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In this paper we derive a system identification framework for continuous-time nonlinear systems, for the
first time using a simulation-focused computational Bayesian approach. Simulation approaches to non-
linear system identification have been shown to outperform regression methods under certain conditions,
such as non-persistently exciting inputs and fast-sampling. We use the approximate Bayesian computa-
tion (ABC) algorithm to perform simulation-based inference of model parameters. The framework has the
following main advantages: (i) parameter distributions are intrinsically generated, giving the user a clear
description of uncertainty, (ii) the simulation approach avoids the difficult problem of estimating signal
derivatives as is common with other continuous-time methods, and (iii) as noted above, the simulation
approach improves identification under conditions of non-persistently exciting inputs and fast-sampling.
Term selection is performed by judging parameter significance using parameter distributions that are
intrinsically generated as part of the ABC procedure. The results from a numerical example demonstrate
that the method performs well in noisy scenarios, especially in comparison to competing techniques that
rely on signal derivative estimation.

Keywords: models; NARMAX; continuous-time systems; system identification and signal processing;
Bayesian estimation; computational system identification; nonlinear; approximate Bayesian
computation

1. Introduction

In the field of nonlinear system identification (SID), there are many techniques available for ob-
taining discrete-time models, where the model structure is described by a difference equation based
on sampled data (Baldacchino, Anderson, & Kadirkamanathan, 2012; Chen, Billings, & Luo, 1989;
Kukreja, Galiana, & Kearney, 2004; K. Li, Peng, & Bai, 2006; Piroddi & Spinelli, 2003). There
are, however, far fewer techniques available for the identification of nonlinear continuous-time (CT)
models, where the model structure is described by a differential equation (Billings, 2013). There
are a number of reasons why CT models are attractive for SID: (i) they are easier to interpret
and can to some extent facilitate physical understanding, (ii) they tend to be compact, (iii) they
permit identification for irregularly sampled data and (iv) they exhibit more stability and less
ill-conditioning (Garnier & Wang, 2008).
There are two main types of approach to continuous-time SID (CT-SID) from sampled data,

which are the direct and indirect methods (Billings, 2013; Rao & Unbehauen, 2006; Unbehauen
& Rao, 1990), i.e. direct identification of the model in CT typically using estimates of signal
derivatives, or indirect identification by first identifying a discrete-time model and then secondly
mapping it to the CT domain (L. Li & Billings, 2001). The direct approach is more efficient because
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it requires only a single step of identification, without the complication of mapping the nonlinear
model between discrete- and continuous-time domains. However, direct identification does usually
incur the problem of signal derivative estimation.
Current approaches for direct identification of CT nonlinear systems make use of a number of

approaches for signal derivative estimation: delayed state-variable filters (Tsang & Billings, 1994),
Kalman smoothing (Coca & Billings, 1999), the delta-operator (Anderson & Kadirkamanathan,
2007) and differencing methods that account for the nonlinear zero-dynamics (Yuz & Goodwin,
2005). An advantage of the simulation approach for CT-SID is that it avoids the need to es-
timate derivatives from sampled data, and for discrete-time models simulation-based SID has
been promoted as improving both term selection and parameter estimation under conditions of
non-persistently exciting inputs and fast sampling (Billings, 2013; Piroddi & Spinelli, 2003). A
simulation-based method for nonlinear CT-SID has not yet been developed. This highlights a gap,
which this paper aims to fill, by developing a novel simulation-based approach to nonlinear CT-SID,
addressing the problem of oversampling and overfitting that can lead to poor prediction.
In this investigation, we develop the identification algorithm in a Bayesian framework, which

