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Abstract. The distributed beamforming problem for

amplify-and-forward relay networks is studied. Maximizing

output SNR (signal-to-noise ratio) for distributed beamforming

can be considered as a generalized eigenvector problem (GEP)

and the principal eigenvector and its eigenvalue can be derived

with a standard closed-form solution. In this paper, four classes

of beamforming algorithms are derived based on different

design criteria and constraints, including maximizing output

SNR subject to a constraint on the total transmitted signal

power, minimizing the total transmitted signal power subject

to certain level of output SNR, minimizing the relay node

number subject to constraints on the total signal power and

output SNR, and a robust algorithm to deal with channel esti-

mation errors. All of the algorithms have a low computational

complexity due to the proposed real-valued implementation.

Keywords. Distributed beamforming, relay networks, gen-

eralized eigenvector problem, robust algorithm.

I. INTRODUCTION

Distributed beamforming (also called collaborative beam-

forming) is a form of cooperative communication using a

relay network consisting of two or more nodes forwarding

the message from a transmitter to an intended receiver when

there is no direct link between them or the link is so weak

that it cannot support the minimum required quality of service

(QoS) [1], [2], [3], [4], [5]. It can improve the QoS when

channel conditions are poor, and the resultant cooperation

diversity can also provide benefits of increased range and

data rate or improved energy efficiency [1], [6], [7]. In

general, distributed beamforming algorithms are divided into

three categories: amplify-and-forward (AF) [6], [7], [8], [9],

decode-and-forward [10], [9], and compress-and-forward [11],

[12]. The AF scheme is of particular interest and has been

studied extensively due to its simplicity in both algorithm and

implementation aspects. In this paper we will focus on the

AF-based one.

Depending on different design objectives, constraints and

assumptions, various methods have been proposed based on

Copyright (c) 2012 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

the knowledge of channel state information (CSI). With the

assumption that the source knows the direct link (the channel

between itself and the destination), each relay knows its own

channels and the destination knows all of the channels, the

problem of maximizing output SNR subject to individual

power transmission constraint for both with and without direct

link scenarios was solved in [13]. The distributed beamforming

problem of maximizing output SNR with total and individual

power constraints for a three-hop relay system was investigated

in [14]. Instead of maximizing the output SNR, beamforming

schemes based on the minimum mean square error (MMSE)

criterion were studied in [15], [16], [17]. Based on the

second-order statistics of CSI, two beamforming algorithms,

one for minimizing the total transmit power subject to the

receiver QoS constraint and the other one for maximizing

the receiver SNR subject to two types of power constraints,

were proposed in [18]. This work was then extended to two-

way communication systems in [19], and multiple peer-to-peer

communications based on a common relay network in [20].

Given errors in the downlink (from relay nodes to destination)

CSI, a robust optimization algorithm was derived with the

consideration that the uplink (from source to relay nodes)

coefficient could be estimated more accurately. Another robust

scheme was proposed in [21] for uplink transmission with each

node equipped with an antenna array.

In this paper, with the knowledge of instantaneous CSI,

we propose a low-complexity real-valued implementation of

the system by introducing a preprocessing stage with a set

of offset phase shifts into the relay network. Four problems

are then studied based on this implementation. The first

one is maximizing output SNR subject to a limit on the

total transmitted signal power, which can be considered as

a real-valued generalized eigenvector problem (GEP) with its

matrix pair consisting of a special rank-one signal correlation

matrix and a diagonal noise correlation matrix. The GEP is

then transformed into an eigenvector problem (EP), where

the principal eigenvector and its eigenvalue can be derived

with a closed-form solution. The derivation does not involve

any eigen-decomposition operation and avoids the most time

consuming part of the algorithm. The second problem studied

is minimizing power consumption with a constraint on a

certain level of output SNR. Its optimum solution has to satisfy

the standard structure of the principal eigenvector, with a

single unknown parameter solved by an iterative method. The

third problem is based on a new consideration that the free

nodes in a network are limited resources, and some of them

could enter or exit due to their operation state and their own

consideration such as battery status, and a new algorithm for

minimizing the relay number subject to a power consumption

limit and a certain level of output SNR is proposed. Two

solutions are derived by setting different priorities for the two

constraints. The above three problems are based on perfect

instantaneous CSI for both up and down links. However, there

may exist estimation errors for both links. Benefiting from the

standard structure of the optimum solution based on the GEP,

a low-complexity robust algorithm is derived in our fourth

considered problem to combat channel estimation errors.

The rest of the paper is organized as follows. In Section
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Fig. 1. A distributed beamforming structure for relay networks.

II, the distributed beamforming model and complex-valued

formulation for maximizing output SNR are introduced; the

latter one is then reduced to a real-valued one by our pro-

posed method. In Section III, the four algorithms based on

different design criteria are derived. Simulations are presented

in Section IV and conclusions are drawn in Section V.

Notation: Vectors are denoted by lowercase bold letters

and matrices by uppercase bold letters. {·}H , {·}T , {·}∗ de-

note Hermitian transpose, transpose and complex conjugate,

respectively. E{·},Re{·},P{·}, tr{·} denote the operations of

taking expectation, real-valued part, principal eigenvector and

trace, respectively. I is the identity matrix and j =
√
−1. ⊙

denotes the element-wise (Schur-Hadamard) multiplication of

two vectors or matrices.

