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Abstract:  

The paper demonstrates a method to determine road network improvements 
that also involve the use of a road toll charge, taking the perspective of the 
government or authority. A general discrete network design problem with a 
road toll pricing scheme, to minimize the total travel time under a budget 
constraint, is proposed. This approach is taken in order to determine the 
appropriate level of road toll pricing whilst simultaneously addressing the 
need for capacity. The proposed approach is formulated as a bi-level 
programming problem. The optimal road capacity improvement and toll 
level scheme is investigated with respect to the available budget levels and 
toll revenues. 
 
Keywords: Toll pricing; Road development; Discrete network design 
problem (DNDP); Bilevel programming; Relaxation algorithm. 
 

 

 

 

 

 

 

 

 

 



1. Introduction 

Road transport plays a major role in driving both economic development and 
social activity. However, the presence of negative externalities such as 
congestion, pollution and accidents brings increasing social and 
environmental stress, which has emphasized the urgent need for an effective, 
efficient and socially feasible road transport system (Grant-Muller and Xu, 
2014). The extraordinarily complex task of introducing developments to the 
road transport system is well recognised. Efforts to advance policies 
incrementally or by introducing a single policy measures often fail, leading 
to calls for ‘integrative’, ‘holistic’ policies that incorporate multiple policy 
instruments from sectors related to urban mobility. The need for more 
sustainable and integrative planning processes has been widely recognized, 
with research including that by (Givoni, 2013).   

The future development and implementation of integrative policies in the 
road transport sector depends primarily on how well understood they are by 
decision makers. Road capacity investment and pricing issues have become 
crucial with an increased demand for the development of new transport 
infrastructure and the necessity to ensure the infrastructure can be both 
financed and utilized efficiently (Adler and Proost, 2010).  Theoretical 
developments in both the road network design problem (NDP) and road toll 
pricing have received much attention over a period of time in published 
research. The NDP involves optimal allocation of budget to the expansion of 
existing links and/or to the addition of new candidate links so as to 
maximize the network performance (e.g. minimizing the total travel time or 
generalized cost, maximizing the social welfare) while accounting for the 
travellers’ route choice behaviour (LeBlanc, 1975). The literature includes 
several comprehensive reviews of the NDP, examples being Yang and Bell 
(1998), and Farahani et al. (2013). The road toll pricing problem (as an 
effective means of both managing road traffic demand and raising additional 
revenue for road construction) has been studied extensively by both 
transportation practitioners and economists. Practical implementation has 
progressed rapidly and electronic road pricing schemes have been proposed 
and tested worldwide (Meng, et al. (2012); Yang and Huang (2005); Yang, 
et al., (2010)).  



Considering the literature on both NDP and the road toll pricing problem, 
there have been few published studies concerned with the simultaneous 
determination of road toll pricing and capacity development, despite the 
strong connection between them and their importance for the transport 
system. In Section 2, a detailed summary of recent studies concerned with 
the problem of simultaneous determination of road toll pricing and capacity 
development is provided. In an era of tightly constrained budgets, the 
analysis of road tolls and capacity provides a useful framework to consider 
interactions between both decision variables. This is especially the case in 
developing counties where there may be long term financial constraints on 
road capacity improvement.  

In this paper, we therefore investigate the joint decision making involved in 
the development of road infrastructure (capacity) alongside introduction of a 
road toll and the pricing problem. The revenue from a road toll charge is 
assumed to be a part of the infrastructure financing. In contrast to the case 
for a BOT (Build-Operate-Transfer) scheme, the government will consider 
road capacity development and road toll pricing together, with the purpose 
of minimising total travel time. However the tolled roads established by the 
government are not necessarily the newly built roads that require financing. 
In a departure from existing formulations for a continuous network design 
problem (CNDP), we propose a discrete network design problem (DNDP) 
approach. This is considered more appropriate for a transport network, as 
improvements such as lane expansions cannot be delivered in fractional 
quantities (Boyce and Janson, 1980).  

We investigate toll pricing and capacity development within a discrete 
network design framework. Using this approach, different toll pricing and 
capacity expansion schemes can be compared explicitly, as can variances in 
total travel time with respect to budget levels and toll revenues. The research 
uses a new formulation for the joint road toll and capacity discrete network 
design problem, where the decision variables for toll and capacity are both 
integer variables. Whilst existing mixed-integer programming formulations 
generally stipulate a discrete variable for a particular link (of either the toll 
road or capacity expansion), and a continuous variable for the level of the 
toll (or capacity quantity), the formulation used in this research is different.  



It defines discrete capacity variables with respect to the number of additional 
lanes for capacity expansion and an integer toll level, which lies within a 
pre-defined toll range. The discrete variable design (with toll pricing and 
capacity expansion) is more appropriate for use with a transport network, 
and results show that a road toll on the subset of links provides an approach 
to the optimal solution with respect to the total travel time. 

For the capacity expansion problem with a discrete variable for capacity (i.e. 
number of additional lanes), Wang et al. (2013) provide a bi-level program 
formulation and a global optimization algorithm for the discrete network 
design problem. Hence, this paper can be viewed as extending the state of 
the art by viewing the road toll as a discrete variable for the joint road toll 
and capacity discrete network design problem. The issues addressed and 
problems solved in this paper are as follows. Firstly, the proposed modelling 
approach can support government decision-makers in identifying how, and 
under what circumstances, to set the budget levels and the toll pricing levels. 
It can also assist the public in understanding how the government measures 
will benefit transport development. Secondly, to solve the proposed bi-level 
programming problem (with an integer nonlinear program for the upper 
level problem, and a continuous nonlinear program for the lower level 
problem), we reformulate it as a single-level mixed-integer nonlinear 
program with nonlinear complementarity constraints. We then develop a 
relaxation approach by relaxing the complementarity constraints. The SBB 
solver in GAMS (2009) is employed to solve the relaxed mixed-integer 
nonlinear program at each iteration step. 

The organization of this paper is as follows: in Section 2, we provide a brief 
literature review with respect to the combination/integration of urban road 
transport management and modelling approaches. Section 3 presents the bi-
level programming model to describe the DNDP, simultaneously optimizing 
both road toll charging and road expansion under the fixed OD demand case. 
Section 4 presents a relaxation algorithm, using Solver in GAMS for 
convenience. In Section 5, numerical experiments are illustrated using a 
simple two-node network and the Sioux-Falls Network. Finally, conclusions 
are presented in Section 6. 



