

This is a repository copy of Exciton Dynamics in InSb Colloidal Quantum Dots..

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/93122/

Version: Supplemental Material

Article:

Sills, A, Harrison, P and Califano, M orcid.org/0000-0003-3199-3896 (2016) Exciton Dynamics in InSb Colloidal Quantum Dots. Journal of Physical Chemistry Letters, 7 (1). pp. 31-35.

https://doi.org/10.1021/acs.jpclett.5b02408

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Exciton Dynamics in InSb Colloidal Quantum Dots

Andrew Sills,[†] Paul Harrison,[‡] and Marco Califano^{*,†}

Institute of Microwaves and Photonics, School of Electronic and Electrical Engineering,

University of Leeds, Leeds LS2 9JT, United Kingdom , and Materials and Engineering Research Institute Sheffield Hallam University, Sheffield S1 1WB, United Kingdom

E-mail: m.califano@leeds.ac.uk

References

- (1) Chang, A. Y.; Liu, W.; Talapin, D. V.; Schaller, R. D. ACS Nano 2014, 8, 8513-8519.
- (2) The presence of specific capping agents and solutions is accounted for by the appropriate choice of the dielectric constant outside the dot,³ in this case $\epsilon = 2.5$.
- (3) Wang, L.-W.; Califano, M.; Zunger, A.; Franceschetti, A. *Phys. Rev. Lett.* **2003**, *91*, 056404.

^{*}To whom correspondence should be addressed

[†]Institute of Microwaves and Photonics, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom

[‡]Materials and Engineering Research Institute Sheffield Hallam University, Sheffield S1 1WB, United Kingdom

S 1: Calculated AR times for oleic-acid-capped InSb (R = 2.1 nm, blue curve and red symbol) and InAs (R = 2.0 nm, green curve and green symbol) dots in tetrachloroethylene^{1,2} plotted as a function of ΔE_g , the variation of the energy gap around the value calculated for this size ($\Delta E_g = 0$), for a range of energies corresponding to a 5% size distribution in InSb CQDs. The green symbol is slightly displaced to the right for clarity. The black arrows indicate the largest variations of τ_{XX} in this energy interval, compared to its value at $\Delta E_g = 0$, and are represented as asymmetric error bars in the symbols: if $\tau(\Delta E = 0)$ is located at a maximum of the curve, the error bar will appear only towards smaller values (this is the case, e.g., for $\tau(D = 4.18 \text{ nm})$ in Fig. 5), whereas the opposite is true in the case of $\tau(\Delta E = 0)$ being at a minimum (see $\tau(D = 4.96 \text{ nm})$ in Fig. 5). This procedure is applied to determine the error bars for all theoretical data appearing in Figs. 4 and 5.