intrinsically generates information on uncertainty in parameters (Peterka, 1981). Characterisation
of uncertainty is important in control engineering (Gevers, 2005), but also in other areas where SID
is now commonly applied such as the life sciences (Anderson, Lepora, Porrill, & Dean, 2010; Krish-
nanathan, Anderson, Billings, & Kadirkamanathan, 2012; Kukreja, Galiana, & Kearney, 2003). In
SID, computational Bayesian (or probabilistic) methods are gaining popularity due to advances in
processing power (Baldacchino, Anderson, & Kadirkamanathan, 2013; Falsone, Piroddi, & Pran-
dini, 2015; Ninness & Henriksen, 2010). The computational estimation framework we develop here
for CT-SID is based on approximate Bayesian computation (ABC), which is a rejection sampling
algorithm (Beaumont, Zhang, & Balding, 2002; Tavare, Balding, Griffiths, & Donnelly, 1997). In
practice, we use a computationally more efficient approach to ABC, known as ABC-sequential
Monte Carlo (ABC-SMC), which reduces computation time (Sisson, Fan, & Tanaka, 2007, 2009;
Toni, Welch, Strelkowa, Ipsen, & Stumpf, 2009).
In Bayesian estimation for dynamic systems, the ABC methods have become popular due to

the fact that they can be used on a range of problems without modification, for instance (i)
systems described by either ordinary, delay, deterministic or stochastic differential equations, (ii)
systems that have different distributions of noise (e.g. Gaussian, Laplacian, uniform) and (iii) for
model selection (Toni et al., 2009). Currently, ABC methods have only been applied to parameter
estimation and model selection problems for known model structures. The full SID problem includes
the important case where the model structure is unknown a priori. Hence, a further key novel
contribution of this work is the extension of ABC methods to the case where the nonlinear model
structure is unknown. This is a non-trivial extension because structure detection in nonlinear SID
is an extremely challenging problem (Sjoberg et al., 1995).
To solve the structure detection problem, the inspiration for our basic approach comes from

Kukreja et al. (2004), where structure detection for a discrete-time nonlinear model was solved by
one-step-ahead regression with bootstrapping: in that work, parameter distribution ranges gener-
ated by bootstrapping for a superset of potential model terms were checked to see if they included
zero - these terms were pruned from the superset resulting in a parsimonious model structure. In
the case of our proposed algorithm for CT-SID, parameter distributions intrinsically generated by
ABC-SMC for a superset of model terms are similarly checked to see if they include zero - these
terms are judged to be unnecessary and are pruned from the model. We extend this basic selection
algorithm here by identifying model terms that improve simulation performance, enhancing the
robustness of the overall identification scheme. The main result is a new algorithm for nonlinear
CT-SID, in a computational Bayesian framework.
The paper is structured as follows. In section 2 we define the nonlinear model representation and

describe the ABC-SMC parameter estimation algorithm. In section 3 we develop the identification
framework. Numerical examples of this new identification framework are given in section 4, along
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with a comparison to one of few established nonlinear CT-SID methods (Coca & Billings, 1999).
Finally, the contributions of the paper are summarised in section 5.

2. Model definition and parameter estimation

2.1. Continuous-time nonlinear model representation

The output y(t) ∈ R of a continuous-time nonlinear output-error process can be represented as

z(n)(t) = F (x(t)), (1)

y(t) = z(t) + e(t), (2)

where z(t) ∈ R is the unknown noise-free system output, u(t) ∈ R is the known system input,
z(n)(t) ∈ R indicates the nth derivative of z(t), and the measurement noise e(t) can follow a range
of distributions, e.g. Gaussian, uniform or Laplacian. The function F (.) describes the dynamics of
the nonlinear CT process and x(t) ∈ R

2n is the vector of input-output derivatives,

x(t) =
(

z(t), . . . , z(n−1)(t), u(t), . . . , u(n−1)(t)
)

. (3)

The nonlinear function F (x(t)) can be decomposed and represented by a linear sum of basis
functions φj(x(t)) which can have varying forms including wavelet, polynomial or radial functions,

F (x(t)) =

Nθ
∑

j=1

θjφj(x(t)), (4)

where Nθ is the number of model terms and θj ∈ R is the parameter associated with basis function
φj(.).