2. Literature review 

The combination or integration of measures for road transport tends to cover 
certain types of management policies, e.g., the development of sustainable 
urban transport strategies (Marsden, et al., 2010; May et al., 2005a and b), 
optimal urban transport strategies (May and Still, 2000; May, et al., 2006; 
Shepherd, et al., 2006; Kelly et al., 2008; Xu et al, 2015), and more recently, 
urban transport packages (Givoni, 2014). Modelling the combination of 
measures in the transport network framework is important. Although these 
management policies have been discussed, relatively few have been based 
on a transport network modelling process. 

Studies into the simultaneous determination of a road toll level and road 
capacity have taken different approaches. The main studies have focused on 
investigating whether the revenue from socially optimal pricing on a road 
can cover the capital cost for constructing and maintaining the road. 
Mohring and Harwitz (1962) demonstrated that under certain conditions 
revenues from optimal pricing are just sufficient to cover the cost of optimal 
supply of road infrastructure. Yang and Meng (2000) considered the 
selection of toll and capacity for a private highway in a general road network 
under a BOT scheme. They investigated profitability and social welfare gain 
together with maximum profit and social welfare solutions in a toll-capacity 
two-dimensional space. Yang and Huang (2005) dealt with the relationship 
between pricing, capacity choice and financing in a general network with a 
single or multiple types of vehicles under the first-best and second-best 
conditions. Subprasom and Chen (2007) discussed the effects of regulation 
on highway pricing and capacity choice of a BOT scheme. Dimitriou et al. 
(2009) addressed the joint optimization of capacity investments and the toll 
charges problem imposed on multi-group users in monopolistic private 
highways within general road networks. They provided a game-theoretic 
formulation that leads to a non-convex bi-level program. With real-
application results they demonstrated the importance of considering the 
spatial heterogeneity of prices, and the trade-off between investments and 
pricing strategies in regulated private highways. Verhoef et al. (2010) 
considered second-best cases where only a sub-set of links in a network is 
subject to tolling and/or capacity choice, and for cases with and without a 



self-financing constraint. Using the ‘long-run cost functions’ for congested 
networks they demonstrated that, under certain assumptions, second-best 
long-run cost (or actually, generalized price) functions can be derived for 
most cases of interest. These can be used in an applied network model as a 
substitute for the conventional short-run user cost functions. Recently, 
building on the works by Tan et al. (2010) and Tan and Yang (2012), Niu 
and Zhang (2013) discussed the impact of demand uncertainty on the BOT 
contract design by optimizing a bi-objective problem via three decisions 
including toll, capacity and concession period.  

Concerning development of a modelling approach to simultaneously 
determine the first and/or second best pricing and road capacity, Koh et al. 
(2009) investigated the first and second best jointly optimal toll and road 
capacity investment problems from both the policy and technical 
perspectives. They emphasized that, as with optimal pricing, optimal 
investment in capacity could not always be feasible, and therefore a second 
best optimum investment must be sought. Previous studies to minimize the 
total travel time or maximize the total social welfare of travellers in transport 
networks include Zhang and Wee (2012), as they proposed a new bi-level 
model for the implementation of congestion pricing, with a new objective 
function for maximizing the reserve capacity of networks. They further 
formulated this as a single-level optimization program with equilibrium 
constraints to circumvent the computational difficulty. Recently, Wang et al. 
(2014b) proposed a bi-level programming model for a joint optimal link-
based tradable credit charging scheme and road capacity improvement. Their 
model integrates the improvement in the urban road network according to 
improvements in road capacity with a given budget constraint, and 
decreasing travel demand with the tradable credit scheme. They 
demonstrated that the tradable credit scheme offers a better combination of 
cost-effectiveness, administrative flexibility and distributional fairness 
compared to congestion pricing. To understand the trade-offs between 
conflicting objectives and to design a financially and environmentally 
sustainable transport system, Yin et al. (2014) addressed the simultaneous 
determination of road toll pricing and capacity investment in a congested 
road network in a multi-criteria decision-making framework. They presented 



a goal programming approach to follow four major goals including cost 
recovery, service level, environmental and equity. The multi-objective road 
toll pricing and capacity investment problem was formulated as a bi-level 
goal programming model. The numerical results demonstrated that the 
priority structure of the goals can significantly affect road toll pricing and 
capacity investment decisions. Research that has focused on the 
development of algorithms includes work on a sensitivity analysis-based 
algorithm, a direct search algorithm (introduced in Yang and Huang (2005)), 
and a constraint cutting algorithm (given by Koh, et al. (2009)). Fan and 
Gurmu (2014) presented a bi-level genetic algorithm (GA)-based 
optimization solution methodology that can be used to determine the optimal 
solution for combined congestion pricing and capacity expansion problems.  

Past research into the problem of simultaneous determination of road toll 
pricing and road capacity development has focused on investigating pricing 
and self-financing from modelling. Road capacity has been generally 
assumed to be theoretically continuous, whilst the toll is optimized under 
given constraints. These studies provide the theoretical background and an 
important framework for further study. The approach proposed in this paper, 
with a general DNDP and road toll pricing to minimize the total travel cost 
under a limited budget is, however, more appropriate for application in the 
practical transport planning and management contexts.   

3. Problem formulation 

3.1 Notation 

In a given urban road network, we assume that the authority needs to 
improve the transport network in such a way that the total travel time is 
minimized.  However, the authority faces a shortage of budget and therefore 
needs to receive revenue from road toll charges. Without loss of generality, 
we assume constant returns to scale in costs of capacity expansion (Mohring 
and Harwitz, 1962; Strotz, 1965; Keeler and Small, 1977), and fixed demand 
in the transport network. It is noted that network design and road pricing are 
both long-term decisions that impact on demand, and it would therefore be 
desirable to incorporate demand elasticity. In this study context, one can 



simply use social welfare instead of total travel time as the design objective 
function by introducing elastic demand functions. However, incorporating 
elastic demand and changing the objective function would not fundamentally 
change the proposed model formulation and the method used to find the 
solution1. 

