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Abstract In hard real-time systems, cache partitioning is often suggested as a means

of increasing the predictability of caches in pre-emptively scheduled systems: when a

task is assigned its own cache partition, inter-task cache eviction is avoided, and timing

verification is reduced to the standard worst-case execution time analysis used in non-

pre-emptive systems. The downside of cache partitioning is the potential increase in

execution times. In this paper, we evaluate cache partitioning for hard real-time systems

in terms of overall schedulability. To this end, we examine the sensitivity of (i) task

execution times and (ii) pre-emption costs to the size of the cache partition allocated

and present a cache partitioning algorithm that is optimal with respect to taskset

schedulability. We also devise an alternative algorithm which primarily optimises

schedulability but also minimises processor utilization. We evaluate the performance

of cache partitioning compared to state-of-the-art pre-emption cost analysis based on

benchmark code and on a large number of synthetic tasksets with both fixed priority

and EDF scheduling. This allows us to derive general conclusions about the usability of

cache partitioning and identify taskset and system parameters that influence the relative

effectiveness of cache partitioning. We also examine the improvement in processor
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utilization obtained using an alternative cache partitioning algorithm, and the tradeoff

in terms of increased analysis time.

Keywords Timing verification · Cache partitioning · WCET analysis · Real-time

scheduling

Extended version

This paper builds upon and extends the ECRTS 2014 paper on Evaluation of Cache

Partitioning for Hard Real-Time Systems (Altmeyer et al. 2014) as follows:

– The evaluation now covers both fixed priority and EDF scheduling.

– We examined how the schedulability of a group of tasks sharing a partition depends

upon partition size.

– We present an alternative cache partitioning algorithm which both optimises schedu-

lability and minimises processor utilization. We examine the improvement in

processor utilization obtained using this algorithm as compared to the original

cache partitioning algorithm, and the tradeoff in terms of increased analysis time.

1 Introduction

Cache partitioning is often suggested as a means of increasing the predictability of

caches in pre-emptively scheduled hard real-time systems. The rationale behind this

argument is that when a task is assigned its own cache partition, inter-task cache evic-

tion is avoided, and timing verification is reduced to the standard worst-case execution

time (WCET) analysis used in non-pre-emptive systems. Cache partitioning comes

at a cost. The reduced amount of cache available to each task potentially increases

intra-task cache conflicts, trading an increase in (non-pre-emptive) execution times

for reduced cache related pre-emption delays (CRPD).

Despite the wealth of publications on cache partitioning for real-time systems, little

work has been done on the effectiveness of cache partitioning compared to systems

where tasks make unconstrained use of the cache. Pre-emptive multi-tasking systems

with unconstrained caches were considered unpredictable. Given recent advances in

the analysis of cache related pre-emption delays, we consider this view outdated.

In this paper, we evaluate cache partitioning for hard real-time systems in terms of

overall schedulability. To this end, we first determine the sensitivity of task execution

times to the size of the available cache partition using application code from real-time

benchmarks. Contrary to the implicit assumptions in prior work, the worst-case exe-

cution time of a task is not necessarily monotonic in the partition size. We show how

the monotonicity property can be re-established using a monotonic upper bound func-

tion for the execution times. We then present a cache partitioning algorithm that aims

at optimizing taskset schedulability. Under the assumption of monotonic execution

times, the algorithm is optimal in the sense that it finds a schedulable cache parti-

tioning whenever one exists. The algorithm is based on a branch-and-bound approach

and is agnostic with respect to the schedulability test used, i.e., it is valid for any,

sustainable schedulability test (Baruah and Burns 2006) and scheduling algorithm.

Further, we introduce an alternative branch-and-bound algorithm which optimizes
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schedulability as its primary concern and minimizes processor utilization as a sec-

ondary concern. This algorithm is optimal under the same conditions, in the sense

that it finds a schedulable cache partitioning with the minimum processor utilization

whenever a schedulable partitioning exists.

We evaluate the performance of cache partitioning vs. a non-partitioned cache,

using state-of-the-art pre-emption cost aware schedulability analysis, based on two

different benchmark sets (PapaBench and Mälardalen Benchmark Suite) and on a

large number of synthetic tasksets. The evaluation using synthetic tasksets enables

us to derive results that are valid in general, and not just for a small selection of

use-cases. In addition, we identify how different parameter settings affect the relative

performance of the partitioned vs. non-partitioned approaches. We also evaluate the

improvement in processor utilization obtained using the alternative cache partitioning

algorithm as compared to the original cache partitioning algorithm, and the tradeoff

in terms of increased analysis time. Finally, we quantify the error margin introduced

by the assumption of monotonic execution times.

We focus on a completely analytical approach, where we compare the schedulability

of real-time systems assuming pre-emptive scheduling under either a fixed priority or

EDF scheduling policy, with a direct mapped cache. In both cases, partitioned and

non-partitioned cache, we rely on bounds on the execution times obtained via WCET

analysis, and in the non-partitioned case, also on analytical bounds on the CRPD.

The paper is structured as follows: In Sect. 2, we introduce the required terminology

and notation and in Sect. 3 we present the schedulability tests for fixed priority and EDF

scheduling. In Sect. 4, we review existing approaches to cache partitioning. Section 5

explains the sensitivity of the worst-case execution times of tasks with respect to the

size of their allocated cache partitions. The optimal cache partitioning algorithms are

presented in Sect. 6, the results of the case study in Sect. 7 and the evaluation based

on synthetic tasksets in Sect. 8. Section 9 concludes with a summary and discussion

of future work.

2 System model, terminology and notation

We consider both fixed priority pre-emptive scheduling and EDF (pre-emptive)

scheduling of a set of sporadic tasks (or taskset) on a single processor. Each taskset

Ŵ comprises n tasks Ŵ = {τ1, . . . , τn}, where n is a positive integer. We assume a

discrete time model, where all task parameters are positive integers.

Each task τi is characterized by its bounded worst-case execution time Ci obtained

assuming no pre-emption (i.e. not including any cache related pre-emption delays),

minimum inter-arrival time or period Ti , and relative deadline Di . Each task τi there-

fore gives rise to a potentially unbounded sequence of invocations or jobs, each of

which has an execution time upper bounded by Ci , an arrival time at least Ti after the

arrival of its previous job, and an absolute deadline that is Di after its arrival. In an

implicit-deadline taskset, all tasks have Di = Ti , in a constrained-deadline taskset,

all tasks have Di ≤ Ti while in an arbitrary-deadline taskset, task deadlines are inde-

pendent of their periods. In this paper, we assume constrained deadline tasksets. The

tasks are assumed to be independent and so cannot block each other from executing
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by accessing mutually exclusive shared resources, with the exception of the proces-

sor. (We note that this restriction is only made to simplify comparisons between the

different approaches, resource sharing can be accounted for by schedulability analysis

that incorporates CRPD as shown by Altmeyer et al. 2011, 2012).

The utilization Ui , of a task is given by its execution time divided by its period

(Ui = Ci/Ti ). The total utilization U of a taskset is the sum of the utilizations of all

of its tasks, i.e.

U =
∑

i

Ci/Ti . (1)

2.1 Static timing analysis

The paper is set in the context of static timing analysis as used for many safety-critical

hard real-time applications. This means that we derive the worst-case execution time Ci

of each task τi using a static analysis, in our case, the aiT Timing analyzer (Ferdinand

and Heckmann 2004).

Static timing analyses offer higher reliability compared to measurement-based

approaches, as exhaustive measurements are considered infeasible for modern archi-

tectures. The higher confidence in the correctness of the execution time estimates

comes at the cost of system restrictions, which must be fulfilled in order to apply

static timing analyses. Foremost the restriction to static instead of dynamic memory

allocation and write-through data caches.

2.2 Pre-emption costs

We now extend the sporadic task model to include pre-emption costs. To this end,

we need to explain how pre-emption costs can be derived. To simplify the following

explanation and examples, we assume direct-mapped caches.

The additional execution time due to pre-emption is mainly caused by cache evic-

tion: the pre-empting task evicts cache blocks of the pre-empted task that have to be

reloaded after the pre-empted task resumes. The additional context switch costs due

to the scheduler invocation and a possible pipeline-flush can be upper-bounded by

a constant. We assume that these constant costs are already included in Ci . Hence,

from here on, we use pre-emption cost to refer only to the cost of additional cache

reloads due to pre-emption. This cache-related pre-emption delay (CRPD) is bounded

by g × BRT where g is an upper bound on the number of cache block reloads due to

pre-emption and BRT is an upper-bound on the time necessary to reload a memory

block in the cache (block reload time).

To analyse the effect of pre-emption on a pre-empted task, Lee et al. (1998) intro-

duced the concept of a useful cache block: A memory block m is called a useful cache

block (UCB) at program point P , if (i) m may be cached at P and (ii) m may be

reused at program point Q that may be reached from P without eviction of m on this

path. In the case of pre-emption at program point P , only the memory blocks that (i)

are cached and (ii) will be reused, may cause additional reloads. Hence, the number of

UCBs at program point P gives an upper bound on the number of additional reloads
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due to a pre-emption at P . The maximum possible pre-emption cost for a task is

determined by the program point with the highest number of UCBs. Note that for each

subsequent pre-emption, the program point with the next smaller number of UCBs

can be considered. Thus, the j-th highest number of UCBs can be counted for the

j-th pre-emption. A tighter definition is presented by Altmeyer and Burguière 2009;

however, in this paper we need only the basic concept.