II. SYSTEM MODEL AND REAL-VALUED

IMPLEMENTATION

A. System Model

Consider a wireless network with a source S , a relay

network consisting of M nodes with each equipped with a

single antenna for up and down link communications, and

a destination D, as shown in Fig. 1. The channel is based

on narrowband system and assumed to be flat fading and

stationary and there is no direct link between the source and

the destination. First the source sends the signal to all relay

nodes with an attenuation coefficient fi for the ith node; the

received signal by each relay node is weighted by a complex-

valued coefficient w̃∗
i and then forwarded to the destination.

At the ith relay node, the received signal is ri = fis + ni

with s and ni ∼ CN (0, σ2
i ) being the transmitted signal and

noise at the ith relay, respectively. In a vector form

r = fs+ n , (1)

where r = [r1, · · · , rM ]T , f = [f1, · · · , fM ]T and n =
[n1, · · · , nM ]T . Then ri is weighted by w̃∗

i before it is

forwarded to the destination, which can be expressed as

x = w̃∗ ⊙ (fs+ n) , (2)

where x = [x1, · · · , xM ]T and w̃ = [w̃1, · · · , w̃M ]. With the

downlink coefficient gi, the destination received signal y =
∑M

i=1 gixi + η is a linear mixture of xi with additive noise

η ∼ CN (0, σ2
v), i.e.,

y = gT (w̃∗ ⊙ f)s+ gT (w̃∗ ⊙ n) + η . (3)

Since g and w̃∗ are exchangeable, we can rewrite (3) as

y = w̃H(g ⊙ f)s+ w̃H(g ⊙ n) + η = sd + nd , (4)

with sd = w̃H(g ⊙ f)s and nd = w̃H(g ⊙ n) + η being the

signal and residual noise part, respectively.

The output SNR is defined as the ratio of the output desired

signal power E{|sd|2} and the residual noise power E{|nd|2}

SNR =
E|sd|2
E|nd|2

=
Psw̃

H(g ⊙ f)(g ⊙ f)Hw̃

w̃HE{(g ⊙ n)(g ⊙ n)H}w̃ + σ2
v

(5)

where Ps = E{|s|2} is the power of the signal s and without

loss of generality, we assume Ps = 1. We have also assumed

that all noise components are independently distributed and

they are uncorrelated with the signal. By further defining

Rs = (g ⊙ f)(g ⊙ f)H

Rn = E{(g ⊙ n)(g ⊙ n)H}
= diag[σ2

1 |g1|2, σ2
2 |g2|2, · · · , σ2

M |gM |2] (6)

we have

SNR =
w̃HRsw̃

w̃HRnw̃ + σ2
v

(7)

Rs and Rn are two correlation matrices playing key roles

in distributed beamforming. Note that Rn is a real-valued

diagonal matrix. For the rank one matrix Rs with principal

eigenvector g ⊙ f , it is generally complex-valued. However,

by applying a set of offset phase shifts, we can transform Rs

into a real-valued one.

B. Real-valued implementation

The principal eigenvector of Rs can be written as g⊙ f =
|g| ⊙ |f | ⊙ ϕ, where ϕ is the phase vector of g ⊙ f with

ϕ = [eϕf1+ϕg1 , · · · , eϕfM+ϕgM ]T .

If there is an optimum solution w̃, then we can always

decompose it into the form w̃ = w⊙ϕ, where w is determined

by the element-wise division between w̃ and ϕ. Then the

optimum output signal power can be written as

w̃HRsw̃=(w ⊙ϕ)H(|g| ⊙ |f | ⊙ϕ)(|g| ⊙ |f | ⊙ϕ)H(w ⊙ϕ)

=wH(|g| ⊙ |f |)(|g| ⊙ |f |)Hw = wHR̄sw ,

where R̄s = (|g|⊙ |f |)(|g|⊙ |f |)H is a real-valued signal cor-

relation matrix. Due to the diagonal and real-valued property

of Rn, using w instead of w̃ will not affect the noise power

in the denominator of Equation (7).

This idea can be exploited in two ways. First we can use

R̄s instead of Rs in the algorithm and find the optimum

solution w based on different design criteria, with the final

optimum solution obtained by w̃ = w⊙ϕ. Or we can employ

a preprocessing stage in the relay network as shown in Fig. 2,

where the received data ri is preprocessed (multiplied) by ϕ∗
i ;

then the transmitted signal is changed to x̄i = ϕ∗
iw

∗
i xi, where

ϕi is the i − th element of the vector ϕ. The preprocessing

is equivalent to offseting the phase shift in f and g to |f | and

|g|. We can see from (5) and (6) that no parameters have been

changed and w will be the final optimum solution. Moreover,



3

*

M
w

M
g

xM
rM

M
ϕ*

1
w 1

g
1

ϕ*

r1

D

η

y

*

x1

Fig. 2. Distributed beamforming with a preprocessing stage.

with the preprocessing, the total signal power transmitted by

the relay network can be written as

P = E(x̄H x̄) = E(xHx) = wHDw , (8)

where D is a diagonal matrix

D = diag[|f1|2 + σ2
1 , · · · , |fM |2 + σ2

M ] . (9)

In this paper, we will adopt the preprocessing method. There-

fore, Rs becomes a real-valued matrix, given by

Rs = (|g| ⊙ |f |)(|g| ⊙ |f |)H . (10)

We will see later that all the optimum solutions based on

the preprocessing method become real-valued, leading to

low-complexity implementations. Since the error caused by

estimating g and f may render the real-valued transformation

ineffective, a robust algorithm will be proposed at a later stage.

