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Time-periodic forcing of spatially localized

structures

Punit Gandhi, Cédric Beaume, and Edgar Knobloch

Abstract We study localized states in the Swift–Hohenberg equation when time-

periodic parametric forcing is introduced. The presence of a time-dependent forcing

introduces a new characteristic time which creates a series of resonances with the

depinning time of the fronts bounding the localized pattern. The organization of

these resonances in parameter space can be understood using appropriate asymp-

totics. A number of distinct canard trajectories involved in the observed transitions

are constructed.

1 Introduction

Fourth order reversible systems capture the behavior of a host of systems in physics,

chemistry, and biology [9, 21] that exhibit localized structures in the form of a time-

independent patch of pattern embedded in a homogenous background. Examples of

systems that support localized structures of this type include buckling of slender

structures [18, 19], ferrofluids [30], shear flows [32], convection [26, 2, 3, 4, 5, 20],

nonlinear optical media [12], urban criminal behavior [34, 24] and desert vegetation

[33, 36]. We consider the following Swift–Hohenberg equation (SHE):

ut = ru−
(

1+ ∂ 2
x

)2
u+ bu2− u3, (1)
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where u(x, t) is a real scalar field, r is a forcing parameter, and b > 0 is a constant.

The Swift–Hohenberg equation provides an excellent qualitative description of spa-

tially localized structures in the systems mentioned above. These solutions live on a

pair of branches that snake within a snaking or pinning parameter interval. Analysis

reveals that within this interval a large number of such states can be simultaneously

stable [8, 22].

We consider the SHE (1) on a sufficiently long spatially periodic domain, and set

b = 1.8 so that, for constant forcing, there exists an interval rsn ≤ r ≤ 0 of bistability

between the trivial u ≡ 0 state and a spatially periodic state u = uP(x) with rsn ≈
−0.3744. We characterize localized states comprised of a patch of uP embedded in

a u = 0 background through the location x = f of the front that defines their right

edge relative to their center x = 0:

f = 2

∫ Γ /2

0 xu2 dx
∫ Γ /2

0 u2 dx
. (2)

For forcing between r− ≈ −0.3390 and r+ ≈ −0.2593, the dynamics is organized

around a series of stable localized solutions in which the fronts remain pinned at

locations an integer number of wavelengths of uP apart. The fronts of a localized

initial condition within the pinning interval will move either inward or outward un-

til f reaches a value corresponding to a stable state. Outside the pinning interval

but inside the bistability interval, the fronts are no longer pinned and the localized

patterns either steadily expand (r+ < r < 0) or shrink (rsn < r < r−) via repeated

wavelength nucleation or annihilation. In both cases, the average speed of the front

increases monotonically with the distance to the pinning interval.

Near the edge of the pinning interval, leading order asymptotic theory [8] predicts

that the time to nucleate or annihilate a wavelength of the pattern on either side is

given by (T
dpn
± )−1 ≈ Ω±

√

|r− r±|/π when 0 < ±(r− r±)≪ 1. We have used the

subscript + (resp. −) for nucleation (resp. annihilation) events on the right (resp.

left) of the pinning interval. For quantitatively accurate predictions of the depinning

time outside of this limit, we employ the following numerical fit [13]:

(

T
dpn
±

)−1

=
5

∑
j=1

σ±
j |r0 − r±|

j
2 . (3)

where the coefficients σ±
j are obtained from simulations of SHE with constant forc-

ing (Table 1).