The worst-case impact of a pre-empting task is given by the number of cache blocks

that the task may evict during its execution. Recall that we consider direct-mapped

caches: in this case, loading one block into the cache may result in the eviction of

at most one cache block. A memory block accessed during the execution of a pre-

empting task is referred to as an evicting cache block (ECB). Accessing an ECB may

evict a cache block of a pre-empted task.

In this paper, we represent the sets of ECBs and UCBs as sets of integers with the

following meaning:

s ∈ UCBi ⇔ τi has a useful cache block in cache-set s

s ∈ ECBi ⇔ τi may evict a cache block in cache-set s

Separate computation of the pre-emption cost is restricted to architectures without

timing anomalies (Lundqvist and Stenström 1999) but is independent of the type of

cache used, i.e. data, instruction or unified cache.

In the case of set-associative LRU caches1, a single cache-set may contain several

useful cache blocks. For instance, UCB1 = {1, 2, 2, 2, 3, 4}means that task τ1 contains

3 UCBs in cache-set 2 and one UCB in each of the cache sets 1, 3 and 4. As one ECB

suffices to evict all UCBs of the same cache-set (Burguière et al. 2009), multiple

accesses to the same set by the pre-empting task does not need to appear in the set of

ECBs. Hence, we keep the set of ECBs as used for direct-mapped caches. A bound

on the CRPD in the case of LRU caches due to task τi directly pre-empting τ j is thus

given by the intersection UCB j ∩′ ECBi = {m|m ∈ UCB j : m ∈ ECBi }, where

the result is also a multiset that contains each element from UCB j if it is also in

ECBi . A precise computation of the CRPD in the case of LRU caches is given by

Altmeyer et al. (2010). In this paper, we assume direct-mapped caches. Note that all

equations provided within this paper are for direct-mapped caches, they are also valid

for set-associative LRU caches with the above adaptation to the set-intersection.

3 Schedulability tests

In this section, we present schedulability tests for fixed-priority scheduling using

response time analysis and for EDF scheduling using processor demand analysis. Both

analyses are sustainable (Baruah and Burns 2006) in the sense that any taskset that

was deemed schedulable by the test remains schedulable if the parameters “improve”,

e.g., if the execution times decrease or periods increase.

1 The concept of UCBs and ECBs cannot be applied to FIFO or PLRU replacement policies as shown

by Burguière et al. (2009)
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3.1 Fixed priority pre-emptive scheduling

We now recapitulate the exact (sufficient and necessary) schedulability test for fixed

priority pre-emptive scheduling of constrained-deadline tasksets based on response

time analysis (Audsley et al. 1993; Joseph and Pandya 1986; Davis et al. 2008).

Subsequent work on integrating cache related pre-emption delays into schedulability

analysis for fixed priority pre-emptive systems is based on this analysis. The basic

form given below assumes that pre-emption costs are zero.

We assume that the index i of task τi represents its priority, hence τ1 has the highest

priority, and τn the lowest. We use the notation hp(i) (and lp(i)) to mean the set

of tasks with priorities higher than (and lower than) i , and the notation hep(i) (and

lep(i)) to mean the set of tasks with priorities higher than or equal to (lower than or

equal to) i .

The worst-case response time Ri of a task τi is given by the longest possible time

from release of a job of the task until it completes execution. Thus task τi is schedulable

if and only if Ri ≤ Di , and a taskset is schedulable if and only if all of its tasks are

schedulable.

The response time Ri of a task necessarily contains its execution time Ci , and in

addition, τi may suffer interference and be pre-empted by tasks with higher priority

than i . Let τ j be such a task. Within the response time Ri of τi , task τ j executes at

most
⌈

Ri

T j

⌉

times, each time for at most C j . Hence, the response time Ri of task τi is

given by:

Ri = Ci +
∑

∀ j∈hp(i)

⌈
Ri

T j

⌉

C j (2)

where hp(i) denotes the set of tasks with higher priority than i . The response time

Ri of task τi appears on both the left-hand side and the right-hand side of (2). As the

right-hand side is a monotonically non-decreasing function of Ri , then a solution may

be found via fixed-point iteration:

Rx+1
i = Ci +

∑

∀ j∈hp(i)

⌈
Rx

i

T j

⌉

C j (3)

Iteration starts with an initial value, typically R0
i = Ci , and ends when either Rx+1

i >

Di in which case the task is unschedulable, or when Rx+1
i = Rx

i , in which case the

task is schedulable, with a worst-case response time Rx+1
i . We note that convergence

may be speeded up using the techniques described by Davis et al. (2008).

3.1.1 Pre-emption cost aware schedulability test

To integrate pre-emption costs into response time analysis, Busquets-Mataix

et al. (1996) extended (2) by adding a term γi, j representing the pre-emption cost

of a job of task τ j executing during the response time of task τi (with j ∈ hp(i)):
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Ri = Ci +
∑

∀ j∈hp(i)

⌈
Ri

T j

⌉

(C j + γi, j ) (4)

An alternative approach was taken by Petters and Farber (2001) and later Staschulat

et al. (2005), who based their analyses on the following equation:

Ri = Ci +
∑

∀ j∈hp(i)

(⌈
Ri

T j

⌉

C j + γ̂i, j

)

(5)

The value γ̂i, j denotes the pre-emption cost of all jobs of task τ j executing during

the response time of task τi (again with j ∈ hp(i)). It is given by the
⌈

Ri

T j

⌉

-highest

pre-emption costs of a job of task τ j executing during Ri . Although the difference

with respect to (4) is subtle, more precise analysis can be obtained by using γ̂i, j as

a bound on the overall impact of all jobs of τ j on the response time Ri instead of a

bound on the impact of just one job of τ j .

We note that when pre-emption costs are considered explicitly, the worst-case sce-

nario is not necessarily given by a synchronous release of all higher priority tasks

(Meumeu Yomsi and Sorel 2007) and hence (4) and (5) provide sufficient, but not

exact schedulability tests.

3.1.2 Pre-emption cost computation

The value γi, j can be computed in a number of different ways, which are described in

detail by Altmeyer et al. (2012), here, we restrict our explanations to the two dominant

approaches: ECB-Union and UCB-Union.

UCB-Union Tan and Mooney (2007) analysed the pre-emption cost via an upper

bound on the number of useful cache blocks (of all pre-empted tasks) that a pre-

empting task τ j may evict. As it is only the eviction of useful cache blocks belonging

to tasks with equal or higher priority than task τi that may increase the response time

of task τi , only tasks with intermediate priorities in the set aff(i, j) = hep(i) ∩ lp( j),

need be considered.

γ UCB−U
i, j = BRT ·

∣
∣
∣
∣
∣
∣

⎛

⎝

⋃

k∈aff(i, j)

UCBk

⎞

⎠ ∩ ECB j

∣
∣
∣
∣
∣
∣

(6)

Here, γ UCB−U
i, j represents the worst-case impact a job of task τ j can have on all (useful

cache blocks of) tasks with lower priority than task τ j down to task τi . We refer to this

approach as UCB-Union.

ECB-Union Instead of considering the precise set of ECBs of a pre-empting task and

bounding all possibly affected UCBs (as UCB-Union does), ECB-Union (Altmeyer et

al. 2011, 2012) considers the precise number of UCBs of the pre-empted task. It then

assumes that the pre-empting task τ j has itself already been pre-empted by all tasks

with higher priority. This nested pre-emption of the pre-empting task is represented
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by the union of the ECBs of all tasks with higher or equal priority than task τ j :

γ ECB−U
i, j = max

∀k∈aff(i, j)

⎧

⎨

⎩

∣
∣
∣
∣
∣
∣

UCBk ∩

⎛

⎝

⋃

h∈hep( j)

ECBh

⎞

⎠

∣
∣
∣
∣
∣
∣

⎫

⎬

⎭
(7)

The UCB-Union and ECB-Union approaches are incomparable in that there are tasks

that may be deemed schedulable using one approach but not the other and vice-versa.

Multiset approaches The UCB-Union and ECB-Union can be lifted to the so-called

Multiset approaches to be used within Eq. (5) to account for the
⌈

Ri

T j

⌉

-highest pre-

emption costs of a job of task τ j executing during Ri instead of accounting for the

highest pre-emption costs of a job
⌈

Ri

T j

⌉

times. To simplify our equations, we introduce

Ek(Ri ) to denote the maximum number of jobs of task τk that can execute during

response time Ri , i.e.:

Ek(Ri ) =

⌈
Ri

Tk

⌉

The pre-emption cost γ ECB−M
i, j is then computed as follows, recognising the fact

that task τ j can pre-empt each intermediate task τk at most E j (Rk)Ek(Ri ) times during

the response time of task τi . We form a multiset M that contains the cost

∣
∣
∣
∣
∣
∣

UCBk ∩

⎛

⎝

⋃

h∈hp( j)∪{ j}

ECBh

⎞

⎠

∣
∣
∣
∣
∣
∣

(8)

of τ j pre-empting task τk E j (Rk)Ek(Ri ) times, for each task τk ∈ aff(i, j). Hence:

M =
⋃

k∈aff(i, j)

⎛

⎝

⋃

E j (Rk)Ek (Ri )

∣
∣
∣
∣
∣
∣

UCBk ∩

⎛

⎝

⋃

h∈hp( j)∪{ j}

ECBh

⎞

⎠

∣
∣
∣
∣
∣
∣

⎞

⎠ (9)

γ ECB−M
i, j is then given by the E j (Ri ) largest values in M.

γ ECB−M
i, j = BRT ·

E j (Ri )
∑

l=1

|M l | (10)

where M l is the l-th largest value in M . We note that by construction, the ECB-Union

Multiset approach dominates the ECB-Union approach.

