
This is a repository copy of A Multi-agent Framework for Dependable Adaptation of
Evolving System Architectures.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/93151/

Version: Accepted Version

Proceedings Paper:
Johnson, Kenneth Harold Anthony, Sinha, Roopak, Calinescu, Radu orcid.org/0000-0002-
2678-9260 et al. (1 more author) (2015) A Multi-agent Framework for Dependable
Adaptation of Evolving System Architectures. In: 41st Euromicro Conference on Software
Engineering and Advanced Applications (SEAA). IEEE , pp. 159-166.

https://doi.org/10.1109/SEAA.2015.49

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

A Multi-Agent Framework for Dependable

Adaptation of Evolving System Architectures

Kenneth Johnson∗ Roopak Sinha∗ Radu Calinescu† Ji Ruan∗

∗ School of Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand
† Department of Computer Science, University of York, York, United Kingdom

Abstract—We present a multi-agent framework for the formal
verification of component-based systems after changes such as
addition, removal and modification of components. The core
of our approach is an Agent Verification Engine (AVE) that
constructs evolvable Belief-Desire-Intention (BDI) agents to co-
ordinate and plan the re-verification of component models after
system changes. The engine provides BDI-agents with existing
techniques for the compositional verification of component-based
systems. We illustrate this integration for Satisfiability Modulo
Theories (SMT) constraint analysis and demonstrate our frame-
work on requirements arising from industrial control systems.

I. INTRODUCTION

Component-based software systems are increasingly com-
mon, and include business- and safety-critical systems from
domains as diverse as healthcare, transportation and finance
[25]. Critical systems are expected to be reliable since down-
time often results in a decrease of revenue or unavailability
of essential services. Formal verification techniques such as
model checking or automated theorem proving can be used
to provide irrefutable proof of a system’s compliance to
requirements by analysing mathematical models of the system
against properties derived from the requirements.

Compositional verification techniques [3], [2] decompose
the verification of a large, monolithic system model into a
sequence of small verification steps that are applied to the
components of the system, thus enabling formal verification
of much larger systems. However, these approaches do not
take into account the system’s runtime environment, where
components are frequently added and updated or may un-
expectedly fail. Agent-based modelling is widely used in
safety or business critical systems as a means for intelligent
adaptation in response to planned and unplanned runtime
changes. This approach is well suited to adapt large scale
cloud deployed systems [12], [26] and industrial manufacturing
applications [20], [17] whose compliance to quality-of-service
(QoS) requirements must be maintained during runtime.

In this paper, we introduce the Agent Verification Engine
(AVE) which constructs agents to perceive, react, and adapt to
runtime changes of a component-based system. These agents
are based on the Belief-Desire-Intention (BDI) architecture
[21], in which agents operate in terms of motivation and
beliefs. BDI-agents have a formal basis in logic to formalize an
agent’s decision making in an attempt to achieve its goals [9].
BDI-agents are constructed by AVE according to the system’s
architecture and observe components to detect changes. When
changes happen, agents perform verification tasks to verify
the model of components against properties to determine
compliance with system requirements.

Fig. 1. Agent Verification Engine (AVE) workflow

The main contributions of this paper are (a) an algebraic
specification of an agent verification engine based on BDI-
agents, (b) the integration of a satisfiability modulo theories
(SMT) solver to provide agents with verification capabilities,
(c) an application of the engine to a real-world industrial con-
trol software case study, and (d) a prototype implementation
of the agent verification engine using Jason AgentSpeak [4].

The rest of this paper is organised as follows. Section II
provides key mathematical preliminaries. Section III formu-
lates the agent verification engine algebraically and describes
evolvable BDI-agent plans. Section IV integrates an existing
SMT-based compositional verification approach into the en-
gine. Section V applies the engine to analyse an industrial
item sorting system. Section VI shows the effectiveness and
scalability of our approach. Section VII discusses related work
and Section VIII presents concluding remarks.

II. PRELIMINARIES

Assuming readers to have basic understanding of universal
algebra [19] and BDI-agent architectures [21], [4], we define
the following key tools and notations.

Signatures and Terms: A signature Σ consists of a sort
s and a finite number of operation symbols f : sn → s
for n ≥ 0. Symbols of the form c → S are signature
constants. A signature Σ contains the sort Bool with constants
true, false → Bool and names the standard logical connec-
tives ∧ and ¬. Operation symbols of the form b : sn → Bool
are Σ-predicates. Σ-terms are defined by the rules

t ::= c1 | . . . | cm | z | f1(t1, . . . , tm1
) | . . . | fn(t1, . . . , tmn

)

for constants c1, . . . , cm, variable z from the set Z, operation
symbols f1, . . . , fn and Σ-terms tij .

The AgentSpeak Language: AgentSpeak [21] is an agent-
oriented programming based on logic programming and the
BDI architecture for autonomous agents. BDI-agents operate
within an environment and receive continuous input percep-
tions. Agents respond by performing actions that affect the
environment. The beliefs, desires and intentions of an agent
correspond with the agent’s informational, motivational and
decision making components that comprise its mental state.

Beliefs: An agent’s belief is constructed from predicate terms
as follows. If t = t1, . . . , tn is a tuple of Σ-terms then b(t)
is a belief atom for the predicate symbol b. If b(t) and c(t)
are belief atoms then ¬b(t), b(t) ∧ c(t) are beliefs. Beliefs
represent the information available to the agent and are stored
in its belief base B.