2.2. Parameter estimation by approximate Bayesian computation: ABC

The Bayesian inference problem considered here is the estimation of the conditional distribution
of model parameters, θ, given the observed output data samples, y,

p(θ|y) =
p(y|θ)π(θ)

p(y)
, (5)

where p(y|θ) is the likelihood function, π(θ) is the prior distribution, p(y) is the marginal likelihood
and

θ = (θ1, . . . , θNθ
)⊤ , (6)

y =
(

y(t0), y(t1), . . . , y(tNy−1)
)⊤

, (7)

where y(tk) is a sampled observation at sample time tk, where tk = kT for k = 0, . . . , Ny − 1, T is
the sample-time and Ny is the number of data samples.
The likelihood function p(y|θ) can be difficult to compute, complicating the estimation procedure.

However, it is often a simple task to simulate a model of the process described by p(y|θ). The ABC
estimation algorithm exploits this situation by sampling directly from the posterior distribution to

3



September 17, 2015 International Journal of Systems Science manuscript˙abc˙ijss˙final

directly obtain an estimate of the conditional distribution p(θ|y) (Beaumont et al., 2002; Tavare
et al., 1997).
The usual ABC procedure is to define some prior distribution for the parameters, π(θ), often a

uniform distribution in the absence of more specific information, then simulate the model with a
sample drawn from the prior. The simulation output is then compared to the observed data using a
distance measure - for dynamic systems this is usually some norm of the simulation error. Param-
eters that generate simulations that are beyond some distance threshold from the observations are
rejected. The parameters that are within the distance threshold are accepted and stored. Accepted
parameters form a numerical approximation p(θ̂|y) of the true posterior p(θ|y). The basic ABC
algorithm is:

(1) Draw θ∗ ∼ π(θ)
(2) Simulate y∗ ∼ p(y|θ∗)

(3) Reject θ∗ if d (S(y∗), S(y)) > ǫ, else accept θ∗ into p(θ̂|y)

where S(.) describes summary statistics (that may be vector-valued), d(.) is a distance measure
between simulated and observed values, and ǫ is a threshold value. For estimation of parameters in
dynamic systems the model predictions can be compared directly to observations from the system,
without the need for summary statistics (Toni et al., 2009).
Different choices of distance measure d(.) can be used depending on the noise distribution as-

sumed, such as the L2 norm for normally distributed noise, the L1 norm for Laplacian noise or the
L∞ norm for uniform noise.

2.3. Computationally efficient parameter estimation using ABC-SMC

The algorithm used here for estimating the model parameters was a more computationally efficient
extension of the basic ABC algorithm, known as ABC-SMC. A shortcoming of the basic ABC
algorithm described above is the low acceptance rate when the prior distribution is very differ-
ent to the true posterior. A low acceptance rate would require many simulations to adequately
represent the posterior. To increase the computational efficiency of ABC, therefore, more sophisti-
cated approaches have been developed (Beaumont, 2010). One such method is the ABC sequential
Monte Carlo (ABC-SMC) algorithm (Sisson et al., 2007, 2009; Toni et al., 2009), which has proved
effective in dynamic systems modelling (Holmes et al., 2012; Liepe et al., 2012).
The main idea of the ABC-SMC algorithm is to iterate population estimates generated by ABC,

gradually decreasing the error tolerance ǫk at each iteration k. The posterior distribution at iteration
k becomes the sampled prior distribution at k + 1. Hence, the ABC-SMC algorithm reaches the
target posterior in a sequential manner.
The error threshold sequence is chosen so that it decreases at each iteration, hence ǫ1 > . . . > ǫK ,

where K is the number of iterations. The first and final thresholds can be tuned by performing the
basic ABC estimation algorithm for L samples and setting ǫ1 = 2dmin and ǫK = 1.2dmin, where
dmin denotes the minimum of the vector of all L distance measures. The ABC-SMC algorithm is
described for the nonlinear CT model parameter estimation in Algorithm 1.
The model simulation step was performed by deterministic simulation of the model defined in

(1) and (2), using a fourth order Runge-Kutta method. The distance measure of simulations from
observations was obtained from the sum-of-squared errors,

d =

Ny
∑

j=1

(y(tj)− y∗(tj))
2. (8)

The L2 norm used here for d(.) is suited to normally distributed noise but for other types of noise
it would be possible to use an alternative, for example an L1 norm for Laplacian noise or an L∞

4
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Algorithm 1 Parameter Estimation by ABC-SMC