To the left of the bistability interval (i.e., for r < rsn), the dynamics of localized

states is better described by overall amplitude decay, and we use a numerical fit

of the form (3) to quantify the amplitude collapse time T col
sn of a periodic solution

below rsn in terms of |r− rsn|.
In practice, the forcing can fluctuate in time and induce the creation of new states

[38, 25, 6]. Systems can be noisy [31, 29, 1] leading to front propagation [10] or

temporally periodic [37, 23, 7] providing control opportunities [35]. We focus here

on the dynamics of pre-existing localized structures under the influence of time-
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Ω σ1 σ2 σ3 σ4 σ5

T
dpn
+ 0.5285 0.1687 0.1141 0.7709 -0.4000 0.0803

T
dpn
− 0.7519 0.2381 -0.8445 33.37 -306.4 1067

T col
sn 0.7705 0.2081 0.4431 2.962 -34.15 79.52

Table 1 Values of the coefficients σ j determined from a least squares fit of the depinning/collapse

time to simulations of spatially localized initial conditions with constant forcing. The frequency Ω
is calculated from leading order asymptotic theory [8] for perturbations of localized states that are

marginally stable at r± and periodic states that are marginally stable at rsn.

periodic forcing. The effect of such oscillations on the growth of vegetation patches

near the transition to desertification is of particular interest: over the course of a

year, seasonal variations may place the system alternately within conditions where

only the bare soil state is stable and within conditions where bistability between

bare soil and vegetation patterns is observed. Steady models of this process predict

the presence of patchy patterns [28] and only limited results are available on their

reaction to time-dependence in external conditions [39, 14].

We introduce the time-periodic forcing in the simplest way:

r(t) = r0 +ρ sin(2πt/T), (4)

where r(t) is hereafter referred to as the forcing parameter and restrict attention to

localized structures satisfying reflection symmetry: u(x) → u(−x). The oscillation

amplitude ρ is chosen to straddle the snaking interval r− ≤ r0 ≤ r+ with ρ > (r+−
r−)/2 and T > 0. The time-dependent forcing may cause the localized patterns to

breathe, or grow for part of the cycle via nucleation of new wavelengths of the

pattern followed by wavelength annihilation during the remainder of the cycle as

we shall see. The period of the forcing, T , introduces a new characteristic time in

the system that interacts with the depinning time to create resonances. The origin of

these resonances as well as their impact on the way parameter space is structured

is described in the next section. Section 4 discusses a class of peculiar periodic

orbits called canard orbits that are involved in the observed transitions. The paper

concludes in section 5.

2 Temporal resonances

To understand the series of resonances underpinning the partitioning of the parame-

ter space described below, we begin by considering the effects of an asymptotically

small forcing amplitudes ρ ≪ 1 when r0 is located near one of the edges of the pin-

ning interval (|r0 − r±| ≪ 1). When (r0 − r±)/ρ is finite the depinning time scales

like ∼ |r0−r±|−1/2 and we therefore choose a forcing period such that
√

ρT ∼O(1)
in order to allow enough time for depinning to occur while the system is outside of

the constant r pinning interval. It turns out that this limit is described, after ap-

propriate transformation, by the Mathieu equation [13] which captures precisely the
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periodicity of the nucleation process in the frame of the front. This equation predicts

a set of resonance bands within an O(ρ) vicinity of either edge of the pinning inter-

val. The resonances occur when the system spends an integer number of nucleation

times outside of the constant r pinning interval. The r-dependence of the depinning

time (3) allows the resonance bands to persist even when the system remains outside

the constant r pinning interval throughout the entire forcing cycle.

Fig. 1 Resonance bands

(white) in the (r0,T ) plane

obtained from the Mathieu

description [13]. Localized

states that are marginally sta-

ble at r = r± undergo a fixed

number of depinning events

per forcing cycle within each

resonance band. This num-

ber is indicated in the most

prominent bands. The tran-

sition zones (gray) indicate

parameter values where the

average number of depinning

events per forcing cycle is

non-integer.
±(r0 − r±)/ρ

−1 0 1

(Ω
±

√
ρ
/π

)T

2

6

10
0 1 2 3

Figure 1 shows the predicted dynamics of a localized state that is marginally sta-

ble at r = r± with periodic forcing (4) in terms of
√

ρT (in units of π/Ω±) and

±(r0 − r±)/ρ . A series of resonance bands (shown in white) separated by transition

zones (shown in gray) is observed. In each of these bands, the number of depinning

events per forcing cycle is locked to an integer number, starting with 0 for the left-

most band, and increasing by 1 for each successive band. The transition zones indi-

cate parameters with a non-integer average number of depinning events per forcing

cycle, resulting either in periodic motion with period greater than T or nonperiodic

motion [13].