Goals: If g is a predicate symbol and t = t1, . . . , tn a tuple
of Σ-terms then !g(t) is an achievement goal an agent aims to
achieve and ?g(t) is a test goal that tests if g(t) is a true belief.
Acquiring a new belief or goal creates a trigger event within an
agent. If b(t) is a belief atom then +b(t), −b(t) are triggering
events corresponding to the addition and removal of beliefs.
Similarly, +!g(t), −!g(t) and +?g(t),−?g(t) correspond to
the addition and removal of achievement and test goals,
respectively.

III. AGENT VERIFICATION ENGINE

This section algebraically specifies the Agent Verification
Engine (AVE). The engine’s workflow is depicted in Figure 1
and comprises the agent planner, that reads an algebraic system
specification S and requirements R, a set A of BDI-agents
constructed by the agent planner to verify components of S
and an oracle ω. The workflow has two phases. In the agent
construction phase, the agent planner constructs a set A =
{αt1 , . . . , αtn} of BDI-agents for components t1, . . . , tn of the
system S. Each agent is constructed with a plan library to
determine compliance of its component with the requirements
given by R. The agent invokes an external oracle ω which
represents a compositional verification service to determine the
component’s satisfaction of requirements. In the agent runtime
phase, an agent perceives localised component changes t′ in
the runtime environment and notifies the agent planner. The
agent planner transforms S by performing the corresponding
term substitution S′ = S[t′/t] of the agent’s component term
t with the new component term t′ to obtain S′. The agent
planner uses t′ to update the agent’s beliefs and plan library.

A. The Oracle

Let M be a set of component models, P a set of properties
and V a set of values. The oracle is an automated process that
accepts as input a verification task w = (m, g, a) from the set
W = M ×P × [P → V] and is modelled mathematically
by the total function ω : W → V such that

ω(m, g, a) = the value v obtained from the process (1)

of verifying property g on model m

under assumptions of a

for model m ∈ M , g ∈ P and v ∈ V and the map a :
P → V of properties to verification values. The oracle is
programmed to always terminate, potentially due to failure. If
a failure occurs, then a special unverified value u is returned

by the service. We extend the set of values to include this
element by setting V = V ∪ {u}.

Our choice of notation in (1) generalises assume-guarantee
[11], [14] model checking approaches to include decom-
position techniques used in formal analysis of component-
based systems. In assume-guarantee reasoning, a monolithic
model m is decomposed into smaller, more manageable mod-
els m1, . . . ,mq . Each model mi is associated with a prop-
erty ai ∈ P , formalising requirements of the component.
Component-wise verification is performed in a sequence of
steps whereby the verification of property ai on model mi

obtains a verification value vi ∈ V . In symbols, we write
vi |= ai, for the model mi, 1 ≤ i ≤ q. We denote the list of
assumptions and verification results obtained by component-
wise verification as a. Using the assume-guarantee approach,
the system requirements formalised as the property g ∈ P

for the monolithic model m has verification result v under the
assumptions a. In symbols, we write v |= g.

B. Agent Construction Phase

We give an algebraic specification of component-based
systems and use their inductive properties to derive the agent
planner’s construction of the agent set A .

Specifying Component-Based Systems: A component sig-
nature Σ is a finite set C of component sorts that repre-
sent parts of a system and a set {f1, . . . , fn} of operations
to be performed on components. By choosing some basic
components c1, . . . , cm, e.g. constants in Σ and applying a
sequence of operations, we form a component-based system
as a high-level syntactic component term S. The term defines
the hierarchical structure of a component-based system by
expressing the sequence of operations carried out in the
construction of the system and specifies the order in which
they are applied. Let the set of all component terms over the
signature Σ be denoted as C(Σ). For example, the component
term comp(c1, comp(c2, c3)) in C(Σ) is formed from the com-
position of basic component c1 and the composition of basic
components c2 and c3, where comp : C(Σ)× C(Σ)→ C(Σ)
is an operation in Σ. The inductive properties of component
terms are a natural data structure for specifying BDI-agent
verification plans.

Each component c ∈ C(Σ) is associated with a model
m ∈M and a property g ∈P formulated from R.

Agent Plans for Basic Components: Let c be a basic com-
ponent of the component signature Σ, m ∈ M a component
model and g ∈P a property. The agent planner constructs a
BDI-agent αc with initial beliefs

Bc = {model(m), property(g)} (2)

where the predicates model and property specify agent αc’s
belief of the component model m and property g. Initially,
the agent has the achievement goal !verify to determine the
verification result v ∈ V of property g for model m. We define
the context expression

Ec = model(M) ∧ property(G) (3)

such that the agent holds sufficient information about its
component’s model and property for the verification plan

constructed by the agent planner. This plan has the form

+verify : Ec ←?model(M)∧?property(G)∧

ω(M,G, V) ∧+result(V). (4)

Since the initial belief base (2) of αc satisfies the plan’s
context Ec, the agent’s goal !verify triggers plan (4). The test
goals ?model(M) and ?property(G) unify the model m and
property g with variables M and G respectively, according
to the agent’s beliefs (2). The agent αc performs the action
ω(M,G, V) and invokes the oracle to compute v = ω(m, g, η),
with the null function η : ∅ → ∅ specifying that no assumptions
are required for the computation. The result v is unified with
variable V and +result(V) adds the value to the belief base
with the predicate symbol result.

Agent Plans for Composite Components: We give an
inductive definition of the plans for agent αt assigned to
the component term t = f(t1, . . . , tm) with sub-components
t1, . . . , tm and the operation symbol f ∈ Σ. The agent
has beliefs of its component model m and property g,
and thus the initial belief base of αt is set as Bt =
{model(m), property(g)}, similar to (2).