The following symbols are firstly defined: 

Sets: ܣ     Set of all links in the transport network ܦଵ    Subset of links in the transport network considered for additional lanes, ܦଵ ك  ଶ    Subset of links in the transport network considered for theܦ ܣ
implementation of toll pricing, ܦଶ ك ܽ ௔  Set of number of lanes to be added to linkܣܮ ܣ א ௔ܣܮ ,ଵ. For exampleܦ ൌሼͲǡ ͳǡ ʹሽ  means that the transport authority determines to either add 
zero (do-nothing), one, or two lanes to link ܽ א ܮ ଵܦ ௔ܶ   Set of values for toll pricing (݆௔) imposed by the authority on link ܽ ܮ ,ଶ. For exampleܦא ௔ܶ ൌ ሼ݆௔ȁ݆௠௜௡ ൑ ݆௔ ൑ ݆௠௔௫ǡ ݆௔ ݅ݎ݁݃݁ݐ݊݅ ݏ ǡ ܽ א ݓ ଶሽ ܰ      Set of nodes in the transport network ܹ     Set of Origin-Destination (OD) pairs  ܴ௪    Set of paths between OD pairܦ א ܹ 

Parameters/functions: ߜ௔ǡ௥௪    A binary coefficient which equals 1 if path ݎ א ܴ௪  between OD pair      ݓ א ܹ uses link ܽ א ܽ  Total available budget  ܿ௔ሺ݅௔ሻ     Construction cost of adding ݅ lanes to link      ܤ and 0 otherwise ,ܣ א ଵ, ݅௔ܦ א ௔; ܿ௔ሺ݅௔ሻܣܮ  ൌ Ͳ  if ݅௔ ൌ Ͳ ݀௪    Given travel demand for OD pair ݓ א ௔ǡݒ௔ሺݐ ܹ ݅௔ǡ ݆௔ሻ Travel time function on link ܽ when ݅ lanes are added and toll 
pricing ݆௔ are set on link ܽ, ݅௔ א ǡܣܮ ݆௔ א ܮ ௔ܶ, ܽ א ௔ǡݒ௔ሺݐ ଶܦځଵܦ ݅௔ሻ Travel time function on link ܽ when ݅ lanes are added on link ܽ, ݅௔ א ௔ǡܣܮ ܽ א ௔ǡݒ௔ሺݐ ଵܦ ݆௔ሻ Travel time function on link ܽ when toll pricing ݆௔ are set on link ܽ,  ݆௔ א ܮ ௔ܶ, ܽ א   ଶܦ

                                                           

1 We owe this point to an anonymous referee. 



א ܽ ௔ሻ Travel time function on linkݒ௔ሺݐ ܣ െ   A parameter setting for a more flexible formulation     ߟ ଶܦڂଵܦ

Decision Variables: ݖͳ௔௜ೌ  A binary decision variable which equals 1 if and only if ݅௔ lanes are 

added to link  ܽ א ଵ, ݅௔ܦ א ૚ࢠ .௔ܣܮ ൌ ൛ݖͳ௔௜ೌ ǡ ݅௔ א ௔ǡܣܮ ܽ א  ௔௝ೌ  A binary decision variable which equals 1 if and only if road tollʹݖ ଵ ൟܦ

pricing ݆௔ is chosen for link  ܽ א ଶ ,݆௔ܦ א ܮ ௔ܶ. ࢠ૛ ൌ ൛ݖʹ௔௝ೌ ǡ ݆௔ ܮא ௔ܶǡ ܽ א ܽ ௔   Traffic flow on linkݒ ଶൟܦ א v ൌ ,ܣ ሼݒ௔ǡ ܽ א ݎ ሽ ௥݂௪   Traffic flow on pathܣ א ܴ௪ between OD pair ݓ א ࢌ ,ܹ ൌሼ ௥݂௪ ǡ ݎ א ܴ௪ǡ ݓ א ܹሽ 

3.2 Modelling approach 

Consider that the authority plans to construct and operate a road under a 
given budget constraint ܤ (i.e., the available public funding per unit time 
period). Therefore, the deficit per unit time period for the authority is no 
more than the budget constraint ܤ, that is, ෍ ෍ ܿ௔ሺ݅௔ሻݖͳ௔௜ೌ௜ೌא௅஺௔א஽భ െ ߟ ෍ ෍ ஽మא௅்௔א௔௝ೌ݆௔௝ೌʹݖ௔ݒ ൑  ܤ

where  ߟ is a parameter set to give a more flexible formulation, and the first 
term is the total construction cost  of  adding lanes to the network, the 
second term is the total revenue of toll pricing. Therefore, alongside 
congestion mitigation, road pricing could also be used for deficit reduction 
in the case of a limited budget. 

The authority aims to minimize the social travel time in the DNDP with road 
toll pricing scheme ࢠ૛. Thus, the upper-level problem can be formulated as 

[OP: original problem]: 

[OP]                           ௠௜௡ࢠ૚ǡࢠ૛   σ σ σ ௔ǡݒ௔ሺݐ௔ݒ ݅௔ǡ ݆௔ሻ௝ೌא௅்௜ೌא௅஺௔א஺                   (1) 

Subject to  



σ ௅஺אͳ௔௜ೌ௜ೌݖ ܽ׊ ,1= א ଵ                                        (2) σܦ ௅்א௔௝ೌ௝ೌʹݖ ܽ׊ ,1= א ଶ                                       (3) σܦ σ ܿ௔ሺ݅௔ሻݖͳ௔௜ೌ௜ೌא௅஺௔א஽భ െ ߟ σ σ ஽మא௅்௔א௔௝ೌ݆௔௝ೌʹݖ௔ݒ ൑ ͳ௔௜ೌݖ (4)                      ܤ ൌ ሼͲǡ ͳሽ, ܽ׊ א ௔݅ , ܣ א ௔௝ೌʹݖ ௔                                   (5)ܣܮ ൌ ሼͲǡ ͳሽ, ܽ׊ א ௔݆ , ܣ א ܮ ௔ܶ                                   (6) 

The objective function (1) represents the total travel time where ݒ௔  is 
determined by the lower-level user equilibrium (UE) problem which will be 
presented in Eqs (7)-(10). Constraint (2) ensures that exactly one capacity 
level is chosen. Constraint (3) ensures that exactly one link toll level is used 
on each link. Constraint (4) guarantees that the deficit per unit time period of 
the authority does not exceed the total budget. Constraints (5) and (6) define 

that ݖͳ௔௜  and ݖʹ௔௝  are binary decision variables separately. 

In model [OP], the relation between the capacity and construction cost for 
each link ܽ א ܣ  can be any general function (Wang et al., 2013). For 
example, the cost of adding two lanes, ܿ௔ଶ, is not necessarily equal to twice 
the cost of adding one lane, ܿ௔ଵ. This is more reasonable than assuming the 
construction cost to be a linear function of capacity, as is usually done in the 
CNDP (Yang and Bell, 1998). 