III. PROPOSED ALGORITHMS

A. Maximizing Output SNR

With the preprocessing, the problem of maximizing output

SNR subject to a limit Pt for the total transmitted power can

be formulated as

max
w

SNR =
wHRsw

wHRnw + σ2
v

, subject to wHDw ≤ Pt (11)

Here the the constraint is on the total transmitted power

including both the desired signal component and the additive

noise component, since the proposed algorithms are based

on the AF scheme and the relay nodes can not eliminate

the additive noise in the received signal x. To have a true

signal power constraint, we can subtract the noise power from

D. However, a problem is that the resultant total transmitted

power including the noise component can be very large, which

may become impractical for battery-powered devices.

Define ŵ = D1/2w/
√
Pt and substitute it into (11). Since

the maximum output SNR will occur on the boundary of the

constraint equation [18], (11) can be changed to

max
ŵ

SNR =
Ptŵ

HR̂sŵ

ŵH(PtR̂n + σ2
vI)ŵ

, subject to ∥ŵ∥2 = 1 (12)

with R̂s = D−1/2RsD
−1/2 and R̂n = D−1/2RnD

−1/2.

This is a constrained real-valued GEP with its matrix pair

being R̂s and PtR̂n + σ2
vI. It is well-known that the GEP

can be transformed into an EP [22] (pp. 375-378). With

R̂ = PtR̂n + σ2
vI, its solution is given by the principle

eigenvector of the matrix R̂−1R̂s [18], i.e.

ŵ = P{R̂−1R̂s} = P{R̂−1ââH} = αR̂−1â , (13)

where α is a scalar to be determined later and â = D−1/2|g|⊙
|f | = D−1/2a with a = |g|⊙|f |. The final step can be verified

as follows.

R̂−1R̂s(αR̂
−1â) = αR̂−1ââHR̂−1â

= (αR̂−1â)(âHR̂−1â) = (âHR̂−1â)(αR̂−1â) ,(14)

where (âHR̂−1â) is a scalar. So the principal eigenvector of

R̂−1R̂s is given by αR̂−1â.

Given the constraint ∥ŵ∥2 = 1, we have

|αR̂−1â|2 = α2(âHR̂−2â) = 1 , (15)

i.e. α = 1/
√

âHR̂−2â. Substituting this result into (13), the

optimum solution and the maximum output SNR are then

given respectively by

ŵI =
R̂−1â

√

âHR̂−2â
(16)

ˆSNRI = Ptâ
HR̂−1â (17)

The optimum solution (16) has a similar form to a traditional

maximum output SINR beamformer [23], [24], where â is the

steering vector of the desired signal and R̂ is the interference-

plus-noise correlation matrix. Here, for interference-free dis-

tributed beamforming, R̂ is the noise correlation matrix, while

â contains the relay information and could be considered as

the virtual “steering vector” of the transmitted signal. Another

difference comes from R̂, where for traditional beamforming,

the received signal at each antenna is a coherent replica of each

other and the solution is a complicated combination of the

antenna signals. However, in distributed beamforming, R̂ is

diagonal with each diagonal element Ptσ
2
i |gi|2/(|fi|2+σ2

i )+
σ2
v contributing to the maximally allowed transmitted power

separately.

Using ŵ = D1/2w/
√
Pt, the final optimal solution wI for

(11) and maximum output SNR are given by

wI =

√
PtD

−1/2R̂−1D−1/2a
√

aHD−1/2R̂−2D−1/2a
(18)

SNRI = Pta
HD−1/2R̂−1D−1/2a . (19)

Since both D and R̂ (or R) are diagonal, (18) and (19) can be

further factorized into a polynomial form in terms of gi and

fi as follows

wI,i = ctci (20)

SNRI = Pt

M
∑

i=1

|fi|2|gi|2
Ptσ2

i |gi|2 + σ2
v(|fi|2 + σ2

i )
(21)

where

ct =
1

√

aHD−1/2R̂−2D−1/2a

=
1

√

∑M
i=1

|fi|2|gi|2(|fi|2+σ2

i
)

[Ptσ2

i
|gi|2+σ2

v(|fi|
2+σ2

i
)]2

ci =

√
Pt|fi||gi|

Ptσ2
i |gi|2 + σ2

v(|fi|2 + σ2
i )

(22)
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The optimal solution in (20) for each relay has a closed form

composed of two parts: the basic part ci determined only by

each relay parameter and noise power, and the second part

ct for each relay, containing the global information due to the

power constraint. (20) has quite low computational complexity

since no complex-valued matrix operation is involved. The

maximum output SNR in (21) is a sum of M components

with each contributed by one relay only. This property will be

used for the relay number minimization problem.

Based on the closed-form solution (18), 18M+1 real-valued

multiplications are needed, while the number for the complex-

valued version (i.e. without preprocessing) would be 21M+2.

Note the same problem has been studied in [18] and a solution

similar to (20) was derived. However, there are two major

differences: firstly, our formulation is real-valued as a result

of the proposed preprocessing stage and therefore has lower

computational complexity; secondly, the solution in [18] is

still in the form of a principle eigenvector operation, while we

have given a closed-form principle eigenvector in (13) and a

further simplified result in (18) and (20).