Require: no. of iterations K, no. of param. samples L,
prior π(θ) and error sequence ǫ1 > . . . > ǫK

for k = 1
for j = 1 : L
draw θ∗j ∼ π(θ) and simulate y∗

j ∼ p(y|θ∗j )
until d(S(y∗

j ), S(y)) ≤ ǫ1
end for

set each weight w1
j = 1

L

end for

for k = 2 : K
for j = 1 : L
sample θ∗j from θk−1 with probabilities wk−1

perturb θ∗j to obtain θ∗∗j ∼ K(θ|θ∗)
simulate y∗

j ∼ p(y|θ∗∗j ) until d(S(y∗
j ), S(y)) ≤ ǫk

end for

set each θkj = θ∗∗j

set each wk
j =

π(θk
j )

L∑

i=1

wk−1

i K(θk−1

i |θk
j )
, and normalise

end for

Add all final parameter sample estimates θKj , j = 1, . . . , L, to the distribution p(θ̂|y).
end Algorithm 1

Note: parameter samples are denoted as θ∗, and θ∗∗ after perturbation. K is a parameter
perturbation kernel (uniform random walk).

norm for uniform noise.
The ABC-SMC algorithm (Algorithm 1) has quadratic complexity in the number of samples, L,

i.e. the algorithm complexity is O(L2) (Toni et al., 2009). In practice, the most time-consuming
steps in the ABC algorithm are the model simulations, which are typically performed many thou-
sands of times. The model simulations are inherently parallelisable, due to their independence.
Therefore, we exploited the ready availability of multi-core desktop machines to decrease the com-
putation time. Similar performance enhancements could be obtained with graphics processing units
(GPUs) (Henriksen, Wills, Schon, & Ninness, 2012; Lee, Yau, Giles, Doucet, & Holmes, 2010), which
would require more specialist implementations.

2.4. Defining the parameter prior for ABC-SMC

For the nonlinear CT model, the prior distribution of the parameters, π(θ), was defined here as a
uniform distribution. In the absence of specific information on the prior, it was scaled using the
least-squares parameter estimate obtained from the CT-SID method of Coca and Billings (1999).
Hence, the prior distribution was defined as,

π(θ) ∼ U(−2γ, 2γ), (9)

with range parameter γ,

γ = (Ψ⊤Ψ)−1Ψ⊤ŷ (10)

5
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Figure 1. Term selection via the cumulative density function. The cumulative density function for a parameter θ is constructed
by the ABC-SMC estimation algorithm. The model term is rejected if zero lies between the limits corresponding to the 5% and
95% probability levels, i.e. a ≤ 0 ≤ b.

where

Ψ =
(

ψ(t1)
⊤, . . . ,ψ(tNy

)⊤
)⊤

(11)

ψ(t) =
(

ŷ(t), . . . , ŷ(n−1)(t), u(t), . . . , u(n−1)(t)
)

(12)

ŷ =
(

ŷ(n)(t1), . . . , ŷ
(n)(tNy

)
)⊤

(13)

where the derivative estimates ŷ(j)(t), j = 0, . . . , n, were obtained from a Kalman smoothing
algorithm, described in Coca and Billings (1999).

3. Nonlinear continuous-time model identification framework

In this section we develop the identification framework for the nonlinear CT model. First, a simple
one-stage approach to structure detection is derived, based on a parameter significance test. The
significance test makes use of the parameter distributions intrinsically generated by the ABC-
SMC algorithm. This works effectively for terms with sensitive parameters. For terms with less
sensitive parameters, we then derive a two-stage algorithm that follows the significance test with
an evaluation of simulation performance.