In general, the verification result v |= g for model m of
agent αt is dependent upon the verification values obtained
by agents At = {αt1 , . . . , αtm} for the sub-terms of t. Agent
αt therefore must communicate with each agent in At and
construct assumptions a : P → V to be supplied to the
oracle. To coordinate with agents αt1 , . . . , αtm , agent αt is
constructed with the plan

+!queryagents : true← (5)

send(t1, givep,A1) ∧ · · · ∧ send(tm, givep,Am)

∧send(t1, givev, V1) ∧ · · · ∧ send(tm, givev, Vm)

which asks each sub-component agent αti to retrieve the
verification task information stored within its belief base. The
properties a1, . . . , am in P and values v1, . . . , vm in V are
unified with variables A1, . . . , Am and V1, . . . , Vm respec-
tively. They are used to construct the assumption function
a : {a1, . . . , am} → {v1, . . . , vm} such that

a(ai) = vi. (6)

To facilitate communication with αt, each agent αti is
constructed with the plan

+?givep : true← ?property(A) (7)

∧ send(t, propertyti(A)).

by the agent planner, which is triggered whenever its mental
state is changed to the test goal ?givep, for 1 ≤ i ≤ m.

The plan body of (7) contains a special send action which
enables transmission of messages between agents using the
Knowledge Query and Manipulation Language (KQML) [16]
which expresses an agent’s intention for sending a message.
Agents send messages for two purposes: i) to change the
receiver’s beliefs, or ii) to change the receiver’s goals. In the
plan body of (7), agent αti ’s property belief is unified with the
variable P and sent to agent αt, who receives the belief and
adds it to Bt. Similarly, the verification value obtained from
the oracle ω by αti is sent to αt by the plan

+?givev :true←?result(V) ∧ send(t, resultti(V)). (8)

The goal ?result(V) is complete only when αti completes its
verification task and resultti(V) is added to its belief base.

For the composite component represented by the compo-
nent term t with sub-terms t1, . . . , tm, the context expression
(3) is extended to

E′
t = Et ∧ propertyt1(A1) ∧ · · · ∧ propertytm(Am) (9)

∧ resultt1(V1) ∧ · · · ∧ resulttm(Vm)

to ensure the values from agents αt1 , . . . , αtm have been
received. The agent planner formulates two plans so that agent
αt can achieve its verification goal !verify . The first plan is
applicable whenever αt has not obtained values from agents
αt1 , . . . , αtm . In this context, the plan

+!verify : ¬E′
t ← !queryagents ∧ !verify

comprises the achievement subgoal !queryagents which trig-
gers plan (5) and continues to attempt the achievement !verify .
In the context of receiving values from all sub-component
agents, the plan invoked to achieve !verify is

+verify : E′
t ←?model(M) ∧ ?property(G) (10)

∧ ?propertyt1(A1) ∧ · · · ∧ ?propertytm(Am)

∧ ?resultt1(V1) ∧ · · · ∧ ?resulttm(Vm)

∧ ω(M,G, V,A1, . . . , Am, V1, . . . , Vm)

∧ +result(V).

comprising additional test goals unifying A1, . . . , Am and
V1, . . . , Vm with properties and values from the verification
tasks of agents αt1 , . . . , αtm . The properties and values con-
struct the assumption function a defined in (6) used as input
for action ω(M,G, V, P1, . . . , Pm, V1, . . . , Vm), invoking the
external oracle to compute v = ω(m, g, a). The variable V is
unified with the value v and stored in the agent’s belief base
with predicate symbol result.

C. Agent Runtime Phase

Runtime environments are dynamic and changes such as
the addition, removal and modification of components occur in
rapid succession. In this section, we specify plans enabling an
agent to sense localised changes of the components modelled
by their verification task. When a component change occurs,
the agent is required to adapt and evolve its beliefs and
behaviour during system operation in order to maintain a
verification task that correlates to the actual state of the system.
Formally, agent αt is constructed with the plan

+!detect : true← sense ∧ !detect. (11)

which executes the action sense to detect changes in the
component t ∈ C(Σ). Component change detection only
occurs after αt achieves its initial verification goal. We extend
the agent’s verification plan by appending the achievement goal
!detect to the plan bodies listed in (4) and (10).

Agent Change Perceptions: The agent action sense notifies
the engine that the system represented algebraically by the
component term S is updated according to a component
change sensed in the runtime environment. Mathematically, a
component change is modelled as a component term t′ ∈ C(Σ)
with an associated model m′ ∈ M and property g′ ∈ P .
When a component change occurs, the engine first updates

S and associated model and property. It then notifies agent
αt of the new model m′ and property g′, and finally adds a
change perception to the belief base of agent αt corresponding
to addition, removal or modification changes.

Modification Component Change: Change perceptions are
handled by agents in the following cases. When component
ti of the component t ≡ f(t1, . . . , tm) for 1 ≤ i ≤ m
is modified, a change perception modified is issued by the
engine to agent αti . In this case, the engine first updates the
component model and property to m′

ti
and g′ti respectively.

The engine updates the belief base Bti of the agent, replacing
its model and property beliefs with information of the new
verification task model(m′

ti
) and property(g′ti), respectively.