The pre-emption cost γ UCB−M
i, j is computed as follows, recognising the fact that task

τ j can pre-empt each intermediate task τk directly or indirectly at most E j (Rk)Ek(Ri )

times during the response time of task τi . First, we form a multi-set Mucb
i, j containing

E j (Rk)Ek(Ri ) copies of the UCBk of each task k ∈ aff(i, j). This multi-set reflects
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the fact that during the response time Ri of task τi , task τ j cannot evict a UCB of task

τk more than E j (Rk)Ek(Ri ) times. Hence:

Mucb
i, j =

⋃

k∈aff(i, j)

⎛

⎝

⋃

E j (Rk )Ek (Ri )

UCBk

⎞

⎠ (11)

Next, we form a multi-set Mecb
j containing E j (Ri ) copies of the ECB j of task τ j .

This multi-set reflects the fact that during the response time Ri of task τi , task τ j can

evict ECBs in the set ECB j at most E j (Ri ) times.

Mecb
j =

⋃

E j (Ri )

(ECB j ) (12)

γ UCB−M
i, j is then given by the size of the multi-set intersection of Mecb

j and Mucb
i, j

γ UCB−M
i, j = BRT ·

∣
∣
∣M

ucb
i, j ∩ Mecb

j

∣
∣
∣ (13)

We note that by construction, the UCB-Union Multiset approach dominates the UCB-

Union approach.

The UCB-Union Multiset and the ECB-Union Multiset approach are incomparable

in that there are tasks that may be deemed schedulable using one approach but not

the other and vice-versa. More precise analysis can therefore be achieved by using a

combination of both approaches as follows:

Ri = min
(

RECB−M
i , RUCB−M

i

)

(14)

A detailed description of the pre-emption cost aware schedulability tests can be found

in Altmeyer et al. (2012).

3.2 EDF scheduling

We now recapitulate the exact (sufficient and necessary) schedulability test for pre-

emptive EDF scheduling of sporadic tasksets based on processor demand analysis

(Baruah et al. 1990). Subsequent work on integrating cache related pre-emption delays

into schedulability analysis for EDF scheduled systems is based on this analysis. The

basic form given below assumes that pre-emption costs are zero. Pre-emptive EDF

scheduling is optimal among all scheduling algorithms on a uniprocessor (Dertouzos

1974) under the assumption of negligible pre-emption overhead.

A necessary and sufficient schedulability test for EDF and implicit deadlines

(Di = Ti ) is given by the processor utilizations (Liu and Layland 1973): a task

set is schedulable, iff

U =
∑

i

Ci

Ti

≤ 1 (15)
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This test is necessary, but not sufficient if Di 	= Ti .

Baruah et al. (1990) introduced the processor demand function h(t), which denotes

the maximum execution time requirement of all tasks jobs which have both their arrival

times and their deadlines in a contiguous interval of length t . Using this they showed

that a taskset is schedulable iff ∀t > 0, h(t) ≤ t where h(t) is defined as:

h(t) =
∑

i=1

max

{

0, 1 +

⌊
t − Di

Ti

⌋}

Ci (16)

As h(t) can only change when t is equal to an absolute deadline, we can restrict the

number of values of t that need to be checked. To place an upper bound on t , and so on

the number of calculations of h(t), the minimum interval in which it can be guaranteed

that an unschedulable taskset will be shown to be unschedulable must be found. For a

general taskset with arbitrary deadlines t can be bounded by La (George et al. 1996):

La = max

{

Di , . . . , Dn,

∑n
i+1(Ti = Di )Ui

1 − U

}

(17)

And an alternative bound, Lb given by the length of the synchronous busy period can

be used (Ripoll et al. 1996), where Lb is computed using the following equation using

fixed point iteration:

wα+1 =

n
∑

i=1

⌈
wα

Ti

⌉

Ci (18)

There is no direct relationship between La and Lb, which enables t to be bounded

by L = min(La, Lb). Combined with the knowledge that h(t) can only change at an

absolute deadline, a taskset is therefore schedulable under EDF iff U ≤ 1 and:

∀t ∈ Q, h(t) ≤ t (19)

Where Q is defined as

Q = {dk |dk = kTi + Di ∧ dk < min(La, Lb), k ∈ N} (20)

Zhang andBurns (2009) presented the Quick convergence Processor-demand Analysis

(QPA) algorithm which exploits the monotonicity of h(t) to reduce the number of

required checks.

3.2.1 Pre-emption cost aware schedulability test

In order to account for CRPD using EDF scheduling, Lunniss et al. (2013) include a

component γt, j which represents the CRPD associated with a pre-emption by a single

job of task τ j on jobs of other tasks that are both released and have their deadlines in

an interval of length t . Note, unlike its counterpart in CRPD analysis for fixed priority
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scheduling, γt, j refers to the pre-empting task τ j and t , rather than the pre-empting

and pre-empted tasks. Including γt, j in (16) a revised equation for h(t) is obtained:

h(t) =
∑

i=1

max

{

0, 1 +

⌊
t − Di

Ti

⌋}

(Ci + γt, j ) (21)

The set of affected tasks for EDF is based on the relative deadlines of the tasks:

aff(t j ) = {∀τi |t ≥ Di > D j } (22)

Task τ j can only pre-empt tasks with a larger relative deadline than D j and only tasks

with a relative deadline Di less than or equal to t need to be accounted for when

calculating h(t)

3.2.2 Pre-emption cost computation

The UCB-Union (see Eq. (23)) and ECB-Union (see Eq. (24)) approaches as used for

fixed-priorities can be adapted as follows:

γ UCB−U
t, j = BRT ·

∣
∣
∣
∣
∣
∣

⎛

⎝

⋃

k∈aff(t, j)

UCBk

⎞

⎠ ∩ ECB j

∣
∣
∣
∣
∣
∣

(23)

and

γ ECB−U
t, j = max

∀k∈aff(t, j)

⎧

⎨

⎩

∣
∣
∣
∣
∣
∣

UCBk ∩

⎛

⎝

⋃

h∈hep( j)

ECBh

⎞

⎠

∣
∣
∣
∣
∣
∣

⎫

⎬

⎭
(24)

The UCB-Union and ECB-Union approaches are incomparable in that there are tasks

that may be deemed schedulable using one approach but not the other and vice-versa.

Similar to Eq. (5) that accounts for the highest n pre-emption costs of a job instead

of the highest pre-emption costs of a job n times, we can adapt Eq. (21) as follows

h(t) =
∑

i=1

(

max

{

0, 1 +

⌊
t − Di

Ti

⌋}

Ci + γt, j

)

(25)

and lift the UCB-Union and ECB-Union approaches to their multiset counterparts.

The ECB-Union multiset approach computes the union of all ECBs that may affect a

pre-empted task during a pre-emption by task τ j . It accounts for nested pre-emptions

by assuming that task τ j has already been pre-empted by all other tasks that may

pre-empt it. The first step is to form a multiset Mt, j that contains the cost of task τ j

pre-empting task τk repeated Pj (Dk)Ek(t) times, for each task τk ∈ aff(t, j), where

Pj (Dk) denotes the maximum number of jobs of task τ j that can pre-empt a single

job of task τk :

Pj (Dk) = max

(

0,

⌈
Dk − D j

T j

⌉)
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and Ek(t) is defined as

Ek(t) = max

(

0,

⌊
t − Dk

Tk

⌋)

Hence:

M =
⋃

k∈aff(t, j)

⎛

⎝

⋃

Pj (Dk )Ek(t)

∣
∣
∣
∣
∣
∣

UCBk ∩

⎛

⎝

⋃

h∈hp( j)∪{ j}

ECBh

⎞

⎠

∣
∣
∣
∣
∣
∣

⎞

⎠ (26)

γ ECB−M
t, j is then given by the E j (t) largest values in M.

γ ECB−M
t, j = BRT ·

E j (t)
∑

l=1

|M l | (27)

The pre-emption cost γ UCB−M
t, j for EDF scheduling is computed similarly to the

UCB-Union Multiset approach for fixed-priority scheduling: Task τ j can pre-empt

each intermediate task τk directly or indirectly at most Pj (Dk)Ek(t) times within the

deadline of task τi . First, we form a multi-set Mucb
t, j containing Pj (Dk)Ek(t) copies

of the UCBk of each task k ∈ aff(t, j) reflecting the fact that within time t , task τ j

cannot evict a UCB of task τk more than Pj (Dk)Ek(t) times. Hence:

Mucb
t, j =

⋃

k∈aff(t, j)

⎛

⎝

⋃

Pj (Dk )Ek (t)

UCBk

⎞

⎠ (28)

Next, we form a multi-set Mecb
j containing E j (t) copies of the ECB j of task τ j . This

multi-set reflects the fact that during t , task τ j can evict ECBs in the set ECB j at most

E j (t) times.

Mecb
j =

⋃

E j (t)

(ECB j ) (29)

γ UCB−M
i, j is then given by the size of the multi-set intersection of Mecb

j and Mucb
i, j

γ UCB−M
i, j = BRT ·

∣
∣
∣M

ucb
i, j ∩ Mecb

j

∣
∣
∣ (30)

We note that the UCB-Union Multiset and the ECB-Union Multiset approach for EDF

are also incomparable and hence, a combined approach can be defined as follows:

h(t) = min
(

h(t)ECB−M, h(t)UCB−M
)

(31)

As the multiset approaches effectively inflate the execution time of task τ j by the

CRPD that it can cause in an interval of length t , the upper bound L , used for calculating

the processor demand h(t), must be adjusted. This is achieved by calculating an upper
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bound on the utilisation due to CRPD that is valid for all intervals of length greater than

some value Lc. This CRPD utilisation value is then used to inflate the taskset utilisation

and thus compute an upper bound Ld on the maximum length of the synchronous busy

period. This upper bound is valid provided that it is greater than Lc , otherwise the actual

maximum length of the busy period may lie somewhere in the interval [Ld , Lc], hence

we can use max(Lc, Ld) as a bound. We refer the reader to (Lunniss et al. 2013) for

a detailed explanation.