As the lower-level of the bilevel programming problem, it is assumed that 
travel demand is given and fixed, and users’ route choice is characterized by 
the UE principle. The UE problem with fixed demand can be formulated 
below (Sheffi, 1985): 

   [UE] ௠௜௡࢜   σ σ ௅஺אͳ௔௜ೌ௜ೌݖ ׬ ௔ሺ߱ǡݐ ݅௔ሻ݀߱௩ೌ଴௔א஽భ ൅        σ σ ௔௝ೌʹݖ ׬ ௔ሺ߱ǡݐ ݆௔ሻ݀߱௩ೌ଴௝ೌא௅்௔א஽మ െ         σ σ σ ௅்אͳ௔௜ೌ௝ೌݖ ௅஺א௔௝ೌ௜ೌʹݖ ׬ ௔ሺ߱ǡݐ ݅௔ǡ ݆௔ሻ݀߱ ൅௩ೌ଴௔א஽భځ஽మ          σ ׬ ஽మڂ஺ି஽భא௔ሺ߱ሻ݀߱௩ೌ଴௔ݐ                                                                     (7) 

Subject to  



σ ௥݂௪ ௥אோೢ ൌ ݀௪ǡ ݓ׊ א ௔ݒ (8)                                                  ܹ ൌ σ σ ௥݂௪ ߜ௔ǡ௥௪௥אோೢ ǡ௪אௐ ܽ׊ א ௥݂௪ ൒ (9)                                    ܣ Ͳǡ ݎ׊ א ܴ௪ǡ ݓ׊ א ܹ                                              (10) 
Constraint (8) defines the demand conservation condition, Constraint (9) 
defines the relation between link flow and path flow and Constraint (10) 
requires nonnegative path flows.  

In this study, before and after a capacity change and toll setting, it is 
assumed that link travel time functions ௔ሻݒ௔ሺݐ  ௔ǡݒ௔ሺݐ , ݅௔ሻ ௔ǡݒ௔ሺݐ , ݆௔ሻ ௔ǡݒ௔ሺݐ , ݅௔ǡ ݆௔ሻ are always strictly increasing and convex with respect to link 
flow ݒ௔ ሺܽ א ሻܣ  so that link flow solutions of both the UE and system 
optimization (SO) traffic assignment problems are unique. With this 
formulation, we could assume each of these new candidate links already 
exists by associating it with an infinite (or extremely large) free flow travel 
time and no toll setting in the initial transport network. If one (or more) lanes 

is added (ݖͳ௔௜ೌ ǡ ݅௔ א ௔ǡܣܮ ܽ א  ଵ), then it is assumed that the actual free flowܦ
travel time is incorporated in the corresponding link travel time function and 
that a toll scheme will be considered. Compared with the conventional 
DNDP (that determines whether each link in a set of new candidate links 
should be added to the transport network), the DNDP formulation here 
embraces the conventional DNDP as a special case, and simultaneously, the 

road toll pricing design (ݖʹ௔௝ೌ ǡ ݆௔ א ܮ ௔ܶǡ ܽ א  ଶ) is considered for a subset ofܦ
the set ܣ of all links in the transport network. The purpose of road pricing 
could be for both congestion mitigation and deficit reduction (in the case of 
a limited budget). 

 

4. Solution method  

The proposed bilevel programming model is flexible in determining 
extensions to road infrastructure and the design of road toll pricing from the 
perspective of government or high level policy makers. However, solving 
the model is challenging. Potential approaches to solve the model could use 
existing algorithms to solve the DNDP, for example, the support function 
method proposed by Gao et al.(2005), the active set technique presented by 



Zhang, et al.(2009), the linear approach technique given by Farvaresh and 
Sepehri (2011), the branch and bound algorithm given by Farvaresh and 
Sepehri (2013), and the global optimization recently proposed by Wang et 
al. (2013). Beside these existing algorithms it would also be possible to 
reformulate the model then use software from the sector. Here we use 
GAMS (The General Algebraic Modeling System, www.gams.com). It is 
noted that the model [OP] is a mixed-integer nonlinear bilevel programming 
problem, in which the upper level decision variables are all integer and the 
lower level decision variables are all continuous. Existing approaches to 
solve a mixed-integer nonlinear bilevel programming problem include work 
by Moore and Bard (1990), Jan and Chern (1994), Sahin and Ciric (1998), 
Gümüş and Floudas (2005) and Mitsos (2010). These greatly expand the 
range of decision making problems that can be modelled and solved within a 
bilevel optimization framework. However, little attention is given to bilevel 
problems involving discrete decisions in the bilevel programming literature. 
This is primarily because these problems pose major algorithmic challenges 
in the development of effective solution strategies.     

In this paper, a relaxation algorithm is proposed to solve the mixed-integer 
nonlinear bi-level programming problem. Because the objective and 
constraints of the lower level problem (UE) satisfy the convexity 
requirements of the Karush-Kuhn-Tucker (KKT) optimality conditions, the 
lower level problem can be replaced with its necessary and sufficient KKT 
optimality conditions.  Thus, the bi-level programming model can be 
reformulated into the following single-level mixed-integer nonlinear 
optimization problem (MINLP): 

[MINLP] 

     ܼ ൌ ௠௜௡ࢠ૚ǡࢠ૛ǡ࢜   σ σ σ ௔ǡݒ௔ሺݐ௔ݒ ݅௔ǡ ݆௔ሻ௝ೌא௅்௜ೌא௅஺௔א஺                   (11) 

Subject to  σ ௅஺אͳ௔௜ೌ௜ೌݖ ܽ׊ ,1= א ଵ                                        (12) σܦ ௅்א௔௝ೌ௝ೌʹݖ ܽ׊ ,1= א  ଶ                                       (13)ܦ



σ σ ܿ௔ሺ݅௔ሻݖͳ௔௜ೌ௜ೌא௅஺௔א஽భ െ ߟ σ σ ஽మא௅்௔א௔௝ೌ݆௔௝ೌʹݖ௔ݒ ൑ ͳ௔௜ೌݖ (14)                      ܤ ൌ ሼͲǡ ͳሽ, ܽ׊ א ௔݅ , ܣ א ௔௝ೌʹݖ ௔                                   (15)ܣܮ ൌ ሼͲǡ ͳሽ, ܽ׊ א ௔݆ , ܣ א ܮ ௔ܶ                                   (16) 

ێێۏ
σۍ σ ௅஺ೌאͳ௔௜ೌ௜ೌݖ ௔ǡݒ௔ሺݐ ݅௔ሻߜ௔ǡ௥௪௔א஽భ ൅ σ σ ௔ǡݒ௔ሺݐ௔௝ೌʹݖ ݆௔ሻߜ௔ǡ௥௪௝ೌא௅்ೌ௔א஽మ െ σ σ σ ௅்ೌאͳ௔௜ೌ௝ೌݖ ௅஺ೌא௔௝ೌ௜ೌʹݖ ௔ǡݒ௔ሺݐ ݅௔ǡ ݆௔ሻߜ௔ǡ௥௪௔א஽భځ஽మ ൅σ ௔ǡ௥௪ߜ௔ሻݒ௔ሺݐ െμ௪௔א஺ି஽భڂ஽మ ۑۑے

