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Abstract—Quaternion-valued wireless communication systems
have been studied in the past. Although progress has been
made in this promising area, a crucial missing link is lack
of effective and efficient quaternion-valued signal processing
algorithms for channel equalisation and beamforming. Withmost
recent developments in quaternion-valued signal processing, in
this work, we fill the gap to solve the problem and further
derive the quaternion-valued Wiener solution for block-based
calculation.

Index Terms—Polarisation diversity, four-dimensional modu-
lation, quaternion-valued signal processing, equalisation, beam-
forming.

I. I NTRODUCTION

Increasing the capacity of a wireless communication system
has always been a focus of the wireless communications re-
search community. It is well-known that polarisation diversity
can be exploited to mitigate the multipath effect to maintain
a reliable communication link with an acceptable quality of
service (QoS), where a pair of antennas with orthogonal
polaristion directions is employed at both the transmitterand
the receiver sides. However, the traditional diversity scheme
aims to achieve a single reliable channel link between the
transmitter and the receiver, while the same information is
transmitted at the same frequency but with different polar-
isations, i.e. two channels. This is not an effective use of
the precious spectrum resources as the two channels could
be used to transmit different data streams simultaneously.For
example, we can design a four-dimensional (4-D) modulation
scheme across the two polarisation diversity channels using
a quaternion-valued representation, as proposed in [1]. An
earlier version of quaternion-valued 4-D modulation scheme
based on two different frequencies was proposed in [2]. How-
ever, due to the change of polarisation of the transmitted radio
frequency signals during the complicated propagation process
including multipath, reflection, refraction, etc, interference
will be caused to each other at the two differently polarised
receiving antennas. To solve the problem, efficient signal pro-
cessing methods and algorithms for channel equalisation and
interference suppression/beamforming are needed for practical
implementation of the proposed 4-D modulation scheme.

Recently, quaternion-valued signal processing has been in-
troduced and studied in details to solve problems related to
three or four-dimensional signals [3], such as vector-sensor
array signal processing [4], and wind profile prediction [5].
With most recent developments in this area, especially the
derivation of quaternion-valued gradient operators and the
quaternion-valued least mean square (QLMS) algorithm [5, 6],
we are now ready to effectively solve the 4-D equalisation
and interference suppression/beamforming problem associated
with the proposed 4-D modulation scheme. Now the dual-
channel effect on the transmitted signal can be modelled
by a quaternion-valued IIR/FIR filter. At the receiver side,
for channel equalisation, we can employ a quaternion-valued
adaptive algorithm to recover the original 4-D signal, which
inherently also performs an interference suppression operation
to separate the original two 2-D signals. Moreover, multiple
antenna pairs can be employed at the receiver side to perform
the traditional beamforming task to suppress other interfering
signals. Note although quaternion-valued wireless communi-
cation employing multiple antennas has been studied before,
such as the design of orthogonal space-time-polarization block
code in [7], to our best knowledge, it is the first time
to study the quaternion-valued equalisation and interference
suppression/beamforming problem in this context.

In the following, the 4-D modulation scheme based on two
orthogonally polarised antennas will be introduced in Sec.
II and the required quaternion-valued equalisation and inter-
channel interference suppression solution and their extension
to multiple dual-polarised antennas are presented in Sec.
III. Simulation results are provided in Sec. IV, followed by
conclusions in Sec. V.

II. QUATERNION-VALUED 4-D MODULATION

In traditional polarisation diversity scheme, as shown in
Fig. 1, each side is equipped with two antennas with orthog-
onal polarisation directions and the signal being transmitted
is two-dimensional, i.e. complex-valued with one real part
and one imaginary part. In the quaternion-valued modulation
scheme, the signal is modulated across the two antennas to
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Transmit Antenna Pair Receive Antenna Pair

Fig. 1. Wireless communication employing polarisation diversity, where both
the transmitter and the receiver sides are equipped with a pair of antennas with
different polarisation directions.
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Fig. 2. Channel model and the reference signal based equaliser for
quaternion-valued signals

generate a 4-D modulated signal. Such a signal can be conve-
niently represented mathematically by a quaternion [8, 9].A
quaternion is a hypercomplex number defined as

q = q0 + iq1 + jq2 + kq3 , (1)

whereq0 is the real part of the quaternion, andq1, q2 andq3
are the three imaginary components with their corresponding
imaginary unitsi, j andk, respectively.

As an example, corresponding to the 4-QAM (Quadrature
Amplitude Modulation) in the two-dimensional case, for the
4-D modulation scheme,q0, q1, q2 and q3 can take values
of either1 or −1, representing16 different symbols. We can
call this scheme 16-QQAM (Quaternion-valued QAM) or 16-
Q2AM.