3.1. One-Stage Model Structure Detection

The ABC-SMC algorithm naturally generates parameter distributions as part of the estimation
procedure. Here, we exploit this feature by developing a structure detection algorithm that makes
direct use of these distributions. Similarly to the approach of Kukreja et al. (2004), we use a
significance test to prune ‘false’ parameters from a superset of model terms, where significance is
determined from the parameter distributions using a quantile test.
The quantile test selects parameter estimates that cannot be distinguished from zero: the test

finds the intervals from the cumulative distribution of the parameters. The algorithm proceeds
as follows. We first define an initial superset of candidate model terms, M0, composed of basis
functions, φj(x(t)), which appear in the model decomposition described in (4),

M0 = {φ1(x(t)), . . . , φN0
(x(t))}, (14)

6
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Algorithm 2 One-Stage Model Structure Detection

Require: derivative order n and polynomial order q
Define: superset of model terms M0, where N0 = |M0|
Implement: Algorithm 1 for M0 (estimate parameters)
Initialise: M1 = M0

for j = 1 : N0 (quantile test for each parameter θj)
if aj ≤ 0 ≤ bj (from (16) and (17))
discard model term φj from M1

else

retain model term φj in M1

end if

end for

Implement: Algorithm 1 for M1 (re-estimate parameters)
end Algorithm 2

of cardinality

N0 = |M0|. (15)

In the case of polynomial basis functions, the initial superset of candidate termsM0 would typically
be constructed using all polynomial transformations of input-output signal derivatives up to order
n − 1 for an nth-order dynamic model, with polynomial degree q (cubic nonlinearities are often
assumed in practice, i.e. q = 3).
We then estimate all parameters of the model terms in the set M0 using Algorithm 1 (ABC-

SMC). We select the terms of model M1 by forming quantile intervals aj and bj for each estimated

parameter θ̂j and pruning the term if zero lies in the interval, i.e. if aj ≤ 0 ≤ bj (see Figure 1),
where aj and bj are derived from the relationships

P (j)
a =

∫ aj

−∞
p(θ̂j |y) = 0.05, j = 1, . . . , N0 (16)

P
(j)
b =

∫ bj

−∞
p(θ̂j |y) = 0.95, j = 1, . . . , N0 (17)

where P
(j)
a and P

(j)
b are the 5% and 95% probability levels respectively for the jth model parameter.

The quantile test is used here unlike the percentile test used by Kukreja et al. (2004) because
the posterior distributions obtained in the ABC-SMC framework can be skewed. The one-stage
structure detection algorithm is fully described in Algorithm 2.

3.2. Two-Stage Model Structure Detection

In this section we describe an enhanced two-stage structure detection algorithm. To motivate this
enhancement, we first note that an advantage of the one-stage algorithm based on the quantile
test is that it is computationally efficient. The algorithm is efficient because it only requires two
implementations of the ABC-SMC algorithm (which has quadratic complexity in the number of
samples L): one for structure detection and a second for estimating the parameters of the final
model structure. However, a disadvantage of the quantile test is that it does not directly assess
the performance of the model simulations. Therefore, in this section we develop a second stage to
the algorithm for term selection that directly measures simulation performance using the Bayesian

7
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information criterion (BIC), where

BIC = −2 log L̂+Nθ logNy (18)

where L̂ is the log-likelihood estimate, approximated here from the sum-of-squared prediction

error (Ljung, 1999), L̂ ≈ 1
Ny

∑Ny

k=1 ǫ(tk)
2, where ǫ(tk) = y(tk) − y∗M (tk) and y∗M (tk) is generated

by the maximum a posteriori (MAP) parameter estimate θ̂M , i.e. the peak value of the sampled

distribution obtained from the ABC-SMC algorithm, θ̂M = argmaxθ p(θ̂|y).
The two-stage algorithm proceeds as follows. At stage one we obtain the set of model terms M1

using the quantile test: the quantile test is only used on terms that pass an initial sensitivity test,
where sensitivity is assessed as a parameter variance less than some constant β (here β = 1) -
defined as pool 1 terms, the set P1. Terms with parameter variance greater than β are defined
as pool 2 terms, the set P2. Terms in pool 2 have an ambiguous contribution to the model and
therefore require further testing in the second stage. In the second stage, we obtain the final set
of selected model terms M2 by first ordering pool 2 using the Cha-Srihari metric (defined below)
(Cha & Srihari, 2002) and then iteratively testing pool 2 terms using the BIC.
The key step in the two-stage algorithm is the ordering of unselected terms by use of the Cha-

