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Abstract

Motivation: Exome sequencing has become a de facto standard method for Mendelian disease

gene discovery in recent years, yet identifying disease-causing mutations among thousands of can-

didate variants remains a non-trivial task.

Results: Here we describe a new variant prioritization tool, OVA (ontology variant analysis), in

which user-provided phenotypic information is exploited to infer deeper biological context. OVA

combines a knowledge-based approach with a variant-filtering framework. It reduces the number

of candidate variants by considering genotype and predicted effect on protein sequence, and

scores the remainder on biological relevance to the query phenotype.

We take advantage of several ontologies in order to bridge knowledge across multiple biomedical

domains and facilitate computational analysis of annotations pertaining to genes, diseases, pheno-

types, tissues and pathways. In this way, OVA combines information regarding molecular and

physical phenotypes and integrates both human and model organism data to effectively prioritize

variants. By assessing performance on both known and novel disease mutations, we show that

OVA performs biologically meaningful candidate variant prioritization and can be more accurate

than another recently published candidate variant prioritization tool.

Availability and implementation: OVA is freely accessible at http://dna2.leeds.ac.uk:8080/OVA/

index.jsp

Supplementary information: Supplementary data are available at Bioinformatics online.

Contact: umaan@leeds.ac.uk

1 Introduction

The application of next-generation sequencing for disease gene discov-

ery or clinical diagnostics can generate large volumes of data, often re-

sulting in identification of thousands of candidate disease genes or

variants. A healthy individual genome can harbor more than a hundred

genuine loss-of-function mutations (MacArthur et al., 2012), making

the identification of mutations responsible for a given phenotype a

non-trivial task. As systematic experimental verification of each variant

is infeasible, several computational prioritization methods have

emerged in recent years that attempt to tackle this problem.
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Candidate gene prioritization remains an active area of research

despite a considerable number of algorithms and applications pro-

posed in recent years (Adie et al., 2006; Britto et al., 2012; Chen

et al., 2009, 2011a,b). Thus far, while new methods and improve-

ments continue to be introduced, there has been no universally ap-

plicable or precise approach. Classically, gene prioritization tools

have been geared towards scrutinizing regional gene sets obtained

from linkage studies. However, in recent years, next generation

sequencing has become a de facto standard method for disease gene

discovery in Mendelian diseases. Consequently, a few applications

have recently emerged that expand and/or adapt currently used gene

prioritization approaches to be more applicable for the evaluation of

variants. For example, the Exomiser tool (Robinson et al., 2014)

supplements variant pathogenicity scoring with an algorithm for

comparing human diseases with mouse phenotypes, while

ExomeWalker (Smedley et al., 2014) incorporates interactome data

from STRING (Jensen et al., 2009). PriVar (Zhang et al., 2013)

combines variant pathogenicity scores from multiple sources to-

gether with pedigree information to rank variants.

Indeed, variant prioritization is not a novel concept—established

algorithms like SIFT (Kumar et al., 2009) and POLYPHEN

(Adzhubei et al., 2013) assess the likelihood of pathogenicity using

information such as residue conservation status or the effects the

change is likely to have on the protein. However, this approach is

not without drawbacks—often variants predicted to be deleterious

will produce no visible changes in phenotype due to redundancy in

the genome.

Similarly, variant filtering approaches tailored to individual situ-

ations provide an alternative to pathogenicity scoring for reducing

the size of candidate variant lists. Tools like AgileExomeFilter

(Watson et al., 2014) allow filtering of variants on a variety of crite-

ria, such as inheritance mode, regions of autozygosity, sequencing

quality or variant types thought to mostly be benign, for example

synonymous substitutions or small in-frame insertions or deletions.

However, as human exomes typically contain in excess of 30 000

variants, often neither approach proves adequate for pinpointing the

correct mutation.

Here we investigate combining classic variant filtering tech-

niques with a knowledge-based approach that utilizes data from

multiple sources to prioritize variants. We take advantage of the suc-

cess of the Open Biomedical Ontologies Foundry project (Smith

et al., 2007), which aims to standardize and create controlled vocab-

ularies across multiple biological domains, and utilize data from

multiple ontologies to facilitate computational analysis of natural

language descriptions. Gene Ontology (Ashburner et al., 2000) has

received significantly more development effort than other OBO

Foundry ontologies, and naturally a number of methods and appli-

cations that use GO annotations for candidate gene prioritization

have been described in the literature (Chen et al., 2011b; Eronen

and Toivonen, 2012; Morrison et al., 2005; Seelow et al., 2008).