B. Minimizing Total Transmitted Power

Now consider the problem of minimizing the total transmit-

ted power subject to the output SNR reaching a certain level,

formulated as

min
w

P = wHDw

subject to SNR =
wHRsw

wHRnw + σ2
v

≥ γ (23)

The original problem can be found in [18] and was solved with

eigenvector decomposition based on second-order statistics of

the CSI. Here we provide a less complex solution based on

the GEP given in Section II.

Suppose γ is set within the following range

0 < γ <

M
∑

i=1

|fi|2/σ2
i , (24)

which can be explained as follows. According to (23), SNR= 0
only for ∥w∥2 = 0. For any nonzero weight vector, SNR> 0;

for the right side, the equality holds when ∥w∥2 → ∞ and it

is obtained by substituting Pt = ∞ into (21).

Since the transmitted power by the relays has a positive

correlation with the output SNR, the larger the output SNR

at the destination, the more power needed at the relay. So the

minimum transmitted power by relays will occur at the output

SNR constraint boundary, i.e. SNR = γ, which lead to the

following problem:

min
w

P = wHDw

subject to SNR =
wHRsw

wHRnw + σ2
v

= γ (25)

Now suppose we have found the minimum transmitted power

which is PII and the corresponding solution for w, denoted

by wII. Then we consider the following problem:

max
w

SNR =
wHRsw

wHRnw + σ2
v

, subject to wHDw = PII (26)

Assume the maximum SNR obtained in the above formulation

given the power constraint of PII is denoted by γ̃ and the

optimum solution for w is denoted by w̃II. Firstly, γ̃ should

not be smaller than γ, since given the total transmitted power

PII, the system can achieve an SNR equal to γ according to

(25); secondly, γ̃ should not be larger than γ, which can be

proved by contradiction as follows. If γ̃ > γ, then we can scale

down w and reach an SNR equal to γ, which in turn leads

to a reduced total transmitted power P̃II < PII. This means

with an SNR equal to γ, the system can achieve a lower total

transmitted power than PII, which contradicts the result in

(25). As a result, we have γ̃ = γ for the problem in (26).

Then we know that wII = w̃II. According to the results in

Section III-A, w̃II and therefore wII follow the same structure

given in (13), i.e. wII = βR̂−1â, where β is a scalar.

However, we need to decide the value of β due to the

power constraint. Suppose for the optimal solution, we have

∥wII∥2 = Pw. Then (23) is reduced to find a Pw satisfying

SNR(Pw) =
wHRsw

wH(Rn +
σ2
v

Pw
I)w

= γ (27)

with w ∈ U , where U is the space of the principal eigenvector

of (Rn +
σ2

v

Pw
I)−1Rs. Pw is the only unknown in (27).

However, there is no closed-form solution for Pw and iterative

methods such as the bisection or Newton methods can be used

[22].

Note that in (27) Pw is a monotonous function of SNR.

Moreover, 0 < γ <
∑M

i=1 |fi|2/σ2
i . For Pw = 0 and Pw = ∞,

SNR(0) = 0 < γ and SNR(∞) = wHRsw/(wHRnw) > γ,

which indicates that the optimum solution of Pw is unique.

After finding Pw, the optimal weight vector for (23) and

the total transmitted power can be written as

wII = (Rn +
σ2
v

Pw
I)−1a (28)

PII = aH(Rn +
σ2
v

Pw
I)−1D(Rn +

σ2
v

Pw
I)−1a . (29)

Again, wII and PII can be calculated by factorized polynomial

in terms of fi and gi due to diagonal matrices D and Rn.

The most time consuming part of the algorithm is to solve

the single unknown Pw, and details of this process is given as

follows.

Substituting (28) into (27), with Rs = aaH , we have

aH(Rn +
σ2

v

Pw
I)−1Rs(Rn +

σ2

v

Pw
I)−1a

aH(Rn +
σ2
v

Pw
I)−1(Rn +

σ2
v

Pw
I)(Rn +

σ2
v

Pw
I)−1a

= aH(Rn +
σ2
v

Pw
I)−1a = γ . (30)

Since Rn is diagonal, we have

(Rn +
σ2
v

Pw
I)−1 = diag[

1

σ2
1 |g1|2 + τ

, · · · , 1

σ2
M |gM |2 + τ

]

(31)

where τ = σ2
v/Pw. With a = |g| ⊙ |f | =

[|g1f1|, |g2f2|, · · · , |gMfM |], we further have

|g21f2
1 |

σ2
1 |g1|2 + τ

+
|g22f2

2 |
σ2
2 |g2|2 + τ

+
|g2Mf2

M |
σ2
M |gM |2 + τ

= γ (32)
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Depending on the accuracy of the initial value for iteration

and the required accuracy for the result, the computation

complexity is roughly around O(kM) based on the bisection

method, where k is the number of iterations. It is difficult

to compare the complexity of the proposed solution with

the solution in [18] directly. However, with our proposed

preprocessing stage, we can use the principle eigenvector

solution derived in [18] based on the real-valued Rs, which

will lead to much lower computational complexity than the

case based on a complex-valued Rs employed in the solution

in [18].

