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Abstract—We demonstrate diffuse-reflectance (DR)
spectroscopy of powders using a discretely-tunable terahertz-fre-
quency quantum cascade laser (THz QCL) with a heterogeneous
active region. DR signatures were obtained at frequencies of 3.06,
3.21, 3.28, and 3.35 THz, and the relative absorption coefficients
were inferred at each frequency using a Kubelka–Munk (KM)
scattering model. The spectral lineshapes reproduce the absolute
Beer–Lambert (BL) absorption spectra of a range of materials,
which were also measured using conventional transmission-mode
THz time-domain spectroscopy. It is shown that the DR technique
works reliably for materials that include pharmaceutical
compounds and foodstuffs, with BL absorption coefficients in
the range 2–10 mm . This method is potentially suitable for
automated material identification, without any requirement for a
priori knowledge of the refractive index or scattering properties
of the sampled material.

Index Terms—Infrared spectra, quantum cascade lasers,
spectroscopy, submillimeter-wave technology.

I. INTRODUCTION

N UMEROUS potential applications exist for terahertz-fre-
quency (THz) spectroscopy and imaging, including the

characterization of pharmaceutical [1] and biomedical samples
[2], and the detection of illicit drugs [3] and explosives [4]. In
this context, reflectance-measurement techniques often present
practical advantages over transmittance geometries, owing
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to the ability to study thick or highly-absorbing samples, as
well as their potential for stand-off interrogation of targets [5].
Diffuse-reflectance (DR) techniques, which sense the radia-
tion scattered from rough surfaces or powders, are dependent
upon both the scattering cross-section and the bulk-absorption
properties of media [6], and can hence reveal more detailed
information about samples than specular-reflection techniques.
Furthermore, smooth THz-transparent packaging materials
do not introduce DR artifacts [7], and diffuse reflections may
be detected over a large solid-angle, thus simplifying the
alignment of detection optics. The latter is advantageous in
security-screening of hazardous explosive samples, in which
large stand-off distances (through air) are required [5].
THz quantum cascade lasers (THz QCLs) are attractive

sources for DR spectroscopy, owing to their high emission
power and narrow linewidth [7], and they have previously
been used to determine the THz absorption (at a single fre-
quency) of a range of powdered materials [8]. To date, however,
multi-frequency DR spectroscopy with THz QCLs has not been
achieved, owing to their limited tunability. In this work, we use
a frequency-switchable THz QCL, based on a heterogeneous
resonant-phonon-depopulation active region design [9], as the
radiation source in a DR spectroscopy system. DR measure-
ments of powdered materials are obtained at frequencies of
3.06, 3.21, 3.28, and 3.35 THz. The DR of a cellulose powder
sample is shown to decrease monotonically with respect to the
concentration of the material in an admixture with THz-trans-
parent polytetrafluoroethylene (PTFE). A Kubelka–Munk
(KM) model is then used to determine the relative absorption
coefficient of a wide range of materials, and the results are
shown to reproduce the lineshape of the Beer–Lambert (BL)
absorption spectra, which were obtained using THz time-do-
main spectra. The absorption coeffients, obtained from the
KM model, are shown to be proportional to the BL absorption
coefficients over a 2–10 mm range, and over a wide range of
powder concentrations, using a frequency-independent scaling
factor.

II. SYSTEM CONFIGURATION

The optical and electronic configuration of the multi-fre-
quency DR system used in this work is illustrated schematically
in Fig. 1, and is based on a previous single-frequency system,
which we have described in detail elsewhere [7], [8]. The ra-
diation source in the modified (multi-frequency) system was a
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Fig. 1. Schematic illustration of the optical and electronic configuration of
the DR system. A helium-cooled silicon bolometer (label ‘D’) was used as the
detector.

Fig. 2. Frequency of emission lines for the heterogeneous QCL at a range of
drive currents, constructed from normalised FTIR spectra. Weak emission lines
(spectral intensities dB below the principal lines) are omitted.