2.1 Creation of sweet spots and pinched zones

We can analyze the interaction between the resonance bands occurring at either edge

of the pinning interval in the following asymptotic limit. We tune the amplitude and

average value of the forcing such that the extrema of the forcing remain within an

asymptotically small vicinity of the edges of the pinning interval: |ρ− p|≪ 1, where

p = (r+ − r−)/2, and assume |r0 − rc| ≪ 1, where rc = (r+ + r−)/2 is the center

of the pinning interval, so that |ρ − p|/|r0 − rc| ∼ O(1). Additionally, we choose

the period of the forcing cycle such that |ρ − p|T ∼ O(1) in order to obtain slow-

fast dynamics involving slow drifts along the constant forcing localized state branch

separated by fast depinning events.
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This limit predicts the number of nucleation events n+ and annihilation events

−n− during one forcing period [13]:

n± =

{

[

Ω±T

2π
√

2p
(r0 ±ρ − r±)

]

if ± (r0 ±ρ − r±)> 0

0 if ± (r0 ±ρ − r±)≤ 0
, (5)

where the brackets indicate rounding to the nearest integer and come from the set-

tling of the state to a stable localized solution upon re-entry into the pinning interval.

For ρ − p < 0, the resonance bands associated with the left and right edges of

the pinning interval are disjoint but asymptotically approach r0 = rc as T → ∞ for

ρ = p. For ρ − p > 0, an asymptotically small sweet spot and pinching structure

begins to form as a result of successive crossing between the resonance bands, as

shown in Figure 2.
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(a) ρ − p = 0 (b) ρ − p = 0.0005 (c) ρ − p = 0.001

Fig. 2 Predictions from the asymptotic theory, Eq. (5). The blue (resp. red) lines correspond to

parameter values where n− (resp. n+) changes.

2.2 Phase space partitioning

We ran simulations for ρ = 0.1 and 10 ≤ T ≤ 400, initialized with a stable steady-

state localized solution at r(t = 0). The simulations revealed four different behaviors

that we exemplify in Figure 3. The localized structure expands ( f increases) by the

nucleation of new wavelengths on either side of the pattern when r > r+ while it

contracts ( f decreases) by the decay of side wavelengths when r < r−. In the case

r < rsn, an overall amplitude decay mode kicks in that can destroy the localized

state within a single forcing period. We can therefore observe growing (figure 3(a)),

decaying solutions (figure 3(c)) or collapse to the trivial state (figure 3(d)). When not

enough time is spent below rsn, the dynamics can be balanced by suitably choosing

the parameter values and spatially localized periodic orbits can be obtained (figure

3(b)).
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(a) r0 =−0.278 (b) r0 =−0.279

(c) r0 =−0.280 (d) r0 =−0.281

Fig. 3 Breathing localized structures observed in a periodic domain of size Γ = 80π in the SHE

(1) with the forcing (4) for ρ = 0.1, T = 300, b = 1.8 and different values of r0. Left panels: the

forcing r represented as a function of time with thin dashed lines indicating the boundaries of the

pinning and bistability regions. Right panels: space-time diagrams over one forcing cycle for the

right half of each state with positive (negative) values of the field u shown in red (blue). Top panels:

trajectories of the position x = f of the right front of the localized state in ( f , r) space superposed

on the constant forcing snaking diagram.
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We characterize the results in a (r0,T ) diagram through the average motion of the

fronts per forcing cycle:

〈△ f 〉 = f (t = t0 +NtT )− f (t = t0)