ې ௥݂௪ ൌ
0 (17)       ෍ ෍ ௅஺ೌאͳ௔௜ೌ௜ೌݖ ௔ǡݒ௔ሺݐ ݅௔ሻߜ௔ǡ௥௪௔א஽భ ൅ ෍ ෍ ௔ǡݒ௔ሺݐ௔௝ೌʹݖ ݆௔ሻߜ௔ǡ௥௪௝ೌא௅்ೌ௔א஽మ െ ෍ ෍ ෍ ௅்ೌאͳ௔௜ೌ௝ೌݖ ௅஺ೌא௔௝ೌ௜ೌʹݖ ௔ǡݒ௔ሺݐ ݅௔ǡ ݆௔ሻߜ௔ǡ௥௪௔א஽భځ஽మ ൅

෍ ௔ǡ௥௪ߜ௔ሻݒ௔ሺݐ െμ௪
௔א஺ି஽భڂ஽మ

൒ Ͳ 

(18) 

         ௥݂௪ ൒ Ͳǡ ݎ׊ א ܴ௪ǡ ݓ׊ א ܹ                                          (19) 
 
Unfortunately, MINLP is non-convex because of the complementarity 
constraints (17)-(19) (Chen and Florian (1995); Luo et al. (1996); Scheel and 
Scholtes (2000)). To address this difficulty, some algorithmic approaches 
have been focused on avoiding this formulation (Ban et al. (2006); Bouza 
and Still (2007); Leyffer (2003)). The basic idea of these relaxation schemes 
is to get rid of the complicated complementarity constraints by replacing 
these conditions in a suitable way. There are different types of relaxation 
scheme, for example, Hoheisel et al. (2013) discussed five kinds of 
relaxation schemes including the global relaxation scheme by Scholtes 
(2001), the local relaxation scheme by Steffensen and Ulbrich (2010) and 
the relaxation scheme by Lin and Fukushima (2005), Kadrani et al. (2009), 
and Kanzow and Schwartz (2010).  



In this paper, a relaxation algorithm will be adopted to iteratively tackle this 
MINLP. The main idea of this relaxation algorithm is as follows. The 
relaxation algorithm presented here introduces auxiliary parameters ߠ௪ for 
each OD pair א ܹ  , which can then be used to define relaxed 
complementarity slackness conditions, rather than the exact ones. We relax 
the complementarity slackness constraints (17) as follows: 

ێێۏ
σۍ σ ௅஺ೌאͳ௔௜ೌ௜ೌݖ ௔ǡݒ௔ሺݐ ݅௔ሻߜ௔ǡ௥௪௔א஽భ ൅ σ σ ௔ǡݒ௔ሺݐ௔௝ೌʹݖ ݆௔ሻߜ௔ǡ௥௪௝ೌא௅்ೌ௔א஽మ െ σ σ σ ௅்ೌאͳ௔௜ೌ௝ೌݖ ௅஺ೌא௔௝ೌ௜ೌʹݖ ௔ǡݒ௔ሺݐ ݅௔ǡ ݆௔ሻߜ௔ǡ௥௪௔א஽భځ஽మ ൅σ ௔ǡ௥௪ߜ௔ሻݒ௔ሺݐ െμ௪௔א஺ି஽భڂ஽మ ۑۑے

ې ௥݂௪ ൑
 ௪                                                                                                   (20)ߠ

The MINLP can then become a relaxed MINLP problem (RMINLP, relaxed 
mixed-integer nonlinear optimization problem) by replacing equation (17) 
with equation (20). In this case, the RMINLP is non-convex and the MFCQ 
holds (Luo et al., 1996). Consequently, existing MINLP solution algorithms 
can be adopted to solve the RMINLP. The standard MINLP solver SBB is a 
GAMS solver for Mixed Integer Nonlinear Programming (MINLP) models, 
based on a combination of the standard Branch and Bound method from 
Mixed Integer Linear Programming and some of the standard NLP solvers 
already supported by GAMS (2009). It performs well on models that have 
difficult nonlinearities and possibly also on models that are fairly non-
convex, more details about the SBB solver can refer to 
http://www.gams.com/dd/docs/solvers/sbb/index.html.   

We use SBB to solve the RMINLP. The iterative algorithm can be 
summarized as follows: 

Step 1. Initialization: Choose an initial auxiliary parameter ߠ଴௪  for the 
complementarity slackness constraint. Set ߝ  ≥0, updating factor 
and iteration number ൌ ,1> ߣ >0 Ͳ . 

Step 2. Major iteration: By setting ߠ௞௪ as the auxiliary parameter for each 
complementarity condition in (20), solve the current RMINLP by 
using the SBB solver in GAMS (2009). 

Step 3. Stop condition: If ߠ௞௪ ൒ ߝ , stop and go to Step 4; otherwise set ߠ௞ାଵ௪ ൌ  .௞௪, go to Step 2ߠߣ

Step 4. Report solution: The optimal solution is achieved from the last run 
of Step 2. 



The relaxation algorithm presented here is straightforward and easily 
implemented. In particular, many existing solution techniques for the 
MINLP can be used in Step 2 to tackle RMINLP. Suitable convergence 
results for the global relaxation scheme have already been known from the 
discussion given by Hoheisel et al. (2013). The fundamental approach of the 
relaxation scheme for mixed-integer nonlinear bi-level programming is to 
replace MINLP by a sequence of the parameterized RMINLP, which is 
similar to the relaxation method proposed in Scholtes (2001), but extends it 
to the mixed-integer case.  

It is noted that, besides the relaxation methods, there are other ways to deal 
with the complementarity constraints, for example, dispensing with the 
complementarity constraints through the introduction of binary variables and 
a penalty method. All of these approaches have positive and negative 
features, and none is optimum for all problems. As an example, the binary 
variables can be used to remove the complementarity constraints as 
presented in Fortuny-Amat and McCarl (1981) (i.e., rewriting the 
complementary slackness condition by introducing binary variables and a 
large positive constant). This transforms the linear bi-level programming 
problem into a large mixed-integer programming problem. However, it is 
limited by computational speed due to the large size of the augmented 
problem (Wen and Hsu, 1991). The penalty method is another important 
class of algorithms to solve nonlinear bi-level programming problem, 
however they are generally limited to computing stationary points and local 
minima (Colson et al., 2005). 