THz QCL with a heterogeneous gain medium, as previously re-
ported in [9]. This QCL was based on a 3-well resonant-phonon
design [10], and was grown using molecular-beam epitaxy
with a stepped gallium effusion rate, such that the gain medium
was separated into 23 modules, each with a unique emission
frequency and alignment bias. The laser was processed into a
1.5 mm long, 140- m-wide single-metal ridge waveguide

[11], and was mounted on the cold-finger of a closed-cycle
pulse-tube helium cryostat which operated at a temperature of
6 K. A 10-kHz current pulse train was supplied to the QCL,
with 2% duty-cycle, using an Agilent 8114A pulse-generator
and a current-doubling transformer. These driving pulses were
modulated electrically by a 167-Hz square-wave envelope to
match the peak response of the bolometric detector.
The frequencies of the principal emission peaks from the

QCL were determined at a range of operating biases using
Fourier-transform infrared (FTIR) spectrometry and are plotted
in Fig. 2. The emission frequency is shown to undergo a
series of discrete blue-shifts as the drive current is increased,
giving a total emission bandwidth from 3.06–3.35 THz with
quasi-single-mode emissions at 3.06, 3.21, 3.28, and 3.35 THz.
The 3.13 THz emission line was not used in this work, as it
occurs only as part of a low-intensity doublet, and this would
add significant complexity to the data analysis. It should be
noted that additional, higher-frequency modes may potentially
be obtained at drive-currents greater than those used in this
work, and the free spectral range (i.e., the separation between
the modes) may be adjusted by selecting an appropriate ridge
length [11]. A maximum operating temperature of 70 K, a
threshold current density of 1150 A cm , and a peak optical
power output of 8 mW (at an operating temperature of 5 K)
were determined for this device.

Radiation from the laser was collimated using a 3-in-diam-
eter, 90 , off-axis parabolic reflector ( in Fig. 1) and
focused onto the object plane at an angle-of-incidence of 30
using an reflector ( ). Diffuse reflections from the ob-
ject plane were collected using a 2-in-diameter, 90 , re-
flector ( ), which was directed normally to the object plane
so as to avoid coupling specular reflections into the detector.
The diffuse reflections were coupled into a helium-cooled sil-
icon-bolometer using a final off-axis parabolic reflector ( ),
and the time-averaged radiative power was recorded using a
lock-in amplifier, which was referenced to the 167-Hz elec-
trical-modulation envelope.
A set of QCL drive currents was selected to coincide with

the middle of the range of operating currents for the 3.06,
3.21, 3.28 and 3.35 THz emission modes (2.72, 3.24, 3.60, and
3.80 A, respectively). A two-dimensional array of DR samples
was acquired at each bias by scanning the samples continuously
across the object plane and recording the time-averaged de-
tector signal at 250- m intervals, using a lock-in time-constant
of 10 ms. This led to a total acquisition time of 20 min for a
120 120-pixel, 4-frequency DR sample array, including the
time taken for motion of the mechanized translation stage.
It should be noted, however, that this acquisition time could
potentially be reduced by switching rapidly between the QCL
drive currents within a single scan, and applying a time-division
multiplexing scheme to the signal readout.

III. SYSTEM CHARACTERIZATION
The systemwas aligned using a ‘knife-edge’ target consisting

of a rectangular section of gold-coated ISO P120 sandpaper
( m), mounted onto a smooth
glass slide. The profile of the DR powerwas acquired as the edge
of the sandpaper was translated linearly through the beam-spot
in the -direction (i.e., along the major axis of the focusing
mirror, as indicated in Fig. 1). The optimal working distance
between the sample and the focusing mirror was determined

by adjusting the sample stage location, and the intensity pro-
file was found to follow an approximate Gauss error-function
with a half-width at half-maximum of mm at the beam
focus, as shown in Fig. 3(a). This was found to be indepen-
dent of frequency, indicating that the system was not diffrac-
tion limited (i.e., the resolution is limited by alignment of the
incident beam). This resulted in a focused beam spot-size (and
wavelength) that are both larger than the powder grain sizes
used in this work (10–15 m), and as such it is reasonable
to treat the materials as being quasi-homogeneous scattering
media in the THz regime.We have, however, previously demon-
strated imaging resolutions of 300 m in a 2.8-THz diffuse
imaging system [7]. In principle, therefore, the present system
would allow equivalent or superior resolutions after precise op-
tical alignment, owing to the shorter emission wavelength. A
second estimate of the focused beam spot size was obtained by
measuring the contrast transfer functions, in the and direc-
tions, using the detector response to specular reflections from a
gold-on-quartz bar resolution target.
A first-order Coltman transform [12] was applied to the