Nt

, (6)

where t0 is large enough to bypass initial transients and Nt is a large number of forc-

ing cycles over which the dynamics is averaged. The numerical results are reported

in figure 4(a). Periodic orbits exist in the region PO that displays a series of contrac-

r0

T

PO

−0.33 −0.31 −0.29 −0.27
10

100

200

300

400

−0.281 −0.278
280

300

320

−0.33 −0.31 −0.29 −0.27
10

100

200

300

400

r0

T

+0
+1

+2

+3

+4

+5

+6

+7

+8

−0

−1

−2

−3
−4−5−6−7−8

(a) Simulation (b) Adiabatic Theory

Fig. 4 (a) Color map of the different behaviors observed from simulations in the (r0 ,T ) plane

for ρ = 0.1 and b = 1.8 [13]. Periodic orbits exist within region PO. The yellow/orange (light

blue/blue) regions to the right (left) of PO correspond growing (decaying) solutions where the pat-

tern experiences net growth (decay) by 1,2, . . . wavelengths on either side per cycle. All regions

are defined by −0.25+N < 〈∆ f 〉/2π < 0.25+N with ±N ∈ N. We note that a more stringent

definition would produce slightly narrower regions, particularly for shorter periods, but qualita-

tively similar. Transition zones are shown in gray. The white region indicates parameter values at

which the amplitude of the localized pattern decays within one cycle independently of its original

length. The inset shows the location of the simulations shows in Fig. 3. (b) The red (blue) lines

show predictions from Eq. (7). The bands are labeled with red (blue) signed integers, and the thick

black line marks the prediction of the cliff beyond which amplitude decay is expected. Both panels

are plotted over the static pinning interval r− < r0 < r+.

tions and expansions and progressively shrinks as T increases. Around this region,

similarly shaped regions display states that expand or shrink over time. They are

structured in a regular fashion: the region right next to PO displays states that grow

or decay by one wavelength on each side of the pattern during each forcing cycle,

and farther regions display successively faster growing or decaying states. The tran-

sition between each of these regions is not abrupt and occurs via transition zones

(shown in gray in (a)) [13] that are beyond the scope of the present paper.

With constant forcing, one can approximate the signed number of depinning

events that occur outside of the pinning interval by integrating the depinning rate

over the time of interest:
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n± =±
∫

dt

T
dpn
± (r)

. (7)

In the limit T → ∞, we can treat the parameter r(t) quasi-statically and make use

of Eq. (3) for T
dpn
± . We construct an adiabatic prediction by assuming the following

series of events during each forcing cycle:

• r > r+: the localized state begins to nucleate wavelengths of the pattern. We

count the total number of depinning events using positive real numbers n+ > 0

obtained from Eq. (7) using Eq. (3) and Table 1.

• r+ > r > r−: Upon entry into the pinning interval, the state converges to the clos-

est stable localized solution, corresponding to rounding n+ or n− to the nearest

integer [n+] or [n−].
• r < r−: We count the number of wavelengths annihilated on either side using

negative real numbers n− < 0 also obtained from Eq. (7). If the time spent with

r < rsn exceeds that required for
∫

r<rsn

(

T col(r(t))
)−1

dt = 1/2, then the state

decays irrevocably.

Figure 4(b) shows that this prediction bears a striking resemblance to the numerical

results in figure 4(a). In fact, most of the features obtained during simulations can

be explained using the adiabatic theory even far away from the limit for which it

is constructed [14, 13]. The series of contractions and expansions observed in the

numerical simulation is therefore a trace of the sweet spot and pinching structure

and come from the fact that any incomplete growth or decay of a wavelength is

canceled or completed as the forcing parameter reenters the pinning interval.

3 Canard trajectories

We have, up to this point, described stable localized breathing states that we ob-

tained by time-stepping a stable steady-state solution to Eq. (1) with constant forc-

ing r = r0. As the snaking structure indicates, each stable localized state is connected

to the next one by a branch of unstable localized states. These unstable states also

generate spatially localized periodic orbits under periodic forcing. These orbits are

similar to those presented in the last section but instead of tracking the stable part

of the snaking branches as the forcing is varied, they track the unstable part and are

therefore unstable as well.