C. Minimizing Relay Number

Various methods have been proposed for minimizing power

consumption or maximizing output SNR. However, the avail-

able node number in a relay network is another valuable

resource especially when there are more than one relay net-

works working simultaneously. Moreover, the number of relay

operations each node can participate within a fixed period of

time can be very limited. Therefore, it is necessary to design a

new scheme based on minimizing the number of relay nodes

subject to some limit on output SNR and the total transmitted

signal power as follows

min
w,1≤MN≤M

MN

subject to SNR ≥ γ and P = wHDw ≤ Pt (33)

This sparsity optimization problem may be solved by

transforming it into a convex problem with extremely high

computational complexity. It is especially difficult for relay

networks composed of handsets with limited processing power.

Here we give two solutions by treating the two inequality

constraints differently.

In the first case, we consider the following problem

min
w,1≤MN≤M

MN

subject to SNR ≥ γ and P = wHDw = Pt (34)

where the total transmitted power is fixed to Pt. The minimum

number of relays must occur under the condition of the weight

vector being in the subspace of the principal eigenvector of

R̂−1R̂s since in that case each relay can make the most

contribution to the output SNR so that the total required node

number is reduced. The output SNR is a sum of MN terms

with each one being the contribution of a relay node according

to (21). We can then change (34) into

min
1≤MN≤M

MN subject to wi = ctci, (for i = 1, · · · ,MN )

and SNR = Pt

MN
∑

i=1

|fi|2|gi|2
Ptσ2

i |gi|2 + σ2
v(|fi|2 + σ2

i )
≥ γ (35)

If we choose the minimum MN relay nodes from M to

satisfy the output SNR requirement with a fixed transmitted

power, the optimum selection is first sorted out in a descending

order u = [u1, · · · , ui, · · · , uM ] with

ui =
|fi|2|gi|2

Ptσ2
i |gi|2 + σ2

v(|fi|2 + σ2
i )
, (i = 1, · · · ,M) (36)

Then we choose from the largest one until the sum of them

satisfies the minimum output SNR requirement.

There are several schemes to decide the minimum MN . We

can add one by one starting from the largest term u1 until the

output satisfies SNR≥ γ. This method may be used for the

scenario that γ is small and u1 is relatively large. If γ is large

and u1 is relatively small compared with γ, we can first add

all of the SNR terms; if it is still smaller than the required

output SNR level, the solution is infeasible. Suppose γ has

been chosen within a reasonable range, i.e., γ ≤ ∑M
i=1 ui; then

we drop the smallest term uM , the second smallest, and so on

until
∑k

i=1 ui < γ, and the minimum MN is then k + 1. We

may use other faster searching algorithms such as the bisection

method to decide the required minimum number MN .

The second case to consider based on the optimization

problem (33) is to fix the output SNR, which gives

min
w,1≤MN≤M

MN

subject to SNR = γ and P = wHDw ≤ Pt (37)

Similar to the minimizing total power problem formulated in

Section III-B, we can see that the optimum solution must lie in

the subspace of the principal eigenvector of (Rn+
σ2

v

Pw
I)−1Rs.

The unknown parameter Pw is decided by the contraint

equation of output SNR. Then (37) may be changed to

min
Pw≤Pt,1≤MN≤M

MN subject to w ∈ UMN×1

and SNR(Pw) =
wHRsw

wH(Rn +
σ2
v

Pw
I)w

= γ (38)

(38) can be further reduced in terms of fi and gi using (28)

min
Pw≤Pt,1≤MN≤M

MN

subject to wi =
Pw|fi||gi|

Pw(|fi|2 + σ2
i ) + σ2

v

(i = 1, · · · ,MN )

and SNR(Pw) =

MN
∑

i=1

Pw|fi|2|gi|2
Pw(|fi|2 + σ2

i ) + σ2
v

= γ (39)

Let us first define ũ = [ũ1, · · · , ũM ] with

ũi =
Pw|fi|2|gi|2

Pw(|fi|2 + σ2
i ) + σ2

v

(40)

Then we have SNR(Pw) =
∑MN

i=1 ũi. The selection scheme

would be the same as the previous case, i.e., the larger ui is, the

smaller the relay number is needed to satisfy the output SNR,

and we tend to choose a large ui as well. One problem is that

ui contains an unknown Pw for each term and it is impossible

to sort out the order until it is solved by some iterative methods

for each selection, which is very time consuming.

Next ,we give one possible way to order ũi with affordable

computational complexity for the relays. First we assume that

for each single decision from i = 1, 2 · · · ,MN (or in a

descending order from i = M,M−1, · · · ,MN ), the optimum

transmitted power Pw,o for Pw is approximately the same as

the maximally allowed power, i.e. Pw,o = Pt, which is a close

approximation based on the following analysis: 1) If Pw,o is

much smaller than Pt, then the difference may be big enough
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for one chosen node to increase its power to increase the

overall output SNR so that one less node can be used, leading

to a smaller MN , which is in contradiction with the assumption

that Pw,o is the optimum value; 2) given Pw,o ≈ Pt, the

approximation will generally not affect the order of ũi since a

little change to Pw will not cause a significant change to the

value of ũi in (40) (note that the value of σ2
v is very small

in general); 3) even if the approximation causes a change to

the order of ũi, this will only affect the final result when the

affected ũi is located at the boundary between the chosen and

the unchosen nodes.