The engine’s change perception triggers the belief addition
event +modified in the agent and is handled by the plan

+modified : true ← !verify ∧ !notify.

supplied by the agent planner. The agent proceeds to call the
oracle to verify its modified task, providing the agent with a
new belief result(V). Next, the agent achieves the goal !notify
to notify agent αt that re-verification is complete. The plan

+!notify : true← send(t, !reverifyti). (12)

communicates the !reverifyti achievement goal to agent αt.
Agent αt attempts to achieve this goal using the plan

+!reverifyti
: true←− resultti ∧ −propertyti (13)

∧ send(ti, givep,Ai)

∧ send(ti, givev, Vi)∧!verify∧!notify.

which obtains the modified property a′i and updated verifi-
cation result v′i from αti . The !verify goal uses the updated
assumptions function a′ : P → V to invoke the oracle where

a′(aj) =

{

v′i if aj = ai,

a(aj) otherwise,

and notifies agents that re-verification has occurred.

Addition Component Change: In the general case, the
component term t = f(t1, . . . , tm) has m sub-components.
The addition of the new component tm+1 to t is specified by
the component term t′ = f(t1, . . . , tm, tm+1). Mathematically,
we define the substitution operation

S′ = S[f(t1, . . . , tm)/f(t1, . . . , tm, tm+1)] (14)

to replace instances of t with t′ in the component term
representation S to obtain S′. When the system representation
is updated, the engine adds the change perception add(tm+1)
to agent αt’s belief base, triggering a belief addition event that
is handled accordingly by the plan

+add(T) : true← create(T) ∧ replan

∧ !verify ∧ !notify.

The action create(T) invokes the agent planner to construct
a new agent αtm+1

and assign it the verification task w
associated with the new component tm+1. Once constructed,
the agent completes its initial achievement goal !verify . The
action replan described in the next section is used by αt to
take into account the added component. Once αt obtains new
plans it re-verifies to take into account the new component.
The goal !notify ensures all relevant agents are notified.

Removal Component Change: A component ti is removed
from t = f(t1, . . . , ti, . . . , tm), resulting in a new com-
ponent term t′ = f(t1, . . . , ti−1, ti+1, . . . , tm). The term
substitution operation (14) is applied to S such that S′ =
S[f(t1, . . . , ti, . . . , tm)/f(t1, . . . , ti−1, ti+1, . . . , tm)] replaces
instances of t with t′ in S, forming the component term S′.
When the system representation is updated, the engine adds
the change perception removeti to agent αt’s belief base,
triggering a belief addition event handled by the plan

+removeti : true←− propertyti ∧ −resultti ∧ stopti
∧ replan ∧ !verify ∧ !notify.

which removes agent αt’s beliefs regarding the verification
result and property obtained from agent αti . The action stopti
terminates and removes agent αti from the AVE. The agent
plan replan requests new plans that enable αt to reverify their
verification task and notify all relevant agents.

Agent Evolution: Agent action replan requests advice
from the planner after a change. The planner modifies the
agent’s plan library as follows. Given the component term t′

obtained by adding or removing the sub-component term ti
from t = f(t1, . . . , ti, . . . , tm), the agent planner constructs

• a new !queryagents plan body (5), adding or remov-
ing actions send(ti, givep,Ai) and send(ti, givev, Vi) re-
questing agent αti ’s property and verification value. This
corresponds to constructing the assumption function in (6).

• a context rule (9), adding or removing propertyti(Ai) and
resultti(Vi) as belief requirements for verification,

• a verification plan body (10), adding or removing test goals
?propertyti(Ai) and ?testti(Vi). The parameter listing in
the oracle invocation is accordingly updated to add or
remove parameters Pi and Vi.

• a re-verification plan (13), adding and removing plans
corresponding to sub-components dependencies.

When the agent receives the new plans, the agent reini-
tialises and attempts to achieve their initial verification goal.

Re-verification Policies: Plans (12) and (13) perform re-
verification that essentially follow recently introduced incre-
mental verification techniques [13], [14] based on component
dependencies defined by the system’s architecture. By using a
BDI-agent approach, these techniques are extendable to gen-
eralised verification policies comprising programmable agent
behaviours to perform remedial actions taken in response to
component change. Agent behaviour can express policies to
send conditional notifications only when their component be-
comes non-compliant to requirements after a change, perform
verification steps involving other oracles, or notify other agents
specified by the application domain requirements.

IV. A COMPOSITIONAL APPROACH TO SMT

We instantiate AVE with an existing SMT-based technique.
The following concepts are defined in [13] and reproduced for
completeness.

Component Models: To integrate an SMT verification
service with the engine we define M = P(Z)+, such that each
component term t is modelled as a finite subset Zt of variables
from the set Z inductively on the structure of component terms:

• Zci ∈ P(Z), for each basic component term ci such that
models are pairwise disjoint Zci ∩ Zcj = ∅, for i 6= j.

• Zf(t1,...,tm) = ∪mi=1Zti for each operation f ∈ Σ and
component terms t1, . . . , tm.

Component Properties: Let P = F (Γ, Z) such that
component requirements are quantifier-free first order formulae
over the signature Γ, defined inductively by the rules

φ ::=t1 = t2 | r1(t1, . . . , tn1
) | · · · | rm(t1, . . . , tnm

) |

¬φ1 | φ1 ∧ φ2 | φ1 ∨ φ2

where t1 and t2 are terms, and φ1 and φ2 are formulae.

We often display the variables that appear in a formula
by writing φ(z) to mean that the formula φ has at least one
instance of the variables in the tuple z = (z1, . . . , zp).

SMT Resolution: Satisfiability modulo theories represent
a class of theoretical techniques and practical tools that de-
termine the satisfiability of a formula expressed in terms of
tests and operations in a signature Γ. An SMT technique
smt : F (Γ, Z) → [Z → V] is applied to the formula φ(z)
in order to compute and return an assignment v : Z → V

of values from the set V to the variables in z, such that the
formula is satisfied. In symbols, we write v |= φ(z) ⇐⇒
[[φ(z)]](v) = true where v = smt(φ(z)). If no such v exists
then the unsatisfiable assignment u : Z → V is returned.
We note the empty formula ǫ is valid (i.e. satisfiable by all
assignment mappings).