Near the transition between neighboring resonance bands in figure 2, one can find

trajectories that follow a stable snaking branch during one traversal of the pinning

interval and an unstable one during the return trip. A small change in parameter

values can cause the trajectory to jump to one of the two nearby stable solution

branches during its passage along the unstable branch before completing the journey

across the pinning interval. During such a jump the fronts bounding the localized

state will either move outward or inward depending on whether the stable state

reached is longer or shorter than the unstable state. In the following we refer to
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trajectories that drift along unstable states for part of the forcing cycle as canard

trajectories [11].

(a) r0 =−0.298525000000000, T = 1000 (b) r0 =−0.299390000000000, T = 1000

r0 =−0.298514648437500, T = 1000 r0 =−0.299414375000000, T = 1000

r0 =−0.298514516258240, T = 1000 r0 =−0.299414733886719, T = 1000

f

18π

20π

ḟ

0 T 2T 3T
−0.03

0.09

(c) r0 =−0.299025000000000, T = 1442 (d) r0 =−0.299026550000000, T = 1444

r0 =−0.299026550000000, T = 1444

Fig. 5 (a) C+ canards, (b) C− canards and (c) C+
− canards represented through the front location

f versus the forcing strength r(t) for ρ − p = 0.001 (Fig. 2(c)). The thin blue line represents the

stable (∂ f r > 0) and unstable (∂ f r < 0) parts of the branch of localized solutions for constant

forcing (ρ = 0). In each case the parameters are listed in order of increasing time spent on the

unstable branch. (d) Three periods of a C+
− canard from panel (c) shown using the front location

x = f and its speed ḟ as functions of time.

It is possible to control how far along the unstable solution branch the system

reaches before jumping to a stable branch and thereby generate a family of canard

trajectories. Figure 5 shows three families of periodic canard trajectories computed

from Eq. (1) such that ||u(t)− u(t + T )||L2 < 10−10 for some sufficiently large t.

Solutions in the family of C+ canards follow the unstable branch close to the saddle-

node at r = r+ but deviate before reaching the saddle-node at r = r− (panel (a)).

Solutions of this type are found near the transition between one growth band and

the next. The C− canards shown in panel (b) follow the unstable branch close to the

r− saddle-node but do not reach the r+ saddle-node; these are found near transitions

between adjacent decay bands. Both sets of transitions are approximated by Eq. (5).

In regions where both bands intersect, it is possible to obtain C+
− canards (panel

(c)) which temporarily follow two different unstable branches; the associated front

location x = f and its speed ḟ is represented in panels (d). When the trajectory is
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drifting along the branch of steady states the fronts move slowly inward or outward;

however, the jumps from the unstable state to the stable state manifest themselves in

abrupt changes in the front location, or equivalently in dramatic peaks in the front

speed ḟ . Figure 6 shows how a small change in r0 (T remaining fixed) impacts the

time evolution of canard trajectories. Decreasing r0 delays the onset of the bursts and

Fig. 6 One period of the

C− (green) and C+ (black)

canards from Fig. 5(a) and

Fig. 5(b) represented through

the speed ḟ of the right front

as a function of time. The

larger amplitude peaks are

associated with the larger

canards in Fig. 5.

ḟ
0 T

−0.05

0

0.20

increases the front speed, a consequence of the fact that the trajectory now departs

from an unstable state farther from the saddle-node and hence with a larger unstable

eigenvalue. However, canards that manage to traverse almost the entire unstable part

of the branch of steady states are expected to display once again slower dynamics.

The canards shown in figure 5 correspond to the simplest canard families, orga-

nized by a single stable portion of the branch of steady states with no depinning.

However, a careful tuning of the parameters reveals the presence of canards display-

ing depinning. Figure 7 shows several examples of the corresponding trajectories.

The periodic orbits described by these canards are organized around two seg-

ments of stable steady states and the adjacent unstable steady states. The transitions

between these segments are associated with the addition or loss of one wavelength

on either side of the localized structure. A whole flock of canards can thus be ob-

tained involving more and more segments of stable states and therefore displaying

more depinning events per cycle.