With the approximation Pw,o = Pt, no iteration will be

needed in the processing and once MN is decided, we can

use the original minimizing transmitted signal power method

in Section III-B to find a more accurate solution to Pw. An

iterative process might be necessary, i.e., given a more accurate

Pw,o, we can find a new MN .

For the first case, the computational complexity with and

without preprocessing is 18MN + 1 and 21MN + 1 real-

valued multiplications, respectively; for the second case with

approximation of Pw,o = Pt, the algorithm with and without

preprocessing will have the complexity of 11MN + 1 and

13MN + 1 real-valued multiplications, respectively.

D. Robust Algorithm

All the algorithms we developed so far assume that the

CSI is known. In practice, their performance will degrade

due to errors in estimating f and g. In particular, errors in

the estimated phase information will cause problems for the

proposed real-valued implementation, and therefore further

degrade their performance. Next we develop a robust algorithm

for distributed beamforming by considering both up and down

link channel coefficient errors with a very low complexity.

Suppose the actual channel coefficient vector f and g and

the estimated ones f̃ and g̃ have the following relationships

f = f̃ +∆f g = g̃ +∆g (41)

with ∆f = [∆f1, · · · ,∆fM ]T and ∆g = [∆g1, · · · ,∆gM ]T

being the unknown estimation errors, ranged in

∆f ⊙∆f∗ ≼ ef , ∆g ⊙∆g∗ ≼ eg (42)

where ef = [e2f,1, e
2
f,2, · · · , e2f,M ]T , the element e2f,i is the

error boundary of ∆fi∆fi
∗ = ∥∆fi∥2, and ≼ denotes that

all of the elements ∥∆fi∥2 are less than or equal to e2f,i, i.e.,

∥∆fi∥2 ≤ e2f,i, for i = 1, · · · ,M . For ∆g we have the same

definition and eg = [e2g,1, e
2
g,2, · · · , e2g,M ]T .

Based on the preprocessing in Fig. 2 and according to the

analysis in Section II, we can constrain

f̃ ∈ R
M×1 and g̃ ∈ R

M×1 (43)

Then the robust optimization problem of maximizing output

SNR can be formulated as

max
w

SNR =
wHRsw

wHRnw + σ2
v

, subject to wHDw ≤ Pt

∀ ∆f ⊙∆f∗ ≼ ef , ∆g ⊙∆g∗ ≼ eg (44)

where the objective is to find a w which maximizes the worst-

case SNR among all possible values of ∆f and ∆g, subject

to the power constraint. To solve the problem, we first find

a pair of ∆fo and ∆go in the errors’ range in (42) which

corresponds to the highest total transmitted power Pt (the

worst case in terms of power consumption) given an arbitrary

fixed wo, i.e.

P (∆f i,∆gi) = wH
o D(∆f i,∆gi)wo ≤ P (∆fo,∆go)

with ∥∆f i −∆fo∥2 + ∥∆gi −∆go∥2 ̸= 0 (45)

Now for the set ∆fo, ∆go and wo, the total transmitted

power can be written as

P (∆fo,∆go) = wH
o D(∆fo)wo (46)

where D(∆fo) is a function of ∆fo and not related to ∆go.

With D(∆fo) = diag[|f̃1+∆fo,1|2+σ2
1 , · · · , |f̃M+∆fo,M |2+

σ2
M ], we have

P (∆fo,∆go) =
M
∑

i=1

|wo,i|2(|f̃i +∆fo,i|2 + σ2
i ) (47)

Then the optimum ∆fo,i (i = 1, · · · ,M) can be obtained by

solving the following problem

max
∆fi

|f̃i +∆fi|2, subject to |∆fi| ≤ ef,i (48)

It is not difficult to see that the optimum solution occurs at the

boundary of the error range, i.e. ∆fo,i = ef,i, i = 1, · · · ,M .

Then (44) is reduced to

max
w

SNR =
wHRsw

wHRnw + σ2
v

, subject to wHD(∆fo)w = Pt

∀ ∆g ⊙∆g∗ ≼ eg (49)

where the objective is to find a w which maximizes the worst-

case SNR among all possible values of ∆g, subject to the new

power constraint.

Based on the selection ∆fo = ef , we can take any value

from the error range ∆g as ∆go since the transmitted power

is not dependent on g directly. Then the inequality in (49)

is removed, and an optimum solution for w can be found

by solving the new constrained problem. However, the chosen

value of go will affect the output SNR and the final transmitted

signal power level. Since we cannot know its exact value, we

can choose from the following three most representative values

g̃ − eg , g̃ or g̃ + eg . With a small uncertainty, g̃ − eg may

give the smallest SNR among the three cases. However, when

the errors range, especially for f , is not exactly known, it

can give the most secure power consumption figure; g̃ + eg
may provide the largest SNR and the power consumption will

still be less than the allowance if the error of f is definitely

located within the range of ef ; g̃ is a compromise between the

previous two cases. However, we will give simulations based

on the three cases and show that the differences among them

are not significant.