3.3 Optimal task layout

The precise cache mapping, i.e., the mapping of memory block to cache sets strongly

influences the pre-emption costs. Consider for instance the extreme situation where

all tasks are aligned to the first cache-set: Each task will definitely evict cache blocks

of another task. If tasks’ code is instead aligned sequentially in the cache, the pre-

emption costs are very likely to be smaller. Lunniss et al. (2012) showed how to

optimize the task layout with respect to the taskset schedulability and the pre-emption

costs. The technique used determines the order in which the code for each task is

placed sequentially in memory, without leaving any gaps. Optimizing the task layout

does not require any changes to the source code or the compilation and is completely

transparent to the user. Only the linker file is adapted. The optimzation changes the

addresses of the code and data in the binary, but not the code/data itself, hence an

appropriate layout can only improve performance.

4 Review of cache partitioning for real-time systems

Cache partitioning (Mueller 1995; Plazar et al. 2009) is a technique to reduce or

even completely avoid cache-related pre-emption delays, aimed at increasing the pre-

dictability of real-time systems. Cache partitioning trades inter-task for intra-task

cache conflicts, i.e. it trades off reduced cache-related pre-emption delays against

potentially increased worst-case execution times. Partitioning techniques can be imple-

mented either in hardware (Kirk and Strosnider 1990) or in software (Mueller 1995;

Plazar et al. 2009). Modern common-off-the-shelf processors may provide native

hardware support for partitioning, as for instance the OMAP-L138 DSP from Texas

Instruments.2 A native software-based solution can be implemented using page col-

oring (Ye et al. 2014) when virtual memory management is used. If no such support

is available, the realization of cache partitioning is more compilcated: Mueller (1995)

and later Plazar et al. (2009) proposed a partitioning-aware compiler, asserting that

each task only accesses its own cache partition. This comes at the cost of often sub-

stantial changes to the code and data layout, which further increases task execution

times; however, as no additional hardware is needed, the memory access delays remain

unchanged. This is in contrast to hardware-based solutions where an additional map-

ping layer from code/data to main memory is needed.

2 http://www.ti.com/product/omap-l138.
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Despite the wealth of publications on cache partitioning for real-time systems, little

work has been done on evaluating the effects of cache partitioning, and in particular, its

effectiveness compared to systems where tasks make unconstrained use of the cache.

The previously cited papers either focus on the implementation of cache partitioning

(Muller 1995; Plazar et al. 2009; Puaut and Decotigny 2002), or compare partitioned

systems with systems without cache (Vera et al. 2007). The rationale behind this limited

evaluation is the belief that pre-emptive systems that make unconstrained use of cache

are unpredictable. Given recent advances in the analysis of cache related pre-emption

delays, this view can now be considered somewhat outdated.

Studies on general usability of cache partitioning have been conducted by

Busquets-Mataix and Wellings (1997) (to a limited extent), and more recently by

Bui et al. (2008). Busquets-Mataix and Wellings based their evaluation on simplistic

models of task execution times and pre-emption costs. The execution time varia-

tion was modelled according to Higbee (1990), favouring efficiency over precision,

and only delivers rough estimates. The authors also assume that each evicting cache

block causes an additional pre-emption cost, which is a very pessimistic assumption

(Altmeyer et al. 2012).

Bui et al. (2008) based their evaluation on high-level execution time models (Wolf

1992) to estimate the execution time variation and pre-emption cost overhead. We rely

on the results of state-of-the-art static timing analysis (both for the WCET bounds and

the pre-emption costs) as used in safety-critical hard real-time systems, which provide

firm guarantees.

Since finding an optimal cache partitioning is NP-hard (Bui et al. 2008), previous

approaches employed heuristics either to minimize the number of cache misses, or to

minimize the processor utilization (Kirk and Strosnider 1990; Busquets-Mataix and

Wellings 1997; Bui et al. 2008; Plazar et al. 2009).

The research that we present in this paper differs in the following aspects: As

schedulability is the key criterion in verifying the temporal correctness of hard real-

time systems, we focus on taskset schedulability as opposed to utilization. A cache

partitioning may be schedulable even though the task utilization is not the minimum

that could be obtained. Similarly, minimizing the utilization does not necessarily opti-

mize schedulability. We present partitioning algorithms which are optimal under the

assumption that the worst-case execution time of each task is monotonic in the size

of the partition allocated to that task. We aim at deriving general statements about

the usability and efficiency of cache partitioning compared to a non-partitioned cache

analysed using state-of-the-art pre-emption cost analyses.

5 Partition-size sensitivity

5.1 Partition-size sensitivity (task level)

In this section, we evaluate the sensitivity of the worst-case execution times of tasks

with respect to the size of their allocated cache partitions. The aim of this sensitivity

analysis is to form simple yet accurate execution time functions that are parametric

in the size of the cache partition allocated to the task. These functions provide the

information required by the optimal partitioning algorithm described in Sect. 6.
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We perform sensitivity analysis by computing WCET bounds for varying cache

partition sizes using static analysis. Based on these values, we can deduce typical

variations in execution time depending on the code size of the task and the size of

the cache partition allocated to it. The rationale behind this empirical evaluation is

twofold: First, we are interested in the behaviour of a set of real examples, and second,

we want to use realistic models of execution-time as a function of cache partition size

to determine an effective partitioning of the cache between tasks. We note that with

hardware support for cache partitioning, partitions are typically restricted to being a

power of 2 in size e.g. 8,16,32 cache sets etc.; whereas software methods (Mueller

1995) can support cache partitions of any arbitrary number of sets. In the remainder

of the paper, we assume that the number of cache sets in a partition may take any

arbitrary value; however, we note that the techniques introduced are easily adapted to

the case were partition sizes come from a restricted set of hardware-supported values.

The target architecture is an ARM7 processor3 with direct-mapped cache of size

4 kB with a line size of 16 Bytes (and thus, 256 cache sets), a block reload time of

8 µs and a clock rate of 100 MHz. The cache uses a write-through policy to enable

a constant block reload time, required for the static timing analysis. The values are

derived from an example configuration of the ARM7 as used in previous work (see

Altmeyer et al. 2011). As benchmarks, we used PapaBench (Nemer et al. 2006) and

the Mälardalen benchmark suite (Gustafsson et al. 2010). We used the aiT Timing

analyzer (Ferdinand and Heckmann 2004) to compute WCET bounds, and evaluate

the sensitivity of execution time with respect to cache partition size.

Figures 1 and 2 show the normalized WCET bounds for the benchmark tasks with

varying cache partition sizes and cache types. Each line denotes the execution time

for one benchmark. The y-axis depicts the normalized execution time with the value

1 representing the largest WCET bound (which typically corresponds to the smallest

cache partition size i.e. zero). The x-axis depicts the normalized cache partition size

with the value 1 representing the code-size/maximum memory usage of the task.

Increasing the size of the cache partition beyond the code size/memory footprint does

not improve the execution time any further. The graphs are best viewed online in colour.

A perfect data (or instruction) cache means that all data (or instruction) accesses

are served instantaneously. Even though this assumption is unrealistic, it removes

possible noise and and allows us to fully concentrate on the effects of pre-emption and

partitioning. We have also performed experiments with instruction cache but without

data cache and also with data cache but without instruction cache. The results are

very similar to the evaluation shown for perfect caches, but less accentuated.

We can see that variation in the execution times is stronger in the case of instruction

cache compared to data cache. This behaviour is as expected since each instruction

results in an instruction cache access, but not necessarily in a data cache access.

Similarly, the variation in the execution times is amplified by the assumption of a

perfect data/instruction cache. Note we do not assume any implementation cost for

cache partitioning. Additional delays to implement cache partitioning only occur if no

native support for partitioning is available.

3 http://www.arm.com/products/processors/classic/arm7.
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Fig. 1 WCETs depending on the cache partition size (PapaBench, see Table 1). a Direct mapped instruction

cache, perfect data cache. b Direct mapped data cache, perfect instruction cache

5.1.1 Monotonicity

We observe from Figs. 1 and 2 that the execution time bounds are not necessarily

monotonic with respect to the cache partition size.

This counter-intuitive behaviour can be explained by differences in the mapping of

memory blocks to the cache sets. Assuming a direct-mapped cache with a line size of

16 bytes and a task that exhibits the following access sequence
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Fig. 2 WCETs depending on the cache partition size (Mälardalen and SCADE Benchmarks, see Table 3).

a direct mapped instruction cache, perfect data cache, b direct mapped data cache, perfect instruction cache

0x00030 → 0x00080 → 0x00030

If we assign this task a cache partition of size 4, memory block 0x00030 maps to

set 3 of this partition and 0x00080 maps to set 0. The last access to 0x00030 therefore

results in a cache hit. In contrast, in a larger cache partition of size 5, memory blocks

0x00030 and 0x00080 both map to cache set 3 and the last access to 0x00030 is a

123



Real-Time Syst

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

N
o

rm
a

liz
e

d
 W

C
E

T
 B

o
u

n
d

Normalized Cache Usage

Upper bound
basic function
Lower bound

Fig. 3 Over-/underapproximations of the WCET function (statemate benchmark, direct mapped data cache,

perfect instruction cache)

cache miss. Hence, for this trivial example, the performance with 5 cache sets is worse

than that for 4 cache sets.