In a similar fashion, we can obtain periodic orbits whose solution amplitude fol-

lows that of the lower branch spatially periodic state of the steady SHE. This gives

rise to C− canards characterized by a monotonic decrease in amplitude followed by

a sudden jump to larger amplitude. Since the spatially periodic state up only displays

one saddle-node no C+ or C+
− canards can be obtained. These canard trajectories,

represented in figure 8 (left panel), can be made to follow the unstable periodic state

for a longer amount of time by choosing r0 closer to the transition to amplitude col-

lapse. Such trajectories spend more time in the depinning regime (r < r−) as well as

more time in the collapse regime (r < rsn). As a result this regime is characterized

by a competition between depinning and amplitude collapse as illustrated in figure

9 but the state ultimately always collapses as exemplified by the spiraling trajectory

in figure 8 (right panel).
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(a) r0 =−0.299300000000000, T = 2000 (b) r0 =−0.299350000000000, T = 3000

r0 =−0.299336718750000, T = 2000 r0 =−0.299361282348633, T = 3000

r0 =−0.299336845397949, T = 2000 r0 =−0.299361284373701, T = 3000

f

18π

21π

ḟ
0 T 2T 3T

−0.3

0.6

(c) r0 =−0.299530000000000, T = 2621 (d) r0 =−0.299532712097168, T = 2622

r0 =−0.299532712097168, T = 2622

Fig. 7 “Larger” canards represented in the same fashion as in Fig. 5.

Fig. 8 Amplitude and front position of canard trajectories of spatially localized states that follow

the unstable amplitude of the spatially periodic state up for some amount of time. Here ρ =−0.1,

r0 = −0.276055, −0.276220, T = 1100, and Γ = 640π . The fold on the up branch is at rsn ≈
−0.374370.

4 Discussion

In this paper, we have used the SHE with a sinusoidal time-periodic forcing to de-

scribe how steady localized states are impacted by temporal variations in a parame-

ter that temporarily take them outside their existence range. Numerical simulations

complemented with asymptotic predictions were used to determine the location in

parameter space of time-periodic spatially localized states and to reveal an unex-

pected sweet spot–pinching structure in the (r0,T ) plane for a fixed amplitude ρ of
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Fig. 9 Space-time plot of an amplitude canard trajectory similar to the shrinking canard seen in

Fig. 8. Here, new fronts are generated in the interior in addition to the breathing dynamics on the

edges. Parameters are ρ = −0.1, r0 = −0.276228387, T = 1100, and Γ = 640π . Owing to the

large extent of the domain, the pattern is not fully represented, only its local maxima are plotted

against time.

the forcing. This structure is a consequence of a series of resonances between the

forcing period and the nucleation time for new cells outside the pinning interval, and

can be reproduced accurately using adiabatic theory as summarized in Eq. (7). Close

to the resonance bands, a series of canard trajectories can be found. Two types of ca-

nards have been identified: phase canards, in which the spatial extent of the localized

pattern changes abruptly as an additional wavelength is nucleated or annihilated on

either side, and amplitude canards, in which the amplitude temporarily drops to the

amplitude of the unstable lower branch of spatially periodic states before abruptly

increasing to the amplitude of the stable upper states. Canards are normally consid-

ered to be a property of finite-dimensional systems, although there are indications

that they should be observable in pattern-forming (i.e., spatially extended) systems

and in particular in the Faraday system [16]. It is therefore of particular interest to

present clear evidence for such orbits in a partial differential equation.

The Swift–Hohenberg equation provides a dependable framework for studies and

control of the dynamics of spatially localized states as proved time and time again

[17, 27]. For this reason the robustness of the resonance structure predicted by adi-

abatic theory for parameter values far from the adiabatic limit leads us to expect

similar dynamics in related systems, and in particular in models of desert vegeta-

tion [39]. The reason for this expectation is that the phenomena described here are

fundamentally low-dimensional. Indeed, a similar series of resonances is present in

a simple ordinary differential equation, the periodically forced Adler equation, as

described elsewhere [15].
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