The requirements function R : C(Σ) → P supplied to
the agent verification engine associates each component term
t with a logical formula φt such that var(φt) ⊆ Zt where
var(φt) is the set of variables in φt and Zt is the component
model of t. We use the inductive properties of component terms
to compute the conjunction φ = φt1 ∧ · · · ∧ φtm of formulae
associated to the components t1, . . . , tm of S. By resolving
φ using smt, we get an assignment a : P → V of values
from V to variables in φ such that system requirements R
are satisfied. We also define the function mono : C(Σ) →
F (Γ, Z) such that mono(t) is the monolithic formula of t, by
induction over the structure of component terms.

Let t be a component term in C(Σ).

Base case: for t ≡ ci the basic component ci, we have
mono(ci) = φci .

Inductive step: for t ≡ f(t1, . . . , tm) with sub-components
t1, . . . , tm and operation symbol f ∈ Σ, we have mono(t) =
φf(t1,...,tm) ∧ (∧mi=1mono(φti)).

Compositional SMT Resolution: As the component-based
system S typically contains a large number of components
and requirements, resolving a monolithic formula mono(S)
involves a huge constraint problem and is generally unfeasible
for a single agent to complete during runtime. Instead, we
describe a compositional approach based on the results of [13],
[24] which constructs smaller resolution steps to be carried
out independently. The solutions obtained in each step are
combined to form a solution for the monolithic formula.

The resolution of the conjunction φ1(y)∧φ2(z) of indepen-
dent formulae (no shared variables) may be decomposed into
two smaller steps a1 = smt(φ1(y)) and a2 = smt(φ2(z)),

combined using the operation ⊕ : [P → V]2 → [P → V]
such that (a1 ⊕ a2)(z) = a1(z) if z ∈ z and a2(z) otherwise.
We can prove that a1 ⊕ a2 |= φ1(y) ∧ φ2(z) (cf. Lemma
4.1 [13]). We extend this observation to n > 1 indepen-
dent logical formulae φ1, . . . , φn and construct an assignment
v |= ∧ni=1φi through a sequence of independent resolution
steps v1 |= φ1, . . . , vn |= φn. (cf. Theorem 4.1 [13]).

The SMT Oracle: Compositional SMT resolution serves
as the basis for instantiating the assume-guarantee oracle ω
specified by (1) to perform compositional SMT resolution. The
oracle accepts as input a verification task comprising

• mapping a : {φ1, . . . , φn} → {v1, . . . , vn} of independent
logical formulae in F (Γ, Z) to values in V representing
assumptions such vi |= φi for φi ∈ dom(a) and vi ∈
range(a),
• g ∈ F (Γ, Z), independent of each formula in dom(a),
• model m = var(g) ∪ (∪i∈{1,...,n}var(ai)), the union of

the variable sets for g and a1, . . . , an.

We model the oracle as the total function ω : W → V as

ω(m, g, a) = smt(g)⊕ (⊕n
i=1vi) (15)

that performs smt resolution to compute an assignment of
values in V to the model variables in m that satisfies the
conjunction g ∧ a1 ∧ · · · ∧ an of logical formulae. Thus, we
conclude ω(m, g, a) |= g ∧ (∧ni=1ai).

V. CASE STUDY

We introduce an industrial control system to illustrate
our agent-based verification engine. Figure 2 depicts an item
sorting system (ISS), typically used to sort high volume item
streams within systems such as airport baggage handling and
food packaging. Items are placed in an initial position by
a robotic arm. Horizontal and vertical pushers use sensors
to detect items and then direct them towards user-specified
end-points. Additional robotic arms remove items from the
end-points. The system software is written using the IEC
61499 [18] language, which enables component-based design
where components contain finitely nested networks of (sub)
components. Figure 3 shows the architecture of the ISS. The
system S comprises components vert, horiz and robot, rep-
resenting the control programs for the vertical and horizontal
pushers, and the robotic arms, respectively. Each component
has three sub-components labelled from A to I.

Components of IEC 61499 programs execute on devices
such as programmable logic controllers (PLCs). Components
deployed onto the same PLC communicate using faster local
mechanisms such as shared buffers. Components on different
PLCs communicate using networks like Ethernet. For the
ISS, which handles high item volumes, system speed can
be significantly reduced if critical path sub-components like
communicating pushers execute on different PLCs. Also, the
ISS can be made more dependable by deploying multiple
instances of sub-components A− I across available PLCs,
numbered 1 to p (p ≥ 2), according to the following high-
level requirements R:

R1 each component has 1 to 10 instances deployed

R2 A−C have at least 4 instances deployed

Robotic arms

for picking

Robotic arm

for initial

placing

final positions

for widgets

Fig. 2. An item sorting system

A CE E

vert

GF IH

robot

S

horiz

D

Fig. 3. Architecture of the item sorting system

R3 G has exactly 3 instances on PLC 2

R4 H must not be deployed on PLC 1

R5 all instances of D, E and F are identically distributed

The deployment configuration problem determines a distri-
bution of component instances of the ISS S across p PLCs to
satisfy the high-level requirements R.

System Specification in AVE: We define a component signa-
ture Σ and express an algebraic specification of the system ar-
chitecture depicted in Figure 3. Let the set of component terms
be denoted as C. We set the basic components of the system
A, . . . , I and define an operation symbol c : C ×C → C. For
the ISS, we have the component term

S ≡ c(vert, c(horiz, robot)) (16)

where, vert ≡ c(A, c(B,C)), horiz ≡ c(D, c(E,F)) and
robot ≡ c(G, c(H, I)).