As an example, based on the selection of g̃ and its corre-

sponding optimum pairs (f̃ + ef , g̃), the optimum solution,



7

output SNR and the actual transmitted power of the robust

optimization problem (44) are given, respectively, by

wIV =

√
PtD

−1/2
R R̂−1

R D
−1/2
R aR

√

aHRD
−1/2
R R̂−2

R D
−1/2
R aR

(50)

SNRIV =
wH

IVRs,AwIV

wH
IVRn,AwIV + σ2

v

(51)

PIV = wH
IVDAwIV

=
Pta

H
RD

−1/2
R R̂−1

R D
−1/2
R DAD

−1/2
R R̂−1

R D
−1/2
R aR

aHRD
−1/2
R R̂−2

R D
−1/2
R aR

(52)

where aR, R̂R and DR are the optimum values used for the

robust algorithm, obtained by using (f̃ + ef , g̃) instead of

(|f |, |g|) in the original definitions in a, R̂ and D respectively.

Rn,A, Rs,A and DA are the actual values for output SNR

measurement, which are defined by using the true up and down

link channel coefficients (f̃+∆f , g̃+∆g) instead of (|f |, |g|)
in the original definitions in Rn, Rs and D, respectively.

Since (50) has the same structure as in the one given in

Sec. III-A, it has the same low and affordable computational

complexity. If there is a noise power estimation error, with

a similar idea in finding the maximum transmitted power

and letting it equal to the maximally allowed one, a similar

robust algorithm can be developed with the optimum solution

obtained by taking the upper bound of the errors.

IV. SIMULATIONS AND RESULTS

In our MATLAB simulations, the signal power Ps = 1
and the input SNR varies by changing the noise power σ2.

f and g are Rayleigh fading and generated by the function

(randn(M, 1)+jrandn(M, 1))/
√
2, and then scaled by εf and

εg, respectively.

A. Maximizing output SNR

Performance of the proposed algorithm in terms of output

SNR versus the total power consumption limit Pt with differ-

ent input SNRs ranging from 0, 5, 10, 15 to 20dB is shown in

Fig. 3, with two sets of channel coefficients εf = εg = 0.1
and εf = εg = 1. There are M = 30 relay nodes employed.

Clearly, with an increase Pt, the output SNR is going up

at a faster rate for smaller values of Pt, and it gets slower

with a larger Pt, where the output SNR tends to reach the

theoretic maximum value for a fixed input SNR. This applies

to all scenarios here with different input SNRs and link

coefficients. For the same Pt, the output SNR has almost a

linear relationship with the input SNR. Moreover, the larger

the input SNRs, the smaller the slope of the curves. This is

because with the increase of input SNR, the contribution of

the noise power term in (7) becomes less and less and almost

zero for a very large α (e.g., α = 20dB), and then the norm

of the weight vector will not affect the output SNR any more.

In this case, a large Pt tends to be not necessary.
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Fig. 3. Output SNR versus the power consumption limit Pt for the
maximizing output SNR algorithm.

B. Minimizing total transmitted signal power Pt

By varying the input SNR from α = 0, 5, 10, 15 to 20dB,

the total transmitted power by a 30−node relay network in

terms of the output SNR limit is shown in Fig. 4, with

small (εf = εg = 0.3) and large (εf = εg = 1) link

coefficients at left and right subplots, respectively. From the

left subplot, all of the curves are up when the required output

SNR increases, showing that better QoS is at the cost of larger

power consumption. The value of Pt increases significantly for

larger output SNRs and cut off at some specific limit value,

which means that the solution for the required γ is infeasible.

This infeasible value increases with the increase of input SNR

limit or εf (εg). In practice, this infeasible point should be

avoided. Comparing Figs. 4 and 3, we can see the equivalence

of the two algorithms, i.e. if given a power constraint Pt, the

maximum SNR achieved for the first algorithm is SNRt, then

given the SNR constraint SNRt, the minimum power needed

will be Pt according to the second algorithm, and vice versa,

as also explained in the paragraph after (25). For example,

with εf = εg = 1, α = 0dB, the output SNR is 10 dB with

Pt = −10dBw in Fig. 4, while the output Pt = −10dBw

when γ = 0dB in Fig. 3.

C. Minimizing relay number MN

First consider the algorithm based on the formulation in

(34) with εf = εg = 1. The minimum required relay

number MN is shown in Fig. 5 with respect to the maximum

power consumption for different input SNRs (α changing from

0, 5, 10, 15 to 20dB), and relatively small (γ = 10dB) and

large (γ = 20dB) output SNR. The maximum available relay

number is Mmax = 200. For all cases of input SNR, the

required minimum relay number reduces with the allowed

power consumption or input SNR increasing.

For the algorithm based on (37), Fig. 6 shows the minimum

required relay number MN versus the output SNR γ by

varying the input SNR α with small (Pt = 0dBw) and large

(Pt = 10dBw) power consumptions. The minimum required

relay number increases sharply with the increase of required

output SNR. We also see from Figs. 5 and 6 that with the
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Fig. 4. The total transmitted signal power versus the output SNR limit (γ)
for the minimizing power consumption algorithm.
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Fig. 5. The minimum required relay nodes (MN ) versus the allowed total
transmitted signal power (Pt) based on formulation (34).

same γ and Pt, the required node number is nearly the same,

which demonstrates the equivalence of the two algorithms. For

example, with γ = 20dB and Pt = 0dBw, the required node

number for both algorithms are 10 from Figs. 5 and 6.