III. QUATERNION-VALUED EQUALISATION AND

INTERFERENCE SUPPRESSION/BEAMFORMING

The signal transmitted by the two antennas will go through
the channel with all kinds of effects and arrive at the receiver
side, where the two antennas with orthogonal polarisation
directions (Note the orthogonal polarisation may not give the
best performance) will pick up the two signals. Again the
four components of the received signal can be represented
by another quaternion. We usest[n] and sr[n] to represent
the transmitted and received 4-D quaternion-valued signals,
respectively. Then the channel effect can be modeled by a
filter with quaternion-valued impulse responsefc[n], i.e.

sr[n] = st[n] ∗ fc[n] + qa[n] , (2)

whereqa[n] is the quaternion-valued additive noise, as shown
in Fig. 2.

To recoverst[n] from sr[n] or estimate the channel, as in the
2-D case (complex-valued), we can design a quaternion-valued
equaliser. One choice is a reference signal based equaliser,
among many others corresponding to the complex-valued case.
Now assume we have a reference signalr[n] available, then
we can employ the standard adaptive filter structure shown in
the second half of Fig. 2 and update the equaliser coefficient

vectorw with a length ofL by minimising the mean square
value of the error signale[n] [5, 6].

The cost function is given by

J [n] = e[n]e∗[n] , (3)

where
e[n] = r[n]− ŝt[n] = r[n]− wT sr[n] . (4)

with w being the equaliser coefficient vector andsr[n] holding
the corresponding received signal samples fromsr[n]

w = [w0, w1, · · · , wL−1]
T

sr[n] = [sr[n], sr[n− 1], · · · , sr[n− L+ 1]]T . (5)

Following the derivations in [5, 6], we have the gradient of
J [n] with respect to the coefficient vector as follows

∇wJ [n] = −
1

2
sr[n]e∗[n], (6)

which leads to the following update equation for the coefficient
vector with a step size ofµ, i.e. the QLMS algorithm:

w[n+ 1] = w[n] + µ(e[n]x∗[n]). (7)

For a solution equivalent to the classic Wiener filter in
the complex-valued case, based on the instantaneous gradient
result of (6), the optimum solutionwopt should satisfy

E{−
1

2
sr[n]e∗[n]} = 0, (8)

i.e.

E{sr[n]e∗[n]} = E{sr[n]r∗[n]− sr[n]sHr [n]w∗

opt}

= p − Rsrw∗

opt = 0 , (9)

wherep = E{sr[n]r∗[n]} and Rsr = E{sr[n]sHr [n]}. Then
we have

w∗

opt = R−1

sr
p . (10)

We can use the above equation to obtain the optimum weight
vector directly.

We can extend this design to multiple antenna pairs for
beamforming to suppress other quaternion-valued interfering
signals, as shown in Fig. 3 for a general multiple-input-
multiple-output (MIMO) system.

IV. SIMULATION RESULTS

In the following, we give two sets of simulation results, one
based on the structure in Fig. 2 and on based on Fig. 3.

For the first set of simulations, the signal transmitted is 16-
Q2AM modulated and the SNR at the receiver side is 20 dB
with quaternion-valued Gaussian noise. The channel impulse
responsefc[n] is a 4-tap quaternion-valued FIR filter with a
Gaussian-distributed coefficients value. The equaliser filter has
a length of15. The learning curve based on averaging200
simulation runs is shown in Fig. 4, with about−12 dB error
at the steady state, indicating a reasonable channel estimation
result.
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Fig. 3. A MIMO system with multiple antenna pairs at both the transmitter
and the receiver sides, where each pair is composed of two differently
polarised antennas.
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Fig. 4. Learning curve of the quaternion-valued equaliser.

In the second set of simulations, we consider a2 × 2
MIMO array and the two transmitted quaternion-valued signals
have the same normalised power, with an SNR of 20 dB at
the transmitter side. All the other parameters are the same
as the first one. Fig. 5 shows the result, again a reasonable
performance.
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Fig. 5. Learning curve of the quaternion-valued equaliser/MIMO beam-
former.

V. CONCLUSIONS

A 4-D modulation scheme using quaternion-valued repre-
sentation based on two antennas with different polarisation
directions has been studied for wireless communications. A
quaternion-valued signal processing algorithm is employed for
both equalisation and interference suppression/beamforming.
Two sets of simulation results were provided to show that such
a scheme can work effectively in both the single-input-single-
output and multiple-input-multiple-output cases and therefore
can be considered as a viable approach for future wireless
communication systems.
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