Component models: To apply the compositional SMT reso-
lution technique described in Section IV to the deployment
configuration problem, we model sub-components A, . . . , I
by finite sets ZA, . . . , ZI of variables. E.g., A is modelled
by the set ZA = {Az1, . . . ,Azp} of integer-typed variables
from the set Z such that the assignment Azi = n models the
deployment of n instances of component A onto the ith PLC.
By definition, we have the model ZS = Zvert∪Zhoriz∪Zrobot

associated with the component term S, where Zvert = ZA ∪
ZB∪ZC, Zhoriz = ZD∪ZE∪ZF and Zrobot = ZG∪ZH∪ZI.

Requirements Specification We define a mapping φ :
C(Σ) → F (Γ, Z) by formalising requirements R1 - R5
of the ISS architecture as logical formulae over integer-type
variables to be associated with components of S. Let Γ be a
signature comprising sorts for integers and Boolean, symbols
for the standard arithmetic operations, equality and inequality
predicates. Initially, we set φt = ǫ, that signifies the case where
component t is not constrained. Requirement R1 sets the range
of deployed instances for each sub-component of S between
1 and 10, with non-negative number of instances over any
PLC. For sub-component A, we express this requirement as

the formula

φ1
A :=

p
∧

i=1

Azi ≥ 0 ∧

p
∑

i=1

Azi ≥ 1 ∧

p
∑

i=1

Azi ≤ 10. (17)

Similarly, all other sub-components B−I are assigned formu-
lae φ1

B − φ1
I respectively. Requirement R2 further constrains

the deployment, and is expressed as φ2
A :=

∑p

i=1 Azi ≥ 4. We
add this formula to the existing formula for R1 by assigning
φA := φ1

A ∧φ
2
A. We assign simular formulae φB := φ1

B ∧φ
2
B

and φC := φ1
C ∧ φ2

C for sub-components B and C. R3
is formalised as φ2

G := (Gz2 = 4) and we construct
φG := φ1

G∧φ
2
G, using the formula φ1

G formalising R1 for G.
For R4 we specify φ2

H := (Hz1 = 0) and add this formula
to the existing requirements by assigning φH := φ1

H ∧ φ2
H.

Lastly, we formalise Requirement R5 which states that the sub-
components of D,E and F must have identical distributions
of instances across the PLCs. We define the formula

φvert :=

p
∧

i=1

(Dzi = Ezi) ∧ (Fzi = Ezi) (18)

where the model for vert comprises variables from its sub-
component models ZD, ZE, and ZF.

VI. IMPLEMENTATION AND SIMULATION

We developed a generic multi-agent simulator of the agent
verification engine as a open-source Java application. The
engine’s implementation is based on Jason AgentSpeak [4].
Jason has a theoretical basis which is amenable to our formal
approach for system adaptation and has built-in, extensible
support for multi-agent system distribution over networks.
We used Jason’s standard architecture for agent perceptions,
inter-communication and actions. The AVE’s implementation
comprises the following core classes

• RunTimeEnvironment<M,P,V> simulates perceptible
component changes within the system’s runtime environ-
ment and executes agent actions (M for models, P for
properties and V for verification results)

• Engine<M,P,V> maintains the system representation
and compositional verification technique

• AgentPlanner<M,P,V> constructs agents and provides
new plans after changes occur.

• CompVerify, a compositional verification paradigm pro-
viding abstract methods add, modify and remove for
updating the system’s algebraic specification.

Agent Verification Engine for the ISS: We instantiated
AVE for the deployment configuration problem for the ISS
as follows. First, Z3CompVerify, a concrete class utilising
the compositional SMT approach described in Section IV was
developed. The oracle ω defined by (15) is implemented using
the Microsoft satisfiability modulo theories solver Z3 [8]. AVE
was also provided with S, the architecture (16) of the ISS, as
well as a mapping φ : C(Σ) → F (Γ, Z) that assigns logical
formulae to components of the system.

When the engine receives these inputs, the agent planner
constructs the necessary agents that co-operate to solve the
deployment configuration problem. Figure 4 depicts a tree
comprising ten agents in the set A constructed by the agent
planner as described in Section III. Each node is labeled with

αA(φA) αC(φC)αB(φB)

αvert

αG(φG) αI(φI)αH(φH)

αrobot

αS

αhoriz(φD ∧ φE ∧ φF)

Fig. 4. ISS Agent Tree
TABLE I. AN ASSIGNMENT MAPPING SATISFYING ALL ISS

REQUIREMENT IN R FOR 2 PLCS.

αA αB αC αvert αG αH αI

vS A B C D E F G H I

z1 1 4 2 1 1 1 0 0 1

z2 3 0 2 1 1 1 3 1 0

the name of the agent corresponding to a component in the
ISS. The logical formulae to be resolved by the agent using
the oracle are written in parenthesis. The formula φvert defined
in (18) shares variables with its sub-component formulae
φD, φE and φF. None of these formulae can be resolved
independently thus the engine assigns the task of resolving
φvert ∧ φD ∧ φE ∧ φF to agent αvert. The edges of the tree
denote communication links between agents in which queries,
properties and values are transmitted according to plans (5),
(7) and (8) respectively.

Once the engine has been initialised, agents in A attempt
to achieve their verification goal. We consider this process for
agent αA as follows. The agent has initial beliefs model(ZA)
and property(φA). It then attempts to achieve goal !verify
using plan (10) by invoking ω(ZA, φA, η) to obtain assignment
vA = {Az1 → 1,Az1 → 3}, storing the belief result(vA).
It also attempts the achievement goal !detect defined in (11)
to sense changes in component A during runtime.

