they are random effects on piece).
For both responses the model/data correlations
achieved are quite similar to the mean of the corre-
sponding values in Table 4 (though far fewer data items
are involved in Table 6, which concerns grand average
data series, than in Table 4).

Discussion

The analysis above provides support, to varying degrees,
for all seven proposed hypotheses. While recognizing
that our findings are limited by the relatively small
number of pieces studied, the work continues to support
the dominant role of the surface acoustic properties
intensity and spectral flatness in modeling listeners’
perceptions. Two features of the work seem to us most
important: 1) the variety of evidence we provide that
continuously perceived valence can (now) be modeled
almost as well as perceived arousal; and 2) that we have
indicated a path towards further separating out the
acoustic and musical components which drive listeners’
perceptions of change, such that this perceptual variable
might be made redundant.

We first take these two features in turn. The variety of
pieces studied here, rather greater than in our previous
work, immediately encourages confidence in the
valence modeling, since it is often even initially compa-
rable in quality with that of arousal, whereas this was
not generally true in models of the four pieces we stud-
ied in earlier work (Wishart, Xenakis, Dean, and
Webern), perhaps because these were generally more
dissonant with the average experience of nonmusician
listeners than those we studied here. Furthermore,
we here subsequently enhanced models of perceived
affect — notably valence — by confirming the substan-
tial interpersonal differences in how it is perceived, con-
sistent with our finding of links between liking and
continuous valence (and consistent with Hypotheses
4/5). Using CSTSA, we were able to attribute these inter-
personal differences appropriately by means of random
effects components in our models, and consequently to
enhance their quality and/or precision. CSTSA is now
directly dealing with a huge amount of data, as in the

models of Table 4: nothing is omitted or averaged,
unlike most previous papers on continuous response
measures. So it is not surprising these models appear
more complex, but very encouraging that they perform
comparably well to simple models of grand average
responses. Most important is that they demonstrate the
reasonable modeling of both perceived arousal and
valence.

Considering the second feature (roles of perceived
change), it is also apparent that the need to include the
perceived change time series as a predictor in the mod-
els of affect (Table 3 here) may be slighter than seemed
from the earlier analyses of the four previous pieces.
Furthermore, the analysis (Table 6) of the Mozart piece,
the only piece to which we could readily attach a con-
tinuous variable potentially representing degrees of
agency, suggested that with appropriate analyses, the
change variable could indeed be apportioned to its com-
ponent drivers, and perhaps be made redundant. In
other words, in this case we have possibly succeeded
in analyzing further the multiple components (beyond
acoustic intensity change and spectral flatness changes)
that drive perception of overall change, as we sought.
This of course requires much further and more general
assessment.

Given that perceived change provides our means of
assessing perceived structural segmentation, the same
arguments can be applied to suggest that the influences
of segments per se should potentially be subsumed into
those of the constituent features that lead to their per-
ception. This is among the aims behind our previous
use of specific timbral features as predictors: for exam-
ple, in detailed studies of Xenakis Metastaseis (Dean &
Bailes, 2013) further investigated here, and in our dem-
onstration of roles for human and animistic sounds (H2
here) (Bailes & Dean, 2012; Dean & Bailes, 2010b). This
was also found to have bearing in other pieces, where
perceptions of vocal agency seemed to be predictive of
affective responses (Bailes & Dean, 2012). In the present
work these aspects are extended into an analysis of pos-
sible levels of agency of the identifiably human agent,
the piano soloist, in perceptions of Mozart’s Piano Con-
certo No. 21 (Table 5).

In this Mozart work, we have taken piano event den-
sity as potentially a simple surrogate of the degree of
human agency (not, of course, as a precise predictor of
it). Thus, we consider the differenced form of the event
density series as a simplified representation of variation
and variability in agency. The differenced series was
found to be influential in models, and could replace other
predictors. Caution needs to be exercised, in that this
Mozart response is poorly modeled here, but nevertheless
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the results are at least consistent with the possibility that
the predictive role of the piano event density might rep-
resent the impact of human agency (H2). If so, the agency
is at least partly expressed through rhythmic density (and
variety). The best models described here remove only
19.9% and 6.5%, respectively, of the squared data value
series for arousal and valence. Yet the piece scores more
highly than any other in our set for both familiarity, and
liking (above mid-point). In other work consistent with
these ratings, we showed that the Mozart piece induced
a relatively high mean engagement in listeners, judged by
a continuous response measure (Olsen, Dean, & Stevens,
2014). The listeners were a different group of student
listeners from those studied here, but of similar ages. Using
this measure of continuous engagement as a predictor in
models like those described, the ARX arousal model was
slightly enhanced (to 22.5% of squares), but for valence
was substantially improved (to 17% of squares), bringing
the piece roughly into parity with others in the present
paper. Thus, engagement levels — sometimes related to
liking and familiarity — may form an important predictor
in models of affect for more familiar works.

Other models here extend the concept of human
agency to one of structural or narrative agency, in which
music structural features provide a changing pattern
of potentially perceptible agency, in turn potentially
influencing continuous perceptions of affect (H3). Maus

(1997) has particularly emphasized such an interpreta-
tion of music structure as agency, consistent with this
argument. If this line of thought is to be applied to the
structural narratives of primarily timbral works such as
Xenakis Bohor (electroacoustic) and even Metastaseis
(orchestral), then it will be necessary to consider what
constitutes a perceptual event (as one routinely assumes
a piano note attack in Mozart to be) in this music. Given
greater clarity about the nature of perceptual events in
this music, it may well be possible to assess perceptions
of degree of agency, or effort, that would correspond to
the real or imagined physical process of their generation
(as we and others have hypothesized previously, Dean &
Bailes, 2010b). We plan to investigate this perceptually.
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