data to estimate the modulation transfer function (MTF),
i.e., the response to a sinusoidally varying target reflectivity.
Fig. 3(b) shows that the inferred MTF remains approximately
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Fig. 3. (a) DR signal at 3.28 THz acquired from a horizontal profile over a
“knife-edge” target consisting of gold-coated P120 sandpaper on a glass slide.
The solid line shows a regression to a Gauss error-function. (b) The modulation-
transfer function (MTF) obtained from scans in the horizontal ( ) and vertical
( ) direction across a gold-on-quartz target at 3.28 THz. Error bars indicate the
MTF range obtained from three independent measurements.

TABLE I
MAXIMUM SNR (DB) AT EACH EMISSION FREQUENCY (THZ), FOR LOCK-IN

TIME CONSTANTS OF 10 MS AND 1 S

constant up to a target spatial frequency of 0.6 mm , which
corresponds to spatial period of 1.7 mm, in good agreement
with the ‘knife-edge’ measurements. A slightly higher resolu-
tion is obtained in the direction, owing to the elliptical shape
of the focused beam spot from the 30 focusing mirror.
The maximum signal-to-noise ratio (SNR) of the present

system was estimated by recording the lock-in amplifier output
obtained from the diffuse reflection from a single position on
the gold-coated sandpaper target described above, which is
here assumed to represent an ideal reflecting target. The SNR,
taken as the ratio of the mean signal to its standard deviation
is summarized in Table I and can be seen to lie in the range
15–25 dB for all four emission lines, when using a 10-ms
lock-in time constant. The SNR increases by 20 dB (at the
expense of slower data acquisition) through the use of a 1 s
lock-in time constant.

IV. SPECTROSCOPY OF POWDERED SAMPLES

A range of powdered crystalline and polycrystalline solids
was selected for study in this work, each having a broad THz
absorption resonance within the 3.0–3.4 THz frequency band.
Each powdered solid was desiccated at 40 C for 48 hours and
then ground with a pestle and mortar for 5 min to break up con-
glomerations, and packed loosely into a 10-ml flat-sided poly-

Fig. 4. (a) Diffuse reflectance of dilute samples of microgranular cellulose,
relative to that of a PTFE reference powder. Results are shown at each of the
four THz frequencies as a function of sample concentration in an admixture
with PTFE. Error bars represent the absolute standard-uncertainty in the mean
reflectance, and dashed lines show a regression to KM theory, using a scaling
factor . (b) KM remission function for the same samples. Dashed
lines show a regression to a linear function of concentration, as expected from
BL theory.

styrene cuvette. Optical microscopy showed that the size-dis-
tribution of particles in each sample followed a Weibull proba-
bility distribution function (as expected for a disperse powder
[13]), with median particle sizes ranging from 10–15 m. A
polytetrafluoroethylene (PTFE) sample was also prepared, as
a reference material, owing to its low absorption coefficient at
THz frequencies.
The DR from powders is intrinsically highly variable with

respect to position, and this inhomogeneity gives rise to a
large standard deviation in the measured diffuse reflectance.
Therefore, a measurement of the mean diffuse reflectance must
be taken, using a large number of independent samples across
the entire powder surface. The ratio of the spatially-averaged
power reflected from each sample to that of the PTFE refer-
ence was measured in order to obtain the relative reflectance,