D. Robust algorithm

Consider a 30−node relay network with the input SNR

α = 0dB and εf = εg = 1. Suppose there is a set of

randomly distributed error ν[randn(M, 1)+jrandn(M, 1)]/
√
2

added to the estimated coefficient vectors f and g, where

ν is a parameter for variance control. Now the actual link

vectors are fa = f + ν[randn(M, 1) + jrandn(M, 1)]/
√
2 and

ga = g+ν[randn(M, 1)+jrandn(M, 1)]/
√
2. We first consider

a scenario with ν = −5dB, and assume that the estimated error

bound is ef = eg = 1.2 · ν · ones(M, 1).
The robust algorithm (50), the original algorithm (18) and

the optimum solution with known errors are studied in the left

subplot of Fig. 7. For the robust algorithm, as we discussed

in Section III-D, any selection of g from within the error

range will keep under the allowed signal power level. For three

cases by choosing g, g + 1.2 · ν and g − 1.2 · ν, denoted by

robust algorithms 1, 2, and 3 respectively in Fig. 7, the one
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Fig. 6. The minimum required relay nodes (MN ) versus the output SNR
(γ) based on formulation (37).

choosing g+1.2 · ν[randn(M, 1)+ jrandn(M, 1)]/
√
2 (robust

algorithm 2) has achieved a slightly higher output SNR, while

all of them have a slightly lower output SNR compared to the

optimum solution. It also shows that the original algorithm

(denoted by “Without robust”) has a higher output SNR than

the robust algorithms. However, from the right-side subplot,

where it shows the actually transmitted signal power versus the

constrained power level, we can see that all the three cases of

the robust algorithm have almost the same total transmitted

signal power. However it is smaller than the optimum one.

Moreover, due to the errors, the original algorithm has a larger

signal power than the allowed one for some values of Pt,

which leads to a larger output SNR.

With α = 10dB and Pt = 10dBw, the output SNR result

with respect to ν is shown in Fig. 8. In the left, all the

output SNRs decrease and move away more and more from

the optimum solution as ν increases. The difference among

the three robust cases is increasing as well. Moreover, it

also shows that the original algorithm (“Without robust”) still

achieved a better output SNR than the three robust cases.

However, the actual transmitted signal power of the original

algorithm, as seen from the right subplot, is much higher

than the allowed value (10dBw) and it goes up sharply as ν
increases. For the robust algorithm, the larger the error ν, the

smaller the signal power, since with the uncertainty growing,

to keep the power level under the limit, the algorithm tends to

choose a larger boundary, which is further away from the true

value of f and g, and therefore causes a lower output SNR

compared with the optimum one.

E. Comparison of the proposed algorithms

At last, we examine the relationship of the output SNR of

proposed algorithms versus the relay node number (εf = εg =
1). Since the maximizing output SNR solution is equivalent

to the minimizing power consumption solution, as explained

in Sec. IV-B, we only compare the algorithms of (18), (35)

and (50). The algorithm for (39) is not included due to the

equivalence explained in Sec. IV-C. For the algorithm (35),

we have limited the maximum available node number M to
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Fig. 8. Output SNR versus error scale (ν) for the robust algorithm.

20 and 40, respectively. The results are shown in Fig. 9, where

the total transmitted signal power for all algorithms has been

normalised to Pt = 10dBw for a fair comparison. For the case

of error-free channel coefficients, as shown in the left side of

Fig. 9, we see that with the node number increasing from 1 to

20, the advantage of algorithm (35) with M = 20 is vanishing

compared with (18), which is because with a smaller node

number, the algorithm (35) can choose the best set of channels

from its maximum 20 nodes to give an output SNR as high as

possible. With the node number closer to its maximum value,

they are finally overlapped with (35), as (35) has to use all

of the 20 nodes to reach the required output SNR, and in

that case, it is equivalent to the algorithm (18). However, with

the maximum available node number changed to M = 40,

algorithm (35) has a much better performance than (18) for

all real node number from 1 to 20.

The right-side subplot of Fig. 9 is based on an imperfect

channel model. The actual channel coefficients are gener-

ated by fa = [randn(M, 1) + jrandn(M, 1)]/
√
2 and ga =

[randn(M, 1) + jrandn(M, 1)]/
√
2. However, due to errors,

we suppose the estimated channel is given by f + 0.1 ·
[randn(M, 1)+jrandn(M, 1)]/

√
2 and g+0.1 · [randn(M, 1)+

jrandn(M, 1)]/
√
2. For algorithm (35), the maximum avail-

able node number M is limited to 20 and again the total trans-

mitted signal power for all algorithms has been normalised to
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Fig. 9. Output SNR versus node number for the different algorithms for
both perfect (left) and imperfect (right) estimations.

Pt = 10dBw. Now we can see clearly the advantage of the

robust algorithm (50) compared to the non-robust one in (18).

Between (18) and (35), we see a similar trend as observed

from the right-side subplot.

V. CONCLUSIONS

We have studied the distributed beamforming problem for

AF relay networks. Given the CSI, we can design a preprocess-

ing stage so that the following beamforming process can be

achieved with real-valued implementation, leading to a class of

low-complexity algorithms. Four specific problems have been

investigated, including maximizing output SNR subject to a

constraint on the total transmitted signal power, minimizing

the total transmitted signal power subject to certain level of

output SNR, minimizing the relay node number subject to

constraints on the total signal power and output SNR, and a

robust beamforming algorithm to deal with channel estimation

errors. The effectiveness of the proposed algorithms have been

verified by extensive simulation results.
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