The configuration problem is resolved when the result
belief is stored by αS. αS carries out the following steps for
this purpose. αS first queries the agents αvert, αhoriz and
αrobot and forms the assumption function a : P → V such
that a(φvert) = vvert, a(φhoriz) = vhoriz, and a(φrobot) =
vrobot. αS then invokes the oracle vS = ω(ZS, ǫ, a), where
ZS is the component model of S, ǫ is the empty formula.
Finally, αS stores +result(vS) in its belief base.

Table I depicts the value vS obtained by the SMT process
carried out by the oracle. The agent’s belief represents one
possible assignment mapping to satisfy all requirements in R.

Experimental Results

We evaluated the performance of AVE by running a series
of experiments starting with the ISS architecture shown in
Figure 3 and subsequently increasing the system size by five
components at each step, corresponding to an increase of 5
agents and 50 variables in the Z3 specification of the system
requirements (assuming 10 available PLCs). The experiments
hence considered system sizes containing between 10 and 60
agents. A standard PC running Windows 7 Enterprise 64-bits
with an Intel i7 2.1GHz Processor and 16 GB RAM was used
for the tests. We measured the time for αS to acquire the belief
result(vS) and compared it to the cumulative time across
all oracle invocations, corresponding to the time needed to
complete minimal number of steps to resolve the deployment
configuration problem using standard compositional SMT res-
olution. The results of this experiment are presented in Figure
5. All runs completed under 7 seconds. For small system sizes,
the difference in speed of the two approaches is negligible. As

0

1000

2000

3000

4000

5000

6000

10 15 20 25 30 35 40 45 50 55 60

M
il
li
se
co
n
d
s

Number of Agents

Compositional SMT Resolution Time AVE Time

Fig. 5. Configuration using Compositional SMT resolution and AVE

the system grows with additional components, AVE benefits
from concurrent oracle invocations by the agents.

We also carried out the following experiments to evaluate
the performance of our implementation for re-configuration
after a system change is perceived by an agent.

1. Adding a Robotic Arm: The ISS requires an additional
robotic arm to pick up items from a new end-point and
the runtime environment simulates the addition of a new
component R to the system. The component is modelled by
the variable set ZR and its requirements are formalised by
the standard logical formula φR = φ1

R as defined in (17).
The agent verification engine performs the following steps.
First, a substitution on the component term S is performed,
obtaining S′ ≡ S[robot/c(c(G, c(H, I)),R)] and add(R) is
added to αrobot belief base. Next, agent αrobot issues the
action to create(R). The agent planner then submits new plans
to αrobot, who invokes the oracle with assumptions from αG

to αI and αR. Agent αR obtains a new belief of the result.
Finally, αrobot notifies αS, resulting in a new result belief for
αS that includes the new verification result.

Figure 6 shows AVE consistently took about 37 millisec-
onds to re-configure the system, ranging in size from 10 to 60
agents. In contrast, global reconfiguration of the entire system
took increasingly longer as system size increased.

2. Modifying Requirements: We considered updated require-
ments to change the deployment of the pushers over available
PLCs. Such updates may happen often for the ISS, in order to
react to changing item volumes and types. As Figure 6 shows,
the re-configuration effort grew from about 67 milliseconds
to 110 milliseconds for systems sized from 10 to 60 agents.
In contrast, a complete re-configuration can take as much as
nine times longer to reverify, requiring 1000 milliseconds to
completely reverify the largest system containing 60 agents.
Experiments to compare re-verification time after an agent
removal due to component failure showed that on average it
takes 58 ms for agent αS to obtain an updated result belief,
whereas global reconfiguration takes 897 ms on average, for
systems containing 10 to 60 agents.

VII. RELATED WORK

There have been many approaches to solve the system
reconfiguration problem that we used to demonstrate the agent
verification engine. Various formal notations [1], [27], [28],
[15], [6] specify and verify component-based systems whose
architectures can evolve at run-time with the addition or
removal of components. We address a similar problem in this

0

100

200

300

400

500

600

700

800

900

1000

10 20 30 40 50 60

M
il
li
se
co
n
d
s

Number of agents

AVE (add component) Global (add component)

AVE (property update) Global (property update)

Fig. 6. Running time of AVE versus full compositional verification

paper but by contrast, our work delegates verification tasks
to agents rather than handling them in a centralised way.
In [23], two configuration protocols for deploying a cloud
application over multiple virtual machines are proposed and
verified using formal methods. In contrast to our work, the
protocols proposed in this article do not take into account
component failures and subsequent re-configuration actions.
In [5], a reconfiguration protocol is proposed that can handle
any number of failures during a reconfiguration. This protocol
expects reconfiguration decisions to be made before-hand,
unlike our approach which uses agents to make reconfigura-
tion decisions based on changes in the system architecture,
requirements, or device availability. Another approach that
incorporates agent technology is Lira [7], a light-weight, agent-
based reconfiguration engine. Each component in a given
distributed software system has a unique agent associated with
it. An agent handles reconfiguration requests for its associated
component. RECoMa [10] is a configuration manager can
help find appropriate computer platforms to deploy software
agents of a multi-agent system. All available devices on which
available components can be deployed are treated as equal,
each capable of deploying the components allocated to it.
However, our framework can be extended to heterogeneous
platforms by the use of requirements that specify constraints
on the device’s deployment.