5. Numerical analysis 

5.1 A two link network 

We firstly consider a simple two-link network as shown in Fig 1, consisting 
of two nodes: node 1 and node 2 and two links: link ܽଵ and link ܽଶ. The 
travel demand ݀ଵ ൌ ͳͲͲ. The travel time functions for both links are given 
by: ݐ௔ሺݒ௔ሻ ൌ ௔଴ݐ ൈ ቀͳ ൅ ͲǤͳͷ כ ௩ೌೌ்ቁ, ܽ א ሼܽଵǡ ܽଶሽ,  ݐ௔భ଴ ൌ ʹͲ, ௔ܶభ ൌ ͳǤͷ, ݐ௔మ଴ ൌ ͹Ͳ, ௔ܶమ ൌ ͳͲǤͷ, 



where  ௔ܶ is the current capacity of link ܽ א ሼܽଵǡ ܽଶሽ (i.e. ݐ௔൫ݒ௔భ൯ ൌ ʹͲ ൅ʹ כ ௔మ൯ݒ௔൫ݐ ,௔భݒ ൌ ͹Ͳ ൅   .(௔మݒ

We assume the transport authority considers whether there is a need to add 

0, 1 or 2 lanes to each link. The binary variables ݖͳ௔భ௜ೌభ  and ݖͳ௔మ௜ೌమ , ݅௔భ ǡ ݅௔మ  ሼͲǡͳǡʹሽ can then be used to indicate the multiple capacity level networkא
design decisions. We assume that capacity per lane is 2, that is, ܿ௔ଵ ൌ ʹ, the 
total budget ܤ ൌ ͹ͲͲͲ and we set the parameter ߟ ൌ ͳ. 

Concerning the construction cost function, we consider two cases: 

(i) The construction cost is a linear function of capacity, i.e. ܿ௔భ൫݅௔భ൯ ൌʹͲͲͲ݅௔భ, ܿ௔మ൫݅௔మ൯ ൌ ͵ͲͲͲ݅௔మ, ݅௔భ ǡ ݅௔మ א ሼͲǡͳǡʹሽ; 

(ii) The construction cost is a nonlinear function of capacity, i.e. ܿ௔భ൫݅௔భ൯ ൌ ʹͲͲͲ݅௔భଵȀଶ, ܿ௔మ൫݅௔మ൯ ൌ ͵ͲͲͲ݅௔మଵȀଷ, ݅௔భ ǡ ݅௔మ א ሼͲǡͳǡʹሽ. 

 
We can also determine the toll level to make the two-link network reach SO.  

 

 

 

 

Figure 1 A two-link network 
 

Table 1 Comparison of optimal solutions under different models. 
Model UE SO FBTP DNDP FBTP+DNDP 

௔ݒ  ௔ݐ  ௔ݒ  ௔ݐ  ௔ݒ  ௔ݐ   ݆௔ ௔ݒ  ௔ݐ   ݅௔ ௔ݒ ௔ݐ   ݆௔  ݅௔  ܽଵ 50 120 41.667 103.33 41.67 103.33 25 96.719 72.756 2 76.728 61.852 36 2 ܽଶ 50 120 58.333 128.33 58.33 128.33 0 3.281 72.756 1 23.272 86.852 11 2 ܼ 12000 11791 11791 7275.590 6766.975 

 
       
 
        Table 2 optimal solutions under a nonlinear construction cost 

Model DNDP Toll+DNDP 
௔ݒ  ௔ݐ   ݅௔ ௔ݒ  ௔ݐ   ݆௔  ݅௔  ܽଵ 97.059 72.941 2 76.728 61.852 25 2 

ͳ ʹ 

a1 

a2 



ܽଶ 2.941 72.941 0 23.272 86.852 0 2 ܼ 7275.590 6766.975 

 
We now present a comparison of optimal solutions under different models. 
For the convenience of comparison and demonstration, we firstly present the 
traffic pattern under different models including: the UE and SO solutions 
with a traffic assignment problem (TAP) (Sheffi, 1985), the first-best toll 
pricing problem (FBTP) (Hearn and Ramana, 1998; Yang and Huang, 2005), 
and DNDP (LeBlanc, 1975). The TAP under UE and SO conditions (which 
determines the UE and SO flow patterns in the transport network with fixed 
origin-destination demand), demonstrates firstly the traffic situation under 
the UE assumption that all users minimize their own individual travel costs 
on transport networks. Secondly it demonstrates the SO assumption that all 
users cooperate to minimize the total network cost. The UE and SO are two 
central concepts pertaining to the road pricing, the DNDP and combined 
DNDP and pricing problems. The FBTP2 is solved to demonstrate the best 
performance under the road pricing scheme. The DNDP is solved to 
illustrate the optimal effect of increasing road infrastructure under given 
budget constraints. Finally, the results of our proposed model, which 
combines road toll pricing and capacity development from the perspective of 
government or high level decision makers, are presented. The comparisons 
are focused on the optimal traffic pattern and the objective function values. 
To avoid any bias during the process comparison, the objective function 
values of different models are obtained again by the relaxation algorithm 
given in Section 4. The results are given in Table 1. 

Table 1 shows the link flow patterns under UE, SO, FBTP, DNDP and a 
combination of toll and DNDP.  With the FBTP, the toll on link ܽଵ (݆௔భ ൌʹͷ) changes the traffic flow from UE to SO and the system total travel time 
decreases from ܼ ൌ ͳʹͲͲͲ to ܼ ൌ ͳͳ͹ͻͳ. Under a budget constraint, ܤ ൌ͹ͲͲͲ with a linear construction cost (case i), the optimal road development 
pattern arising from the DNDP is to add two lanes for link ܽଵ and one lane 

                                                           

2 Note that with the definition of first-best toll based on economic theory as the difference between 
marginal cost and average cost of traffic on a link; this is not integer by definition. Since we restrict 
the toll to an integer value in this paper, this will be a second best toll by definition. However, we still 
refer to it as the FBTP here as it has the same effect as a first-best toll.  



for link  ܽଶ, in which case the system total travel time will decrease to ܼ ൌ͹ʹ͹ͷǤͷͻ.  

We can further construct the combined first best toll pricing and capacity 
improvement model (FBTP + DNDP) with the first best toll pricing in the 
DNDP, as shown in Section 3.2. The upper level objective function still aims 
to minimize the total travel time under a budget constraint. With a policy of 
combined road toll pricing and capacity development, we can set the toll on 
link ܽଵ (݆௔భ ൌ ͵͸) and on link ܽଶ (݆௔మ ൌ ͳͳ), and add two lanes for both link ܽଵ and link ܽଶǤ The system total travel time will decrease to ܼ ൌ ͸͹͸͸Ǥͻ͹ͷ. 