. In each case, measurements were ac-
quired using a mm pixel size, yielding
1000 sampling points for each powder.
Since the standard deviation of the reflected power is merely

a measure of the inhomogeneity of the powders themselves, it is
not a particularly useful measure of the quality of the DR mea-
surement. Instead, the standard uncertainty in themean value of
the DR measurements is used, which accounts for the number
of independent samples taken. In our system, the pixel size was
smaller than the THz beam spot size. As such, the number of in-
dependent sampling points was estimated using the area of the
sampled region of the powder divided by the area of the focused
beam, , where is the number of pixels
acquired. For a typical powder sample, this yielded , de-
pending on the exact volume of material contained within the
cuvette. The standard relative uncertainty in the power is then
given by where and are the mean
and standard deviation of the DR power measured for a given
material, respectively. It follows that the standard relative uncer-
tainty in the relative reflectance is .
Fig. 4(a) shows the mean relative reflectance measured for a

set of samples of cellulose, whichwere each diluted in an admix-
ture with PTFE to concentrations (by mass) ranging from 5% to
100%. As expected, the reflectance (relative to PTFE) is shown
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to converge towards unity at all four frequencies as the concen-
tration of cellulose is reduced to zero. A degree of spectroscopic
information can be obtained immediately from this data, in that
the DR increases with respect to frequency for cellulose-con-
taining powders, implying a reduction in absorption.
We have previously demonstrated that the DR properties of

scattering media can be related directly to the BL coefficient
using KM theory [7], or more sophisticated approaches based on
the quasi-crystalline approximation (QCA) [7], [8]. The latter
techniques are advantageous in that they account for the geom-
etry and packing density of particles, and can be used to compute
the bulk absorption coefficient of materials from scattering data.
However, despite their advantages, multivariate QCA methods
[14] are numerically complex, and convergence of the iterative
solution can be unreliable, particularly when a wide range of ra-
diative frequencies is included in the analysis. Consequently, a
KM analysis technique was employed in the present work. Al-
though this approach does not directly predict the bulk absorp-
tion coefficient, it is numerically simple and robust, and (under a
reasonable set of assumptions) can be used to deduce the shape
of features in the absorption spectrum accurately.
This analysis approximates the powder as an infinitely-thick

half-space of a homogeneous scattering medium, which is char-
acterised by a scattering coefficient and an absorption coeffi-
cient , such that [15]

(1)

where is defined as the KM remission function. The
diffuse reflectance of the powdered medium, relative to an
ideal (i.e., completely diffusing and non-absorbing) reference
can be related to the measured, relative reflectance by

, where accounts for the deviation of the PTFE refer-
ence reflectance from that of an ideal reference, and also the
relative difference in the angular divergence of the radiation
scattered from the two powders [7]. Furthermore, the KM ab-
sorption coefficient, , is assumed to vary proportionally with
the BL absorption coefficient, . This, in turn, increases approx-
imately linearly with respect to the mass-concentration of the
absorbing material within a weakly-absorbing matrix material
[15], i.e., , where is a proportionality
constant and is the absorption coefficient of the bulk (undi-
luted) material. The (as yet undetermined) proportionality factor
is a sample specific function, which is related to the refractive

index of the powder [16]. Equation (1) may now be rewritten in
terms of the two unknown constants and and the mass-con-
centration of the absorbing powder.

(2)

The inverse of (2) is obtained analytically by rearranging in
terms of and taking the negative branch of the resulting
quadratic equation

(3)

Fig. 5. Comparison between absorption coefficients of cellulose obtained using
THz time-domain spectroscopy (solid lines) and those inferred from KM mea-
surements using the scaling factor mm . The standard uncer-
tainty in absorption coefficient is represented as semi-transparent bands for the
TDS data, and as error bars for the DR data.

Assuming now that the scattering coefficient is invariant with
respect to concentration and frequency, the value of can be
found by using a linear regression to the logarithmic form

(4)

such that the gradient of a plot of against
has a gradient of 1 and intercept, . Frequency-inde-
pendent values of and were found
for the cellulose samples in Fig. 4(a). The resulting functional
form from (3) is plotted as dashed curves in the figure, and is
shown to provide an excellent fit to the experimental data. The
corresponding KM remission function is plotted for each of the
cellulose samples in Fig. 4(b) using the same fitting parameters.
The linearity of the plots is confirmed for all frequencies (with a
Theil uncertainty coefficient, in all cases), as expected
according to (2), thus validating our analytical model. In this
figure, the standard uncertainty in the KM remission function
has been computed according to the expression

(5)