VIII. CONCLUDING REMARKS

This paper presents a generic Agent Verification Engine in
which agents observe components and determine their com-
pliance to system requirements using a supplied compositional
verification technique. Agents communicate verification results
such that validation of localised components infer validation
of the entire system. A key benefit of the approach is the
inherently distributed nature of the agents constructed by the
engine, providing a decentralised method to apply composi-
tional verification to large-scale component-based systems.

Future work includes extending the theoretical underpin-
nings of our approach. We defined the engine as a translation
from an algebraic specification of the system architecture
to agent behaviours. BDI-agents were chosen to express re-
verification behaviours since they have a rich logical frame-
work [22] that is required to prove the correctness of the
agents constructed by the engine. Secondly, the engine can be
extended to include agent interpretation of verification results,
forming instructions to be provided as input for actuators to
affect the environment in a way that component compliance
is restored after a change. Lastly, there is no end to the kinds
of verification techniques to instantiate the engine and solve
domain specific problems from areas such as industrial control

systems or cloud computing technologies.

REFERENCES

[1] R. Allen, R. Douence, and D. Garlan. Specifying and analyzing dynamic
software architectures. In FASE, pages 21–37, 1998.

[2] S. Bensalem et al. Compositional verification for component-based
systems and application. IET Software, 4(3):181–193, 2010.

[3] S. Berezin, S. V. A. Campos, and E. M. Clarke. Compositional
reasoning in model checking. In COMPOS, pages 81–102, 1997.

[4] R. H. Bordini, J. F. Hübner, and M. Wooldridge. Programming multi-

agent systems in AgentSpeak using Jason. John Wiley & Sons, 2007.

[5] F. Boyer, O. Gruber, and D. Pous. Robust reconfigurations of component
assemblies. In ICSE, pages 13–22. IEEE Press, 2013.

[6] A. Cansado et al. A formal framework for structural reconfiguration of
components under behavioural adaptation. Electr. Notes Theor. Comput.

Sci., 263:95–110, 2010.

[7] M. Castaldi et al. A lightweight infrastructure for reconfiguring
applications. In ICSE, pages 231–244, 2003.

[8] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS,
pages 337–340. Springer, 2008.

[9] M. Fisher, L. Dennis, and M. Webster. Verifying autonomous systems.
Communications of the ACM, 56(9):84–93, Sept. 2013.

[10] J. A. Giampapa, O. H. Juarez-Espinosa, and K. P. Sycara. Configuration
management for multi-agent systems. In AAMAS, pages 230–231. ACM,
2001.

[11] O. Grumberg and D. E. Long. Model checking and modular verification.
ACM Trans. Program. Lang. Syst., 16(3):843–871, 1994.

[12] F.-S. Hsieh and J.-B. Lin. A self-adaptation scheme for workflow
management in multi-agent systems. J Intell Manuf, pages 1–18, 2013.

[13] K. Johnson and R. Calinescu. Efficient re-resolution of SMT specifi-
cations for evolving software architectures. In QoSA, pages 93–102.
ACM, 2014.

[14] K. Johnson, R. Calinescu, and S. Kikuchi. An incremental verification
framework for component-based software systems. In CBSE, pages
33–42. ACM, 2013.

[15] S. S. Kulkarni and K. N. Biyani. Correctness of component-based
adaptation. In CBSE, volume 3054, pages 48–58. Springer, 2004.

[16] Y. Labrou and T. Finin. Semantics and conversations for an agent
communication language. In Readings in Agents, pages 235–242.
Morgan Kaufmann, 1998.

[17] W. Lepuschitz et al. Toward self-reconfiguration of manufacturing
systems using automation agents. IEEE Trans. Syst., Man, Cybern.,

Syst., 41(1):52–69, 2011.

[18] R. Lewis. Modelling distributed control systems using IEC 61499:

Applying function blocks to distributed systems. Number 59. IET, 2001.

[19] K. Meinke and J. V. Tucker. Universal algebra. In Handbook of Logic

in Computer Science, pages 189–368. Oxford University Press, 1992.

[20] M. Metzger and G. Polakow. A survey on applications of agent
technology in industrial process control. IEEE Trans. Ind. Informat.,
7(4):570–581, 2011.

[21] A. S. Rao. Agentspeak (l): BDI agents speak out in a logical computable
language. In Agents Breaking Away, pages 42–55. Springer, 1996.

[22] A. S. Rao and M. P. Georgeff. Decision procedures for BDI logics. J

Logic Comput, 8(3):293–343, 1998.

[23] G. Salaün et al. An experience report on the verification of autonomic
protocols in the cloud. Innov Syst Softw Eng, 9(2):105–117, 2013.

[24] R. Sinha, K. Johnson, and R. Calinsescu. A scalable approach for re-
configuring evolving industrial control systems. In ETFA, 2014.

[25] I. Sommerville et al. Large-scale complex IT systems. COMMUN ACM,
55(7):71–77, 2012.

[26] D. Talia. Clouds meet agents: Toward intelligent cloud services. IEEE

Internet Computing, 16(2):78–81, 2012.

[27] M. Wermelinger, A. Lopes, and J. L. Fiadeiro. A graph based
architectural (re)configuration language. In ACM SIGSOFT SEN, pages
21–32, 2001.

[28] J. Zhang and B. H. C. Cheng. Model-based development of dynamically
adaptive software. In ICSE, pages 371–380, 2006.

	Introduction
	Preliminaries
	Agent Verification Engine
	The Oracle
	Agent Construction Phase
	Agent Runtime Phase

	A Compositional Approach to SMT
	Case Study
	Implementation and Simulation
	Related Work
	Concluding Remarks
	References