We note that the assumption of monotonic execution time bounds is both common

and often not explicitly stated in work on cache partitioning for real-time systems

(Bui et al. 2008; Busquets-Mataix and Wellings 1997; Kirk and Strosnider 1990;

Mueller 1995; Plazar et al. 2009).

The impact of these effects is however limited, and so we can replace the actual

execution time function with monotonic over/under-approximations without signif-

icant loss of precision, as shown in Fig. 3. Here, the basic function (black line) is

non-monotonic, while the upper bound (blue line) and the lower bound (red line)

are monotonically non-increasing functions of cache partition size. We thus establish

monotonicity of the WCET with respect to the cache partition size and can use this

property in our approach to partitioning the cache. In Sect. 8.5, we quantify the error

introduced by this approximation.

5.2 Partition-size sensitivity (task group level)

In this section, we examine the sustainability of a group of tasks sharing a cache par-

tition with respect to the partition size. The rational behind a shared cache partition

is that a subset of the complete taskset can be grouped together, either to improve

performance or to implement spatial isolation between several task groups for safety

reasons—as often used in hierarchical scheduling. Optimality of the partitioning algo-

rithm described in Sect. 6 can only be guaranteed for shared cache partitions, if the

schedulability tests are sustainable with respect to the size of a cache partition.
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Fig. 4 WCET and number of UCBs depending on the cache partition size (statemate benchmark, direct

mapped data cache, perfect instruction cache)

In case of a shared cache partition, two opposing factors influence the system’s

performance: the execution time bounds and the pre-emption costs. Whereas the exe-

cution time bounds typically increase when the size of the assigned cache partition is

reduced, the pre-emption costs decrease. A smaller cache results in a higher number

of intra-task conflicts and hence, in fewer cache hits without pre-emption. Figure 4

depicts this behaviour. We note that a change in the maximum number of useful cache

blocks always co-incides with a change in the execution time bound, whereas a change

in the execution time bound does not necessarily imply a change in the maximum num-

ber of useful cache blocks. Furthermore under the hardware restrictions assumed in

this paper (set-based partitioned, LRU or direct-mapped caches), the impact of the

execution time limits the impact of the pre-emption costs: The pre-emption costs can

only increase, if the number of cached and re-used memory blocks increases, which

means that the execution time decreases. The decrease in the execution time always

dominates the increase in the pre-emption costs. When the number of potentially

evicted memory blocks increases, then the execution time decreases at least by the

time to reload these additional memory blocks times how often these memory blocks

need to be reloaded. A large number of pre-emptions will then at most cancel out the

decrease in the execution time, but never exceed it.

However, the dominance relation between the execution time bound and the pre-

emption costs is not necessarily reflected in these schedulability analyses: The terms

γi, j in (4) and γi, j in (21) representing the pre-emption costs–and thus the number of

UCBs—may contribute more often to the response time/demand bound than they actu-

ally occur in practice. Consequently, the schedulability tests presented in Sect. 3 are not
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sustainable for taskgroups, even under the assumption of monotonic execution times.

This unsustainability of the schedulability tests means that the algorithms described

in Sect. 6 would not retain their optimality if extended to the case where groups of

tasks share partitions: False negatives are possible in the sense that no feasible shared

cache partition is found although one may exist.

6 Optimal cache partitioning

In this section, we derive an optimal cache partitioning algorithm, which makes use of

the monotonic upper bound execution time functions of cache partition size described

in the previous section. We assume a direct-mapped cache of size S. A cache parti-

tioning P is a tuple of non-negative integers describing for each task τi , the size pi of

its allocated cache partition:

P = (p1, p2, . . . , pn) : N × · · · × N
︸ ︷︷ ︸

n

(32)

We assume that each task has a dedicated cache partition which is not shared with

any other tasks (we return to this point in Sect. 9). A cache partitioning is valid, if the

total size of the cache partitions does not exceed the overall size S of the cache (i.e. if
∑

i pi ≤ S).

6.1 Schedulability

We are interested in the schedulability of a taskset, as this is the main optimization

criterion for hard real-time systems. We therefore say that a cache partitioning algo-

rithm is optimal, iff it finds a cache partitioning whereby the tasks are schedulable,

whenever such a partitioning exists. Note that this is different from minimizing the

utilization of a taskset, since taskset utilization is only a rough indicator of system

schedulability.

To compute an optimal cache partitioning, we use a branch-and-bound approach

(see Algorithm 1) which is certain, under the assumption of monotonic execution time

functions, to find a feasible cache partitioning if one exists. To this end, we exploit

the sustainability of the schedulability test with respect to execution times and the

monotonicity of the execution time function with respect to the cache partition size to

prune the search space.

The algorithm is implemented using a recursive function checkPartition. This func-

tion takes as its input the current task index i , a partially defined partitioning P and

the remaining cache size s. The partitioning is defined up to index i and the remain-

ing cache size s is given by S minus the sum of the sizes of the first i partitions i.e.

s = S −
∑i

j=1 pi .

The initial input to the function is the first task index 1, an arbitrary partitioning P

and the overall cache size S. If the last task index is reached, the partitioning is fully

defined and the result is determined by the function isSchedulable, which checks the

schedulability of the taskset for the defined partitioning. Note, here we employ the
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basic schedulability tests without pre-emption costs (see Sect. 3) given by (2) and

(16), as the cache partitioning prevents any cache-related pre-emption delays.

In the next step, the algorithm checks taskset schedulability under (a) the optimistic

assumption that each not yet specified task partition is of size s and (b) under the

pessimistic assumption that each not yet specified task partition is given an equal

share of the remaining cache size, i.e., ⌊s/(n − i + 1)⌋. This enables effective pruning

of the search in the case where (a) schedulability is disproved for any extensions to

the current partial partitioning, and early exit in the case (b) schedulability is proven

assuming that all further tasks are schedulable with a cache partition of equal size.

The last construct of the algorithm, the while loop, implements the branching. The

partition size of cache partition pi is varied from 0 up to the remaining cache size s

and each possible partitioning is evaluated using a recursive function call. This is done

using the function nextStep which computes the next partition size for task τi . Due to

the monotonicity of the execution time functions with respect to cache partition size,

nextStep jumps directly to the next partition size where the execution time changes.

All intermediate partition sizes with the same execution time can be safely ignored.

In the worst-case, up to nS different cache partitionings must be evaluated, where n

is the number of tasks and S the number of cache sets. In practice, the runtime is

substantially lower due to early exits and the reduced number of partition sizes which

give different execution times. We return to this point in the following section. Further,

in the case where hardware support is provided for a limited number of partition sizes,

the runtime is further reduced due to the restricted number of partition sizes supported.
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6.2 Schedulability and minimal utilization

Algorithm 1 can be extended to find a schedulable cache partitioning with the minimum

processor utilization (see Algorithm 2). Schedulability is usually the dominating cri-

terion for hard real-time systems but a reduced processor utilization typically reduces

the energy consumption and the response times and thus improves the overal perfor-

mance of the system.

The global variable minUtil is initially set to 1.1 to indicate that no schedulable cache

partitioning has been found yet. As soon as the algorithm encounters a schedulable

partitioning, the utilization is computed and compared to minUtil (which is updated

if necessary).

Algorithm 2 also differs in the abort conditions. We are no longer allowed to stop the

algorithm once we have found a schedulable partitioning (see line 9 in Algorithm 1),

as only one of the two optimization criteria has at that point been fulfilled. Instead,

we can bound the search when the current value of minUtil is less than or equal to

the utilization of the cache partitioning where each not yet specified task partition is

given the complete remaining size s (see line 16). This step is valid as the processor

utilization (1) is monotonically non-decreasing in the tasks’ execution times. Due to
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the weaker abort-condition of Algorithm 2, a significantly higher number of cache

partitionings must be evaluated when a schedulable partitioning exists. When no such

partitioning exists, both algorithm consider exactly the same number of partitionings.

We evaluate the difference in the average processor utilization and analysis time for

the two algorithms in Sect. 7.3.

7 Case study

In this section, we evaluate the partitioning algorithms based on PapaBench (Nemer

et al. 2006), the Mälardalen benchmark suite (Gustafsson et al. 2010) and a set of

SCADE4 tasks (partially provided by SCADE, partially from our own SCADE mod-

els). Besides the effectiveness of the cache partitioning algorithms, we are interested in

(i) the precision of the simplified execution time model, (ii) the runtime performance

of the algorithms, and (iii) the difference between the two partitioning algorithms with

respect to the minimum utilization obtained.

For the case study, the target architecture is an ARM7 processor (with a 4 kB direct-

mapped write-through cache, line size of 16 Bytes, 256 cache sets, block reload time

8 µs, clock rate of 100 MHz). The execution time bounds were derived using the aiT

Timing analyzer (Ferdinand and Heckmann 2004). The values are derived from an

example configuration of the ARM7 as used in previous work (see Altmeyer et al.

2011).

Papabench provides two different tasksets (fbw and autopilot) with deadlines and

periods (except for the interrupts I4 to I7) (see Tables 1 and 2). With the initial processor

frequency of 100 MHz, both tasksets are schedulable both with and without cache

partitioning. The other benchmarks only provide code and do not form a meaningful

taskset. We therefore randomly selected tasks from (i) Tables 1 and 2, and (ii) Table 3

and 4 (together with execution times, the execution time variations, codes size and

UCBs/ECBs).

The remaining task and taskset parameters used in our experiments were randomly

generated as follows:

– The default taskset size was 10.

– Task utilizations were generated using the UUnifast (Bini and Buttazzo 2005)

algorithm.

– Task periods were set based on the utilization and execution times: Ci = Ui · Ti .