V. COMPARISON WITH TIME-DOMAIN SPECTROSCOPY
Having established the linearity of the KM remission func-

tionwith respect to concentration for each of the four frequencies
used in thiswork, a direct comparisonwasmade between theDR
results and those obtained using THz time-domain spectroscopy
(TDS). For these measurements, samples were pressed mechan-
ically into circular pellets with diameter 8 mm and a thickness
of 0.3–0.4 mm. The experimental method has been described in
detail previously [17], and is summarized as follows. THz radi-
ation was generated from a low-temperature-grown GaAs pho-
toconductive switch using 10 fs pulses from a near-infrared
(NIR) Ti:sapphire laser as the optical pump. The emitted broad-
band (pulsed) THz radiationwas focused onto the sample using a
pair of off-axis parabolic mirrors, and the transmitted fraction of
the radiation was measured using a time-resolved electro-optic
sampling approach, which was triggered using a fraction of the
NIR radiation from the Ti:sapphire laser (coherent with the ex-
citation pulse). The time-variation of the THz field was sampled
by using an opto-mechanical delay stage to vary the time interval
between the excitation pulse and the probe pulse. The spectrum
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of the transmitted THz pulse was obtained from a Fourier trans-
form of the time-domain samples, and compared with a refer-
ence spectrum (obtainedwith no sample in the pulse-propagation
path) to obtain the absorption spectrum of the pellet.
Fig. 5 shows the THz TDS spectra (solid lines) of three pellets

of cellulose,withmass-concentrations of 5%, 15%, and100%. In
all cases, themeasured absorptionwas confirmed to bewithin the
dynamic range of themeasurement scheme, as described in [18].
In (2), the factor , should strictly be taken
as a frequency-dependent function. However, the measured me-
dian particle sizes for all powders considered in this work lie in
the 10–50 m range, which is comparable to the wavelength
of the THz radiation within the materials of interest. As such,
the scattering behaviour is outside the Rayleigh regime, and its
dependence on wavelength can be assumed to be weak over the
relatively small range of frequencies considered here, compared
with the frequency dependence of the absorption coefficient.
Furthermore, over this frequency range, the refractive index of
PTFE is invariant and therefore, can be taken as a global
constant for a given sample–PTFE admixture, regardless of con-
centration or frequency. Under these approximations, a single
approximately linear relationship exists between the BL absorp-
tion coefficient and the KM remission function, for the entire
range of concentrations and frequencies studied.
The measured TDS absorption coefficient was plotted

against the equivalent values from Fig. 4(b) for the
three cellulose concentrations at all four frequencies. The ex-
pected linear relationship was recovered, with a scaling factor
of mm . The symbols in Fig. 5 show the
absorption coefficient calculated from the KM model, plotted
on the same axes as the directly-measured TDS absorption co-
efficient. The magnitude of the absorption coefficient is correct
in all instances, although the frequency-dependence is repro-
duced most accurately at 15% concentration. The standard un-
certainty in the inferred absorption coefficeient is also shown
to be similar to that of the TDS measurement. The deviation
of the the KM model from the TDS absorption at very high
and very low concentrations is well known, however [15], since
the weak absorption coefficient of the matrix material becomes
significant at low concentrations, and the concentration-depen-
dence of the scattering coefficient becomes significant at high
concentrations. Although the absolute value of the absorption
coefficient can only be recovered a posteriori by using the fit-
ting parameter, , the shape of the unscaled spectrum can still
be used for spectroscopic analysis of powders, including spec-
tral lineshapes and relative absorption at different frequencies.
Indeed, the scaling is unnecessary for common automated spec-
tral recognition techniques such as principal component anal-
ysis [19], since the scaling of eigenfunctions is arbitrary within
such methods. Hence, is the only fitting parameter required in
this type of analysis. Here, we hypothesize that since is pre-
dominantly a measure of the reflectance of the reference mate-
rial, a single value (as determined above) may be used
for the analysis of a wide range of materials, provided that the
angular divergence of the scattered radiation is similar. Having
obtained this ‘universal’ estimate of from samples of cellu-
lose, it is now possible to analyze individual samples of addi-
tional materials directly without the need to study multiple sam-
ples with different concentrations.