Under this case, the total construction cost is ܿ௔భ൫݅௔భ൯ ൅ ܿ௔మ൫݅௔మ൯ ൌ ʹͲͲͲ ʹכ ൅ ͵ͲͲͲ כ ʹ ൌ ͳͲͲͲͲ, the toll revenue on both links is ݒ௔భ כ ݆௔భ ൅ ௔మݒ ௔మ݆כ ൌ ͹͸Ǥ͹ʹͺ כ ͵͸ ൅ ʹ͵Ǥʹ͹ʹ כ ͳͳ ൌ ͵ͲͳͺǤʹ , therefore the total available 

budget is ܤ ൅ ௔భݒ כ ݆௔భ ൌ ͳͲͲͳͺǤʹ. 

Under a budget constraint, ܤ ൌ ͷͲͲͲ  with a nonlinear construction cost 
(case ii), the optimal road development pattern arising from the DNDP is to 
add two lanes on link ܽଵ, and the system total travel time will decrease to ܼ ൌ ͹ʹ͹ͷǤͷͻ. With a government policy of combined road toll pricing and 
capacity development, we can set the toll on link ܽଵ (݆௔భ ൌ ʹͷ) and add two 

lanes for both link ܽଵ and link ܽଶ. In this case the system total travel time 

will decrease to ͸͹͸͸Ǥͻ͹ͷ  , the total construction cost is ܿ௔భ൫݅௔భ൯ ൅ܿ௔మ൫݅௔మ൯ ൌ ʹͲͲͲ כ ξʹమ ൅ ͵ͲͲͲ כ ξʹయ ൌ ͸͸ͲͺǤʹ, the toll revenue on link ܽଵ 

is ݒ௔భ כ ݆௔భ ൌ ͹͸Ǥ͹ʹͺ כ ʹͷ ൌ ͳͻͳͺǤʹ, therefore the total available budget is ܤ ൅ ௔భݒ כ ݆௔భ ൌ ͸ͻͳͺǤʹ. 

Comparing combined road toll pricing and capacity development with other 
approaches (DNDP, FBTP, UE, and SO) we find that under the extension of 
both links, more travellers (ݒ௔భ ൌ76.728) choose link ܽଵǤ With a fixed travel 

demand assumption, the new links added can reduce the total travel time and 
improve the level of transport service. 

 

5.2  The Sioux-Falls network  



The Sioux-Falls network, as shown in Figure 2, consists of 24 nodes, 76 
links and 528 OD pairs, the parameters can be obtained from 
http://www.bgu.ac.il/~bargera/tntp/. 

 

 
Figure 2 The Sioux-Falls network  

 
Although it is possible to discuss the first-best toll (as shown for the simple 
network), it is not necessary for the purposes of the numerical demonstration 
here. To save space, we use a section of the links as the link toll set and the 
toll pricing problem therefore becomes a second-best road pricing problem. 
According to the UE assignment (Wang, et al., 2013; Wang et al., 2014a), 
we choose the following 10 links: (link 16, 17, 19, 20, 25, 26, 29, 39, 48, 74) 
as they are the most congested links in terms of the ratio of link flow to 
capacity.  These 10 links are shown by dotted lines in Fig 2.  

We assume the transport authority considers whether it needs to add 0, 1 or 2 
lanes to these 10 links and that the capacity is 5 per lane. The budget is ܤ 

http://www.bgu.ac.il/~bargera/tntp/


=5000. Without loss of generality, we assume a linear construction cost 
function, i.e., ܿ௔ሺ݅௔ሻ ൌ ௔݋ܿ כ ݅௔ . The coefficients ܿ݋௔  for the 10 links are 
given in Table 3.   

We use the SBB to solve the RMINLP in the relaxation algorithm. It 
performs well on models that have difficult nonlinearities and possibly also 
on models that are fairly non-convex. The computation time is less than 3 
minutes. 

Table 3 construction cost function coefficients 
Node-Node Link ܿ݋௔ 

6-8 16 260 
7-8 17 400 
8-6 19 260 
8-7 20 400 
9-10 25 250 
10-9 26 250 
10-16 29 480 
13-24 39 340 
16-10 48 480 
24-13 74 340 

 

(1) Comparison of optimal solutions under different models 

Table 4 presents the link flow pattern ( ௔ݒ ), link cost ( ݐ௔) and toll ݆௔   on different links, and link capacity extension (݅௔ ) under 
different models (UE, SO, Second-best toll, DNDP and DNDP+toll). To 
avoid any bias in the comparisons, the objective function values of different 
models are obtained again using the relaxation algorithm proposed in this 
paper. As previously shown, the set of toll links and road capacity links in 
DNDP are not necessarily the same.  It can be seen that in comparison to the 
UE case (ܼ ൌ ͳͲͲ͸ʹǤ͹Ͷ͵), the second-best road pricing brings a reduction 
in total travel time (ܼ ൌ ͳͲͲʹͷǤͺͲͳ), however this is still not as low as the 
SO case (ܼ ൌ ͻͺʹ͸ǤͶͷ͵). Under the budget (ܤ ൌ ͷͲͲͲ) and DNDP, Table 
4 presents the optimal road expansion with a linear construction cost 
function given in Table 3 and illustrates the total travel time reducing to a 
level ܼ ൌ ͹͹ʹͺǤ͵ͳʹ . A toll revenue 332.441 can be achieved with the 



optimal toll pricing scheme ݆௔ (as shown in Table 4), and with a combination 
of toll pricing and DNDP the total travel time can reduce to ͹ͲʹͻǤͺͲͺ.  

Table 4 Comparison of optimal solutions under different models. 
Model UE(TAP) SO Toll(Second-best) DNDP DNDP+Toll 

Node-
Node 

Lin
k 

௔ ݆௔ݐ ௔ݒ ௔ ݅௔ݐ ௔ݒ ௔ ݆௔ݐ ௔ݒ ௔ݐ ௔ݒ ௔ݐ ௔ݒ ݅௔
6-8 16 14.