– Task deadlines were implicit,5 i.e., Di = Ti .

– For fixed priority scheduling, priorities were assigned in Rate Monotonic priority

order.

The tasks are indexed and processed by the partioning algorithms in decreasing priority

order.

In each experiment the taskset utilization not including pre-emption cost was varied

from 0.025 to 0.975 in steps of 0.025. For each utilization value, 1000 tasksets were

4 Esterel SCADE http://www.esterel-technologies.com/.

5 Evaluation for constrained deadlines, i.e., Di ∈ [2Ci ; TI ] gave broadly similar results although fewer

tasksets were deemed schedulable.
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Table 1 Execution times and number of UCBs and ECBs for the PapaBench benchmarks

Description UCBs ECBs WCET1 WCET2 Period

I4 Interrupt-modem 2 10 303 µs 520 µs –

I5 Interrupt-spi-1 1 10 251 µs 447 µs –

I6 Interrupt-spi-2 1 4 151 µs 228 µs –

I7 Interrupt-gps 3 26 283 µs 493 µs –

T5 Altitude-control 20 66 1478 µs 1660 µs 250 ms

T6 Climb-control 1 210 5429 µs 6241 µs 250 ms

T7 Link-fbw-send 1 10 233 µs 471 µs 250 ms

T8 Navigation 1 256 44, 42 ms 54, 35 ms 50 ms

T9 Radio-control 0 256 15, 6 ms 21, 1 ms 50 ms

T10 Receive-gps-data 22 194 5987 µs 6659 µs 25 ms

T11 Reporting 2 256 12, 22 ms 5 ms 100 ms

T12 Stabilization 11 194 5681 µs 6654 µs 50 ms

Data cache with perfect instruction cache (WC ET 1) and without data cache (WC ET 2)

generated and the schedulability of those tasksets was determined using the cache

partitioning algorithms or pre-emption cost aware analysis with either sequential or

optimal task layout (Lunniss et al. 2012). We thus compared the results for cache

partitioning against those for (i) no partitioning with a sequential task layout, (ii) no

partitioning with an optimized task layout, (iii) analysis ignoring pre-emption costs,

but assuming that all the tasks shared the cache; (iv) naive cache partitioning with all

tasks allocated the same size partition S/n; (v) no cache. The sequential task layout

reflects the basic un-optimized cache mapping, i.e., where the code for each task is

placed consecutively in memory. In case of unconstrained cache usage, we used the

combined multiset approaches for fixed-priority (14) and for EDF scheduling (31) to

compute the schedulability of the tasksets.

For fixed priority scheduling, we were able to compute the schedulability of all

tasksets (42,000 tasksets per case study) in less than 10 min on a 2.6-GHz Quadcore

processor—despite the exponential worst-case behaviour of the cache partitioning

algorithm (Algorithm 1). For EDF scheduling, the computation for the same config-

urations took about 60 min. This shows a more than acceptable analysis time for the

partitioning algorithm, with a strong dependency on the runtime of the schedulability

test that it uses.

7.1 PapaBench

Most tasks from Tables 1 and 2 have rather short execution times, leading to relatively

high pre-emption costs. These tasks are simple, short control tasks with limited com-

putations and data accesses. Figure 5a and c for fixed priorities and Fig. 6a and c for

dynamic priorities show the success ratio; the number of tasksets based on Papabench

that were schedulable at the various levels of utilization. In the case of instruction

123



Real-Time Syst

Table 2 Execution times and number of UCBs and ECBs for the PapaBench benchmarks

Description UCBs ECBs WCET1 WCET2 Period

I4 Interrupt-modem 3 10 335 µs 790 µs –

I5 Interrupt-spi-1 2 10 287 µs 644 µs –

I6 Interrupt-spi-2 1 4 135 µs 338 µs –

I7 Interrupt-gps 3 26 278 µs 712 µs –

T5 Altitude-control 2 66 654 µs 3860 µs 250 ms

T6 Climb-control 5 210 2375 µs 14, 21 µs 250 ms

T7 Link-fbw-send 2 10 298 µs 634 µs 250 ms

T8 Navigation 10 256 23, 38 ms 138 ms 50 ms

T9 Radio-control 14 256 10, 2 ms 51 ms 50 ms

T10 Receive-gps-data 4 194 3058 µs 20, 5 ms s 25 ms

T11 Reporting 6 242 12, 8 ms 32 ms 100 ms

T12 Stabilization 6 194 2711 µs 16, 1 ms s 50 ms

Data cache with perfect instruction cache (WC ET 1) and without instruction cache (WC ET 2)

caches (Figs. 5b and 6b), optimal partitioning has similar performance to sequential

task layout with no partitioning, while optimal task layout with no partitioning results

in improved performance. Optimal cache partitioning was only able to improve per-

formance over sequential task layout with no partitioning in a few cases. In the case

of data caches(Figs. 5d and 6d), optimal partitioning outperforms optimal task layout

with no partitioning. The variation of the execution times in this case is rather low,

while the number of UCBs is comparably high. We thus note that the two approaches

are incomparable. Almost no tasksets were schedulable with no cache, except for the

case of data cache with perfect instruction cache as the impact of the data cache alone

is limited.

With respect to the scheduling policy, i.e. fixed priority vs. EDF, there was no sig-

nificant difference in the relative performance of the various approaches. As expected,

the schedulability tests for EDF deem consistently more tasksets schedulable (for all

approaches) than those for fixed priority scheduling.

7.2 Mälardalen and SCADE benchmarks

In contrast to the first case study, the execution times of the tasks from Tables 3 and 4

for the Mälardalen and SCADE Benchmarks are comparably high, and thus the pre-

emption costs relatively low. These tasks exhibit a low locality of memory accesses

but high amounts of computation. In this case, the low cache related pre-emption

delays result in significantly better performance if the cache is not partitioned. Here,

cache partitioning was unable to improve performance over the simple sequence task

layout with no partitioning, as illustrated in Figs. 7a and 8a. Note that in this case there

are no major differences for data and instruction caches, the results of the different

approaches are just more (instruction caches) or less (data caches) accentuated.

123



Real-Time Syst

Table 3 Mälardalen benchmark suite (M) and SCADE benchmarks (S)

Description UCBs ECBs WCET1 WCET2

M Adpcm 24 226 5541 s 6521 s

M Compress 25 114 3664 s 8426 s

M Edn 56 98 244, 8 ms 458, 2 ms

M Fir 28 50 21, 52 ms 497 ms

M Jfdctinit 40 162 13, 89 ms 32, 98 ms

M Ns 17 26 73, 38 ms 168 ms

M Nsichneu 53 256 77, 96 ms 163 ms

M Statemate 3 256 9757 s 20, 07 s

S Cruise control system 25 107 1959 s 3548 s

S Flight control system 70 256 2138 s 4083 s

S Navigation system 45 82 1409 s 3712 s

S Stopwatch 58 130 3786 s 5533 s

S Elevator simulation 40 114 1586 s 2917 s

S Robotics systems 68 256 4311 s 6377 s

Data cache with perfect instruction cache (WC ET 1) and without data cache (WC ET 2)

Table 4 Mälardalen benchmark suite (M) and SCADE benchmarks (S)

Description UCBs ECBs WCET1 WCET2

M Adpcm 7 242 5856 s 43, 17 s

M Compress 6 242 9740 s 25, 26 s

M Edn 5 98 518, 9 ms 1422 s

M Fir 5 50 42, 65 ms 121 ms

M Jfdctinit 8 242 23, 2 ms 73, 63 ms

M Ns 3 26 133, 7 ms 466, 9 ms

M Nsichneu 8 242 66, 74 ms 178, 3 ms

M Statemate 30 242 8143 s 22, 45 s

S Cruise control system 15 98 1, 77 s 6207 s

S Flight control system 12 242 3, 24 s 11, 02 s

S Navigation system 3 82 2, 96 s 7566 s

S Stopwatch 9 130 4417 s 25, 03s

S Elevator simulation 4 114 1863 s 5432 s

S Robotics systems 5 242 3427 s 22, 45 s

Data cache with perfect instruction cache (WC ET 1) and without instruction cache (WC ET 2)

7.3 Utilization versus analysis time

The first cache partitioning algorithm (Algorithm 1) only optimizes for schedulability

and ignores the processor utilization. In this section, we evaluate the consequences

of this simplified optimization: how much further can the processor utilization be

reduced and what is the analysis time needed to compute a schedulable partitioning
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Fig. 5 Evaluation of PapaBench benchmarks (fixed priority scheduling). a Number of tasksets deemed

schedulable at the different total utilizations (instruction cache with perfect data cache), b number of tasksets

deemed schedulable with one approach and not another (instruction cache with perfect data cache), c number

of tasksets deemed schedulable at the different total utilizations (data cache with perfect instruction cache),

d number of tasksets deemed schedulable with one approach and not another (data cache with perfect

instruction cache)
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Fig. 6 Evaluation of PapaBench benchmarks (EDF scheduling). a Number of tasksets deemed schedulable

at the different total utilizations (instruction cache with perfect data cache), b number of tasksets deemed

schedulable with one approach and not another (instruction cache with perfect data cache), c number of

tasksets deemed schedulable at the different total utilizations (data cache with perfect instruction cache),

d number of tasksets deemed schedulable with one approach and not another (data cache with perfect
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Fig. 7 Evaluation of Mälardalen benchmarks (fixed priority scheduling). a Number of tasksets deemed
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of tasksets deemed schedulable at the different total utilizations (data cache with perfect instruction cache),
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instruction cache)
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Fig. 9 Evaluation of the average utilization PapaBench benchmarks (fixed priority scheduling, instruction

cache with perfect data cache). a Average utilization of schedulable tasksets per nominal utilization, b total

analysis time for 1000 tasksets

with minimum utilization. To this end, we compare the results and analysis times

of both algorithms presented in Sect. 6, i.e. with and without optimizing minimum

processor utilization as a secondary concern.