Srihari distance metric (Cha & Srihari, 2002). The purpose of using Cha-Srihari is to detect which
model parameter distributions have evolved the most from their uniform prior. We assume that
the estimated parameter distributions that least resemble their uniform prior contribute the most
to describing system dynamics. The ordering of terms makes the search through pool 2 much more
efficient than taking the unselected terms at random. The Cha-Srihari distance, D(A,B), measures
how much effort it takes to transform a reference histogram, A (the prior), to a target histogram
B (the posterior),

D(A,B) =

Nh
∑

i=1

|si|, for i = 1, . . . , Nh, (19)

where si =
∑i

j=1 ri, for i = 1, . . . , Nh; ri = Ai−Bi, Ai and Bi are bar sizes of histograms A and B

respectively, and Nh is the number of bars. We set Nh = 5 with bar centers at [−2γ,−γ, 0,γ, 2γ].
We sort the set of pool 2 terms in descending order of Cha-Srihari measure, which are then searched
in order using the BIC. The two-stage structure detection algorithm is fully described in Algorithm
3.

3.3. Derivative Order Model Selection

Identifying the correct derivative order, n, of the nonlinear CT model is an important issue to
address. Here we use the Bayes factor criterion to identify the correct derivative order, as this
naturally fits with the ABC framework. ABC can be used in model selection by allocating competing
models an index, and then treating this index selection as a parameter estimation problem (Toni et
al., 2009). The Bayes factor for comparing evidence supporting two models with different derivative
order Mi and Mj is

Bf =
p(Mi|y)/p(Mj |y)

p(Mi)/p(Mj)
, (20)

8
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Algorithm 3 Two-Stage Model Structure Detection

Require: derivative order n and polynomial order q
Define: superset of model terms M0, where N0 = |M0|
Implement: Algorithm 1 for M0

Initialise: P1 = ∅ and P2 = ∅
for j = 1 : N0 (determine P1 and P2)

if variance(θj) ≤ β
allocate term φj to P1

else

allocate term φj to P2

end if

end for

Set: N1 = |P1| and N2 = |P2|
Initialise: M1 = P1

for j = 1 : N1 (quantile test)
if aj ≤ 0 ≤ bj
discard model term φj from M1

else

retain model term φj in M1

end if

end for

Implement: Algorithm 1 for M1 (re-estimate parameters)

Order terms in P2 by descending Cha-Srihari metric
Initialise: M(0) = M1

for j = 1 : N2 (BIC test for ordered P2)
Form model M(j) by adding term P2(j) to M(j−1)

Implement: Algorithm 1 for M(j) (re-estimate params)
if BIC(M(j)) < BIC(M(j−1))
retain P2(j) in M(j)

else

break
end if

end for

Set: M2 = M(j)

end Algorithm 3

which for equal uniform priors, p(Mi) = p(Mj), simplifies to

Bf =
p(Mi|y)

p(Mj |y)
(21)

In practice, for derivative order selection, Algorithm 3 is performed independently for models of
different derivative order and then models are compared using the Bayes factor in a final iteration
of the basic ABC algorithm.

9
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Figure 2. Parameter estimation using ABC-SMC (Algorithm 1). True parameters are shown as red stem plots. Estimated
sample distributions are shown over 10 iterations of the ABC-SMC procedure (iteration 1 in grey; iteration 10 in black).

Table 1. Identified models from the numerical example. ABC1 refers to the one-stage ABC identification

method, and ABC2 refers to the two-stage ABC identification method.
SNR = 20 dB SNR = 10 dB

True System dCTM ABC1 ABC2 dCTM ABC1 ABC2
−2.00y(t) −2.00y(t) −2.54y(t) −1.79y(t) −9.25y(t) −2.40y(t) −1.76y(t)
−3.00ẏ(t) −1.25ẏ(t) −4.46ẏ(t) −2.46ẏ(t) − − −2.56ẏ(t)
1.00u(t) 0.77u(t) 1.12u(t) 1.13u(t) 0.65u(t) 1.14u(t) 1.14u(t)
4.00ẏ2(t) 3.53ẏ2(t) − 3.88ẏ2(t) 4.02ẏ2(t) − 4.11ẏ2(t)