017 
22.1
14 

13.
786 

20.
816 

13.9
44 

21.6
94 

2 18.
190 

7.2
38 

2 19.
228 

2.8
32 

0 2 

7-8 17 14.
053 

7.64
1 

14.
631 

8.4
53 

14.1
27 

7.74
0 

0 13.
018 

6.4
18 

0 11.
662 

5.2
01 

0 0 

8-6 19 14.
017 

22.1
14 

13.
786 

20.
816 

13.9
44 

21.6
94 

2 16.
500 

11.
817 

1 17.
600 

2.5
84 

5 2 

8-7 20 14.
053 

7.64
1 

14.
631 

8.4
53 

14.1
27 

7.74
0 

0 13.
862 

7.3
94 

0 12.
301 

5.7
25 

3 0 

9-10 25 24.
013 

6.99
0 

23.
901 

6.9
16 

24.2
40 

7.14
3 

0 25.
740 

6.0
78 

1 25.
702 

3.6
00 

2 2 

10-9 26 24.
013 

6.99
0 

23.
901 

6.9
16 

24.2
40 

7.14
3 

0 26.
331 

5.1
00 

2 27.
088 

3.7
41 

0 2 

10-16 29 11.
926 

26.8
48 

11.
769 

25.
718 

11.9
36 

26.9
17 

1 15.
370 

11.
015 

2 18.
440 

6.6
53 

3 2 

13-24 39 11.
728 

20.8
96 

11.
640 

20.
395 

10.7
15 

15.7
69 

9 15.
733 

9.3
81 

2 16.
668 

4.8
93 

4 2 

16-10 48 11.
926 

26.8
48 

11.
769 

25.
718 

11.9
36 

26.9
17 

1 15.
909 

11.
903 

2 20.
971 

7.7
65 

0 2 

24-13 74 11.
728 

20.8
96 

11.
640 

20.
395 

10.7
15 

15.7
69 

9 16.
053 

9.8
33 

2 17.
072 

4.9
83 

2 2 ܼ  10062.743 9826.453 10025.801 7728.312 7029.808 

Toll 
revenue 

   272.518  332.441 

 
(2) Relationship between budget, toll pricing and total travel time  

To continue the comparison of optimal solutions under different models, we 
examine the relationship between budget, toll pricing and total network 
travel time. For the case of the Sioux-Falls network we find that the 
maximum total investment (i.e., all links given in Table 3 with a two-lane 
expansion) is 6920, as shown in Table 5. That is, if the government budget is 
greater than 6920, there is no need for toll pricing and the total travel time 
will be ܼ ൌ ͸ͺͺͳǤ͹ͷͻ . Table 5 also illustrates the toll revenue and 
corresponding total travel time (ܼ) under different budget levels. Generally, 
the lower the budget level, the higher the toll revenue and the lower the total 
travel time. However this is not the case when the budget is 5000, where the 



optimal toll pricing scheme generates 332.441 total revenue. This is higher 
than the toll revenue of 145.344 with a budget level of 4000. Figure 3 
illustrates the rate of reduction in total travel time with respect to the budget 
level, with the rate of reduction rate in total travel time declining as the 
budget level increases. Figure 4 indicates changes in toll revenue with 
respect to the budget and in contrast, a more erratic rate of decrease is seen 
as the budget level increases.    

Table 5 Total travel time and toll revenue under different budget levels for 
the Sioux-Falls network 

Budget (ܤ)  6000 5000 4000 3000 2000 1000 ൒ 6920 

Toll 
Revenue 

1168.888 676.197 657.551 145.344 332.441 133.318 91.143* 

Total travel 
time (ܼ)** 

7994.253 7613.050 7351.769 7152.049 7029.808 6891.008 6881.759 

*Here the toll revenue is 91.143 not zero, as the toll is applied to reduce the total travel 
time.   
**The maximum total investment cost, i.e., all links given in Table 3 with a two-lane 
expansion, is 6920. The effect is the same when total budget ܤ is greater than 6920, 
given the subset ܦଵ. 
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Figure 3 Total travel time vs budget constraint for the Sioux-Falls network 
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Figure 4 Toll revenue vs budget level for the Sioux-Falls network 
 
6. Conclusions 

Research into (and applications of) packages of measures for transport 
development and management have received increasing recognition 
recently. In the context of the development and implementation of 
integrative measures in an urban road transport equilibrium network, this 
paper has presented research into the modelling of joint road toll pricing and 
capacity development, taking the perspective of government or highway 
authorities. The main contributions of this paper to the state of the art in the 
literature are as follows: 

 The proposed formulation differs from existing mixed-integer 
programming formulations which apply where the model decision 
variables for selected links are discrete for either toll road or capacity 
expansion, and continuous for the level of toll or capacity. In contrast, 
the formulation proposed in this paper defines discrete variables for 
capacity (i.e. the number of additional lanes for capacity expansion) 
and for the toll level (i.e. an integer toll level within a pre-defined toll 
range). In the modelling approach described the two sets of links are, 
in fact, separated so that it is not necessary for  ܦଵ and  ܦଶ  to 
coincide. This allows flexibility according to the policy being 



designed, allowing, for example, for the revenues from tolling in one 
part of the network to be used to finance infrastructure improvements 
elsewhere in the network. 

 To solve the bi-level program (with an integer nonlinear program for 
the upper level problem and a continuous nonlinear program for the 
lower level problem), we have first transformed it into a single-level 
mixed-integer nonlinear program with nonlinear complementarity 
constraints. A relaxation approach has then been developed to relax 
the complementarity constraints. At each iteration step, the SBB 
solver in GAMS was used to solve the relaxed mixed-integer 
nonlinear program. An existing business software (rather than 
bespoke software) was used to solve the complex mathematical 
programming problem, demonstrating that an application of the 
approach by transport planners/policymakers is practical.   

This study further differs from existing analyses in two main aspects. Firstly, 
the toll pricing and capacity development in a discrete network design 
framework where different toll pricing and capacity expansion schemes can 
be compared explicitly. Secondly, the variances in total travel time with 
respect to the budget level and toll revenues are investigated explicitly. The 
discrete variable design with toll pricing and capacity expansion is more 
appropriate for a transport network. The proposed modelling approach can 
support government decision-makers to identify how, and under what 
circumstances, to set the budget level and the toll pricing level. It can also 
help in improving public understanding of how different transport policies 
can benefit the development of the transport network. Finally, the proposed 
model can be solved conveniently using existing optimal solvers, making it 
accessible in principle to the wider transport community and policy makers. 

Some other key issues for further study are:  

 Complex behaviour investigation. From the lower model (7-10), given 
the fixed travel demand, the link toll level and capacity level 
determined by the upper level, we use the UE principle to investigate 
the traveler’s route choice behavior. However, network design and 
road pricing are long-term decisions and thus affect demand. They 
will also result in optimization of other ways, e.g., departure rates and 
individual travel mode choice. Further model development along 
these lines is a topic for further study. 



 A multi-modal modelling approach for the additional complexities of 
the real world. With the proposed model framework, a further 
additional degree of complexity, i.e. public transport can be 
integrated. In a modern urban context, a policy that is only designed 
for cars, without taking public transport into account is largely 
unthinkable. Integrated transport planning and policy, especially in 
presence of pricing policies, requires multi-modal thinking.  
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