The results of this comparison are shown in Figs. 9 and 10 for the PapaBench

benchmark suite and in Figs. 11 and 12 for the Mälardalen benchmark suite. Sub-

figures (a) show the average percentage increase in processor utilization (i.e. with

the execution time overhead due to cache partitioning) of schedulable tasksets with

respect to the nominal utilization (i.e. without execution time overhead due to cache

partitioning). Subfigures (b) show the analysis time for all 1000 tasksets generated

per utilization level. The blue line representes the optimal cache paritioning algorithm

without optimized utilization (Algorithm 1) and the pink line with optimized utiliza-

tion (Algorithm 2). We have omitted the results for data cache with perfect instruction

cache as they resemble the results for instruction cache with perfect data cache, with

a less significant difference.

The minimum utilization of a schedulable cache partitioning is at most 1 % above

the nominal utilization. The average difference of the results of the two algorithms

is also limited. Mälardalen benchmarks with instruction cache/perfect data cache—

irrespective of the priority assignment—exhibits the largest relative difference in

utilization of around 7 % at a utilization level of 0.8, (i.e. an absolute difference in

utilization of less than 0.056). In the case of data caches with perfect instruction cache,

the difference is always below 2 %.
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Fig. 10 Evaluation of the average utilization PapaBench benchmarks (EDF scheduling, instruction cache

with perfect data cache). a Average utilization of schedulable tasksets per nominal utilization, b total analysis

time for 1000 tasksets

In contrast to the processor utilization, the difference in the total analysis time is

noticable in all cases, especially if the nominal processor utilization is above 0.8. This

indicates that the algorithm to optimize the processor utilization requires a significant

amount of time to either find an improved cache partitioning or to show the optimality

of the current candidate. We conclude that a small but nevertheless useful improvement

in utilization can be obtained using Algorithm 2; however, that this comes at a cost in

terms of increased runtime of the analysis.

We note that the average increase in utilization which occurs using Algorithm 1 is

similar for both fixed priority and EDF scheduling with the only difference beeing that

the increase drops at a lower nominal utilization for fixed-priority scheduling (0.8) than

for EDF scheduling (0.85). This is because EDF has a schedulable utilization bound

of 1 (much higher than that for fixed priority scheduling), thus a careful tuning of the

partition size to achieve a schedulable partitioning is only required at higher nominal

utilizations. The reduced difference in the nominal utilization also coincides in both

cases (fixed-priority and EDF) with an increase in the analysis time of Algorithm 1.

Note, as both algorithms behave similar in case no schedulable cache partition-

ing exists, the differences in the analysis time are only due to the optimization of

schedulable partitionings.
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Fig. 11 Evaluation of the average utilization of Mälardalen benchmarks (fixed priority scheduling, instruc-

tion cache with perfect data cache). a Average utilization of schedulable tasksets per nominal utilization, b

total analysis time for 1000 tasksets

8 Synthetic tasksets

We also evaluated the effectiveness of cache partitioning on a large number of syn-

thetic tasksets with varying cache configurations and varying task parameters. Our

aim here was to identify those parameters that have a significant influence on the rela-

tive effectiveness of cache partitioning versus a non-partitioned cache. The evaluation

using randomly generated tasksets enables us to fully control all relevant parameters,

which is not possible using the benchmark tasks directly.

The task parameters used in our experiments were randomly generated as follows:

– The default taskset size was 10.

– Task utilizations were generated using the UUnifast (Bini and Buttazzo 2005) algo-

rithm.

– Task periods were generated according to a log-uniform distribution with a factor

of 1000 difference between the minimum and maximum possible task period and

a minimum period of 5 ms. This represents a spread of task periods from 5 ms to 5

s, thus providing reasonable correspondence with real systems.

– Task execution times were set based on the utilization and period selected: Ci =

Ui · Ti .

– Task deadlines were implicit
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Fig. 12 Evaluation of the average utilization of Mälardalen benchmarks (EDF scheduling, instruction

cache with perfect data cache). a Average utilization of schedulable tasksets per nominal utilization, b total

analysis time for 1000 tasksets

– For fixed priority scheduling, priorities were assigned in Deadline Monotonic pri-

ority order.

To model the variation in the execution time, we randomly selected one of the execution

time functions from our benchmarks (see Tables 1 and 3 and Figs. 1 and 2). Note that

this only affects the variation of the execution time for different partition-sizes and Ci

refers to the base execution time when τi can use the complete cache. The tasks are

indexed and processed by the partioning algorithms in decreasing priority order.

The following parameters affecting pre-emption costs were also varied, with default

values given in parentheses:

– The number of cache-sets (C S = 256).

– The block-reload time (B RT = 8 µs)

– The cache usage of each task, and thus, the number of ECBs, were generated

using the UUnifast (Bini and Buttazzo 2005) algorithm (for a total cache utilization

CU =
∑

i |ECB|/C S = 4). UUnifast may produce values larger than 1 which

means a task fills the whole cache.

– For each task, the UCBs were generated according to a uniform distribution ranging

from 0 to the number of ECBs times a reuse factor: [0, RF · |EC B|]. The factor

RF was used to adapt the assumed reuse of cache-sets to account for different types

of real-time applications, for example, from data processing applications with little

reuse up to control-based applications with heavy reuse (default RF = 0.3).
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Fig. 13 Evaluation for the base configuration, fixed priority scheduling. a Number of tasksets deemed

schedulable at the different total utilizations, b number of tasksets deemed schedulable with one approach

and not another

The parameters of the base configuration were chosen according to the actual values

observed in the case studies of the PapaBench benchmarks 7.1 and the Mälardalen

benchmarks 7.2. The results (Figs. 13 and 14) lie between those of the case studies

(Figs. 5a and 7a for fixed priority scheduling, and Figs. 6a and 8a for EDF scheduling

respectively).

Overall, cache partitioning and pre-emption cost analysis with a sequential, un-

optimized task layout have similar performance; however, we note that there are also

a large number of tasksets that can only be scheduled with one of the two approaches,

but not with the other. This shows that cache partitioning is a viable alternative in some

scenarios and detrimental in others. However, we also observe that the optimal task

layout with no partitioning has a clear advantage over optimal partitioning in terms of

the number of schedulable tasksets (see Figs. 13b and 14b).

The choice of scheduling policy has a limited influence on the relative performance

of the various approaches. Under EDF cache partitioning showed improved perfor-

mance relative to no partitioning and a sequential task layout, most likely due to the

higher imprecision in the cache-aware schedulability test for EDF.

Exhaustive evaluation of all combinations of cache and taskset configuration para-

meters is not possible. We therefore fixed all parameters except one and varied the

remaining parameter in order to see how performance depends on this value. The para-

meters we examined were: (i) the pre-emption cost as determined by the block reload
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Fig. 14 Evaluation of the base configuration, EDF scheduling. a Number of tasksets deemed schedulable at

the different total utilizations, b number of tasksets deemed schedulable with one approach and not another

time (BRT) and a scaling factor applied to task periods; (ii) the cache utilization, (iii)

the number of tasks, and (iv) the cache size.

The graphs show the weighted schedulability measure Wy(q) (Bastoni et al. 2010)

for schedulability test y as a function of parameter q. For each value of q, this measure

combines data for all of the tasksets τ generated for all of a set of equally spaced

utilization levels. Let Sy(τ, q) be the binary result (1 or 0) of schedulability test y for

a taskset τ and parameter value q then:

Wy(q) =

(

∑

∀τ

u(τ ) · Sy(τ, q)

)

/
∑

∀τ

u(τ ) (33)

where u(τ ) is the utilization of taskset τ . This weighted schedulability measure reduces

what would otherwise be a 3-dimensional plot to 2 dimensions (Bastoni et al. 2010).

Weighting the individual schedulability results by taskset utilization reflects the higher

value placed on being able to schedule higher utilization tasksets.

8.1 Pre-emption costs

Pre-emption costs are determined by several parameters. Among those, the dominant

factors are the block reload time (BRT) and the range of task execution times. Figure 15
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Fig. 15 Weighted schedulability measure; varying block reload time from 1 to 20 µs (assuming constant

worst-case execution times). a Fixed priority scheduling, b EDF scheduling

shows the weighted schedulability measure for different block reload times. In our

setting, the break-even point is at a block reload time of about 10μs. For larger block

reload times cache partitioning becomes the more effective approach, while for smaller

block reload times a non-partitioned cache is more effective.

In Fig. 16, we varied the scaling factor w from 0.5 to 10 and hence the range of

task periods given by w[1, 100]ms. Given that the block reload time is constant in

this experiment, the ratio of pre-emption costs to taskset utilization decreases as the

task periods, deadlines and execution times are all scaled up. A lower scaling factor

resembles tasks with shorter execution times (as in Tables 1 and 2), a higher scaling

factor resembles tasks with higher execution times and commensurately longer periods

(as in Tables 3 and 4).

The results indicate that cache partitioning is useful for control-oriented tasks with

short execution times and very short periods and thus relatively high pre-emption

costs compared to their WCET. When the pre-emption costs are low compared to the

WCET, cache partitioning typically does not pay off.

Note that increasing the block reload time typically also leads to increased (non-

pre-emptive) execution times. In these experiments, we have fixed the execution times

to vary only the relation between pre-emption costs and execution time bounds.