Fig. 6. TDS absorption coefficients (solid lines) for a range of powdered mate-
rials, all diluted to a concentration of 15% within an admixture with PTFE. The
scaled KM remission functions obtained from DR measurements are plotted on
the same axes as open symbols. Powdered materials are: (I, circles) caffeine,
(II, stars) sucrose, (III, diamonds) cellulose, (IV, triangles) granulated sugar, (V,
crosses) lydocaine, (VI, squares) benzocaine. The standard uncertainty in ab-
sorption coefficient is represented as semi-transparent bands for the TDS data,
and as error bars for the DR data.

TABLE II
SCALING FACTOR (mm ) FOR KM REMISSION FUNCTION ANALYSIS
OF A RANGE OF MATERIALS WITH 15% CONCENTRATION IN ADMIXTURE

WITH PTFE

A range of powdered samples was prepared, using a single
concentration of 15% in each case. The TDS absorption spectra
were measured and are plotted in Fig. 6 for each sample mate-
rial. It can be seen that all the materials studied have BL ab-
sorption coefficients in the range 2–10 mm . DR measure-
ments were undertaken for each of the powdered samples, and
the KM remission function was calculated, using the fixed, esti-
mated value of as above. The scaling factor was
determined for each sample, using linear regression to the TDS
absorption coefficients at each frequency, as was the case for the
cellulose samples above (albeit at a single concentration). The
results of this regression analysis are presented in Table II. It
is shown that in all cases, the linear fit to the TDS model is ro-
bust (standard uncertainty within 1%–2%) and the scaling factor
varies from 4–40 mm . Since the concentration of the ab-
sorbing powders is low in these samples, the refractive index
can be assumed to be close to that of PTFE in all cases. As such,
we attribute the variation in principally to the difference
in scattering coefficient between the materials. The scaled ab-
sorption coefficient for each material (from the KM model) is
plotted on the same axes as the TDS absorption coefficient in
Fig. 6, showing that in all cases, the shape of the spectral fea-
tures is resolved with high accuracy.

VI. CONCLUSION
We have demonstrated a frequency-switchable diffuse re-

flectance THz spectroscopy system, based on a THz QCL
operating at 3.06, 3.21, 3.28, and 3.35 THz and have used this
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system to resolve spectral features in powdered media. We
have shown that a simple KMmodel can be used to recover key
properties of the THz absorption spectra, in good agreement
with results obtained using conventional THz time-domain
spectroscopy techniques. The KM remission function was
shown to be proportional to the BL absorption coefficient,
enabling direct determination of absorption features from DR
measurements without the need for a priori knowledge of the
refractive index or scattering properties of the powders. The
KM absorption was shown to scale reliably with respect to the
concentration of the absorbing powder over a wide range of
values, and was found to reproduce the shape of TDS spectra
accurately for a wide range of materials (including pharma-
ceutical compounds, foodstuffs, and chemical precursors)
for powder concentrations of 15% in admixture with PTFE.
Although the absolute value of the BL absorption coefficient
is not retrieved directly by this technique, we have shown
that absolute values can be obtained through the use of an
experimentally-determined, material-dependent scaling factor,
and this scaling factor is constant over the 300 GHz bandwidth
studied in this work. As such, the technique could potentially
be applied directly (without scaling) to automated real-time
material identification techniques such as principal component
analysis within pharmaceutical studies or security screening.
In our analysis, the scattering coefficient was assumed to be

frequency-independent. However, in principle, a more accurate
frequency-dependent scattering model could be derived for a
known particle distribution. Furthermore, the absolute value
of the absorption coefficient could, in principle, be obtained
directly through the use of more sophisticated analysis (e.g.,
quasi-crystalline approximations). It is important to note that
the speed of the DR spectroscopy technique is determined
principally by the mechanical translation stage and could be
improved significantly using fast scanning optics. Additionally,
through precise optical alignment, the spatial-resolution of the
present system could be optimised for imaging applications.
Finally, although we have employed a laser that was tunable
over four discrete emission lines in the present work, the
technique is equally applicable to alternative THz QCL tuning
approaches such as those based on discrete Vernier tuning [20],
external cavities [21] or aperiodic gratings [22].
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