10.00y(t)u(t) 5.09y(t)u(t) − 9.20y(t)u(t) − − 9.14y(t)u(t)
2.50u3(t) 0.52u3(t) 3.77u3(t) 3.42u3(t) − 3.07u3(t) 3.35u3(t)

− − − − 26.71y2(t) − −
− − − − −0.01u(t)u̇2(t) − −

4. Numerical Example

To investigate the performance and accuracy of the proposed ABC identification framework, we
applied the one-stage and two-stage algorithms to a test system, with increasing measurement
noise. The results were compared in each case to the derivative continuous-time method (dCTM)
that uses Kalman smoothing to estimate signal derivatives developed for continuous-time systems
by Coca and Billings (1999).
The test system used was

z̈(t) = θ1z(t) + θ2ż(t) + θ3u(t) + θ4ż
2(t)

+ θ5z(t)u(t) + θ6u
3(t),

(22)

y(t) = z(t) + e(t), (23)

where e(t) was defined as zero-mean Gaussian random noise with variance (i) λ2 = 4 × 10−5

for SNR of 20dB, (ii) λ2 = 4 × 10−4 for SNR of 10dB. The parameter vector was set to θ =
(−2,−3, 1, 4, 10, 2.5). The excitation signal was set to a zero-mean uniform random sequence in the
range (−1, 1) band-limited to 20 Hz. For parameter estimation using ABC-SMC the parameter size
was set to L = 200 and the number of population iterations to K = 10. The nonlinear order was
set to q = 3 and the derivative order to n = 2 (except for the derivative selection test described
below).
We found that the parameters of the nonlinear system were accurately estimated using the ABC-

10
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Figure 3. Structure detection using the one-stage procedure (Algorithm 2: K = 3, L = 200). Top row: True system terms,
correctly selected. Bottom row: False system terms, correctly not selected. The black dotted and red solid vertical lines indicates
the prior and quantile values respectively.

SMC procedure defined in Algorithm 1 (Figure 2). The dCTM and one-stage ABC identification
algorithms performed well at high SNR (20 dB) with the correct model terms being chosen (il-
lustrative examples are shown in Figure 3) but worsened with increasing noise levels (SNR=10
dB). The two-stage ABC algorithm performed well, however, even at higher noise levels, correctly
identifying all terms (Table 1). The much improved performance of the two-stage ABC algorithm
is highlighted by a comparison of simulations (Figure 4).
To demonstrate the selection of derivative order, two models of derivative order n = (2, 3),

were obtained using the two-stage ABC algorithm and were compared as explained in section
3.3 (using the 10 dB input-output data). From 200 samples, the model with n = 2 was selected
187 times and the other model with n = 3 was selected 13 times. The Bayes factor in this case,
Bf (1, 2) = 187

13 = 14.4, correctly provided strong evidence in favour of n = 2 rather than n = 3,
demonstrating the effectiveness of this model selection approach.

5. Summary

We have developed a computational Bayesian identification framework for nonlinear continuous-
time systems. The identification framework makes use of the ABC-SMC algorithm for parameter
estimation, which is a rejection sampling technique driven by model simulations (as opposed to
one-step-ahead predictions commonly used in system identification). A simple one-stage structure
detection algorithm is used to drive term selection by significance testing. A two-stage algorithm has
also been developed, which augments the significance test with term selection based on simulation
performance, which enhances the robustness of the scheme in the presence of noise.
The main advantages of these algorithms, compared to the current methods available for CT

nonlinear system identification, are: (i) parameter distributions are intrinsically generated, giving
the user a clear description of uncertainty, (ii) the framework uses a simulation method, which
avoids signal derivative estimation and (iii) the simulation approach is more suited to modelling
scenarios with non-persistently exciting inputs and fast-sampling. The numerical evaluation of the
structure detection algorithms demonstrates the high fidelity of the two-stage algorithm in the
presence of increased noise levels in the observed system output.

11
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Figure 4. Comparison of noise free output (blue), dCTM model (green) and two-stage ABC (red - the shaded region indicates
uncertainty from ABC parameter range). Top: SNR = 20 dB. Bottom: SNR = 10 dB.
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