The impact of the scheduling policy, i.e. fixed priority vs. EDF, on the relative

performance of the various approaches remains limited.
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Fig. 16 Weighted schedulability measure; varying the scale of task periods w[1, 100] from w = 0.5 to

w = 10. a Fixed priority scheduling, b EDF scheduling

8.2 Cache utilization

The cache utilization determines the ratio between the total code size of all the tasks

and the overall cache size. Increasing the cache utilization leads to higher pre-emption

costs, and higher execution times in the case of cache partitioning. Cache partitioning;

however, suffers less from increased cache utilization as can be seen in Fig. 17a.

The results for the non-partitioned system suffer somewhat from the over-

approximation of the UCB/ECB analysis and the pre-emption cost aware response

time analysis: This assumes additional cache misses due to pre-emption even though

the misses have already been accounted for by a prior pre-emption, providing more

pessimistic results at high cache utilization levels.

8.3 Number of tasks

We also conducted experiments varying the number of tasks. Note that it is an unre-

alistic assumption to change the number of tasks without also changing the cache

utilization. This would mean the cache usage of each individual task decreasing as

more tasks are added to the system. Realistically, cache utilization increases with the

number of tasks. Figure 18a shows the results of the evaluation if we increase the

number of tasks and the cache utilization, while keeping the per task cache utilization

constant.
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Fig. 17 Weighted schedulability measure; varying cache utilization from 0 to 20. a Fixed priority schedul-

ing, b EDF scheduling

Here, we see that the performance of the non-partitioned approach gradually

degrades with increasing taskset size due to pessimism in the analysis of a large

number of pre-emption levels. We also notice a quicker decline in the case of EDF

compared to fixed priority scheduling. This validates our assumption that the relative

difference is due to a larger imprecision in the cache-aware schedulability test for EDF.

8.4 Cache size

If we only adapt the cache size without changing the relation between the execution

time and the pre-emption costs (or the cache utilization), we would penalise the pre-

emption cost computation: if there are more cache sets, there are also more UCBs

and thus, higher pre-emption costs. The results of the cache partitioning, though, does

not change. To avoid this discrimination, we have increased the number of sets, while

keeping the relation of cache utilization to cache size (CU/C S) constant. The results

are shown in Fig. 19a. For small cache, the partition sizes are very small which leads to

high execution times and thus low schedulability for the paritioning approaches. For

larger caches, the performance of partitioned and non-partitioned systems converge

as the cache utilization decreases.

We note that small caches also lead to a reduced pre-emption overhead as the

number of UCBs is upper bounded by the number of sets: The delay of additional
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Fig. 18 Weighted schedulability measure; varying the number of tasks from 2 to 24 with constant ratio of

number of tasks to cache usage. a Fixed priority scheduling, b EDF scheduling

cache reloads that would otherwise contribute to the pre-emption overhead is included

in the non-pre-emptive execution time bound. The performance of the non-partitioned

approaches thus declines from 32 to 128 sets (where the pre-emption overhead is

maximal) as we use the task utilization (without pre-emption costs) as the baseline for

each experiment.

8.5 Precision of the simplified execution-time model

To evaluate the precision of the simplified execution time model, and so obtain a

measure of the pessimism introduced in order to obtain monotonicity of execution

times, we computed for each taskset an optimal cache partitioning (using Algorithm 1)

(i) assuming upper bounds (Fig. 3 blue upper line) and (ii) optimistic lower bounds on

the execution times (Fig. 3 red lower line). The difference in the results—the number

of tasksets that were deemed schedulable using the lower but not the upper bounds—

provides a measure of the imprecision of the simplified execution time model. In the

first case study (PapaBench) 0.21 % of all tasksets were deemed schedulable only using

lower bounds, and 1.21 % (Mälardalen and SCADE) for the second case study. Note

that these percentages refer to the uncertainty due to the assumed monotonicity and not

due to the cache partitioning algorithm. Also note that this does not necessarily mean

that 0.21 %, resp. 1.21 %, of the tasksets have been falsely deemed not schedulable,

rather these are upper bounds on the imprecision.
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Fig. 19 Weighted schedulability measure; varying the number of cache sets 64 to 1024 with constant ratio

(CU/C S). a Fixed priority scheduling, b EDF scheduling

9 Conclusions and future work

In this paper, we evaluated the relative performance, in terms of taskset schedulability,

of partitioning the cache on a per task basis versus allowing all tasks to share the entire

cache. Our research contrasts with previous work in this area, in that we used system

schedulability as the performance metric, effective techniques for analysis of cache

related pre-emption delays, and code from real benchmarks as the foundation of our

empirical evaluation.

The main contributions of this paper are as follow:

– Sensitivity analysis of WCET with respect to partition size, showing how the precise

WCET bound as a function of the size of the partition can be effectively upper and

lower bounded by monotonic functions.

– Sensitivity analysis of the schedulability of groups of tasks with respect to the size

of a shared partition, showing that the precise schedulability of the task group is

sustainable with respect to the size of the partition whereas the schedulability tests

are not sustainable.

– The introduction of optimal algorithm for cache partitioning which finds a schedu-

lable partioning whenever such a partitioning exists. This algorithm makes use of

the monotonic WCET functions.

– The introduction of an optimal algorithm for cache partitioning which finds

a schedulable partitioning with the minimum processor utilisation whenever a
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schedulable partitioning exists. This algorithm also makes use of the monotonic

WCET functions.

– A thorough evaluation of the relative performance of optimal per task cache parti-

tioning versus no partitioning for static and dynamic priority assignment.

– An evaluation of the trade-off of mininal processor utilization against increased

analysis time.

Our results showed that for simple, short control tasks such as those from Papabench,

where the pre-emption costs are relatively high compared to the WCET, the perfor-

mance of partitioned and non-partitioned approaches were similar, with the use of

an optimal task layout providing the non-partitioned approach with a small perfor-

mance advantage. By contrast, tasks from the Mälardalen benchmark suite exhibited

lower locality of memory accesses and higher amounts of computation, with larger

WCETs compared to the associated cache related pre-emption delays. For tasksets

based on this benchmark, the non-partitioned approach (with and without cache layout

optimization) outperformed optimal partitioning. These results indicate that in most

cases, the increased predictability of a partitioned cache, in terms of eliminating cache

related pre-emption delays, does not compensate for the performance degradation in

the WCETs.

Our extended evaluation using synthetic benchmark tasksets showed that the key

parameters affecting the relative effectiveness of cache partitioning versus no partition-

ing are: (i) The ratio of pre-emption costs to the overall WCET (partitioning does not

pay off when this ratio is small). (ii) The Block Reload Time (partitioning is most effec-

tive when the BRT is large increasing pre-emption costs). (iii) Cache utilization (the

non-partitioned approach suffers from pessimism at high values of cache utilization).

(iv) The number of tasks (with no partitioning the analysis suffers from increasing

pessimism in the computation of pre-emption costs as the number of tasks increases).

Further, we found that the relative performance of the two approaches was largely

unaffected by the number of cache sets. The scheduling policy had a comparably lim-

ited impact on the overall results; however, the increased pessimism of the cache-aware

schedulability analysis for EDF slightly improved the relative performance of cache

partitioning in this case.

Cache partitioning often increases the utilization of the tasksets by allocating each

task a partition which is less than the size of the cache, thus inflating the WCET. We

found that Algorithm 2 which minimizes utilization as a secondary criterion makes

small but useful gains in the average taskset utilization obtained over Algorithm 1

which only optimizes for the primary criteria of schedulability. These gains, however,

come at a cost in terms of an increased runtime for the analysis. For high utilization

tasksets, the differences in the utilization obtained is small, since few partitionings are

schedulable and both algorithms tend towards producing very similar results.

Our evaluation shows that static cache and CRPD analyses are sufficiently precise

to justify unconstrained cache usage; Cache partitioning to increase predictability

is often not required but instead is detrimental to the provable system performance.

Spatial isolation which reduces the certification costs and enables the integration of

independently developed system components remains a strong point in favour of cache

partitioning.
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This paper compares two extremes, either all of the tasks share the entire cache, or

every task has an individual cache partition. It is clear that between these two extremes,

there is an approach which subsumes and dominates both. This intermediate approach

involves allocating groups of tasks to appropriately sized cache partitions, and then

controlling the layout of those tasks in memory (Lunniss et al. 2012) to enhance

schedulability through a reduction in cache related pre-emption delays within each

partition.

The intermediate approach in between cache partitioning and unconstrained cache

usage is also fundamental for spatial isolation. Isolation is typically required between

groups of tasks constituting a system component, and not in between individual tasks.

The CRPD analysis has recently been extended to hierarchical scheduling to imple-

ment temporal isolation (Lunniss et al. 2014, 2015), but the integration with cache

partitioning, and in particular the optimization of the cache partitioning in this con-

text, to achieve full temporal and spatial isolation is future work.

Recent work by Wang et al. (2015) investigates an alternative intermediate approach

where groups of tasks share a partition and also a preemption threshold (Wang and

Saksena 1999; Saksena and Wang 2000), hence ensuring that tasks using the same

partition cannot preempt each other, thus avoiding CRPD. (Analysis of CRPD has also

been integrated into fixed priority scheduling with preemption thresholds assuming

that the cache is shared Bril et al. 2014).

Our analysis and evaluation is restricted to a single level of cache. This restriction

was necessary to single out the effect of cache partitioning and unconstrained cache

usage and to reduce noise due to interferences from other parts of the cache hierarchy.

Broadening the view to several cache levels, a combination of the predictability of

cache partitioning on one cache level with the performance of unconstrained cache

usage on another one is likely to provide optimal performance.
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