However, so far little effort has been made to explore the potential

of integrating of data from other ontologies for candidate gene pri-

oritization. PhenoDigm (Smedley et al., 2013), currently incorpo-

rated into Exomiser, utilizes The Human Phenotype Ontology

(Köhler et al., 2014) and Mammalian Phenotype Ontology (Smith

and Eppig, 2009) to link human and model organism phenotypes.

Similarly, the Phenomizer (Köhler et al., 2009) tool takes advantage

of The Human Phenotype Ontology to prioritize known disease

genes in a clinical diagnostics setting.

Here, we integrate data from Gene Ontology(Ashburner et al.,

2000), The Human Phenotype Ontology(Köhler et al., 2014),

Uberon (Mungall et al., 2012), UberPheno (Köhler et al., 2013),

Disease Ontology (Kibbe et al., 2015) and The Pathway Ontology

(Petri et al., 2014) together with experimental interaction data from

mentha (Calderone et al., 2013) to develop a prioritization method

that aims to increase the coverage, applicability and precision of cur-

rently available variant prioritization tools. The resulting applica-

tion, ontology variant analysis (OVA), allows the user to control

almost every aspect of the prioritization process, from custom

phenotype selection and variant filtering to more in depth param-

eters, and is available at http://dna2.leeds.ac.uk:8080/OVA/index.

jsp. We demonstrate the usefulness of our approach by testing OVA

on multiple sets of candidate disease genes and exomes, encompass-

ing known and novel disease genes. Finally, we show that our tool

compares favorably to another recently published variant prioritiza-

tion tool, ExomeWalker (Smedley et al., 2014).

2 Methods

OVA is aimed at prioritizing data from whole exome sequencing ex-

periments and the workflow consists of three main steps, summar-

ized in Figure 1. Uploaded VCF (variant call format) files are passed

through custom user filters in order to substantially reduce candi-

date search space by removing likely benign variation. Each remain-

ing variant is mapped to a gene for which an extensive multi-

ontology annotation profile is derived from direct annotations and

supplemented with inferred annotations from model organism data

and data from the local interactome neighborhood.

For a given query phenotype or disease, a comparison annotation

profile is computed from known phenotype-genotype associations,

phenotype similarities and cross-links between multiple ontologies

to infer new knowledge.

OVA compares each candidate to the phenotype/disease annota-

tion profile and calculates a series of similarity metrics. These scores,

together with a number of other related features, are used as an in-

put to a model built using a supervised learning approach, which

calculates the probability of each candidate gene harboring the dis-

ease-causing variant.

2.1 Variant filtering
OVA allows users to select variant filters which are relevant to their

own data. These include variant classes which are often deemed be-

nign variation, such as synonymous single base substitutions, small

in-frame insertions or deletions or variation within intronic and/or

untranslated regions. Additionally, a chromosomal region filter can

be used where, e.g. autozygosity mapping data is available.

Genotype filtering integrates support for multi-sample VCF files.

This can be used in a number of ways. For instance, in a case of an

autosomal recessive phenotype, only variants which are homozy-

gous or compound heterozygous in the affected but not the un-

affected patient samples can be retained. Any genotype combination

is permissible, allowing the user complete control of this step.

A number of additional filtering options, such as quality score

and allele frequency in Born in Bradford project data, are also

included. It is also worth noting that the variant filtering approach

implemented in OVA uses transcript, rather than gene, sequences in

order to take codon position plurality (Subramanian, 2015) into

account.

2.2 Measuring semantic similarity between ontology

terms
In recent years, ontologies have become a de facto standard for

organizing knowledge in the biomedical domain in a structured
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manner. An ontology is a directed, acyclic graph in which vertices

correspond to terms and edges represent the relationships between

terms. Ontology terms are organized in a hierarchical manner, with

broad terms nesting towards the root of the ontology, while more

specific terms are further away from the root. Collectively, the terms

represent a controlled vocabulary describing a particular domain,

and this structure can facilitate computational analysis of entities

and concepts annotated with the terms. Ontological annotations

largely circumvent the problems that arise from the use of natural

language descriptions, such as ambiguity and subjectivity, and have

been invaluable in organizing data in large scale genome annotation

projects (Legaz-Garcı́a et al., 2012).

The structure of an ontology and corresponding annotations

allows the computation of semantic similarity between entities such as

genes or diseases. Although gene similarity has been classically com-

pared using sequence similarity (an evolutionary measure), the strength

of semantic similarity is that the comparison is driven by the meaning

of the descriptions pertaining to each gene. For example, simple lexical

comparison of the words ‘foal’ and ‘horse’ would classify them as un-

related. Similarly, sequence-based comparisons will tell us nothing

about the similarity of two genes which differ in sequence greatly, but

perform key functions in the same biological process or pathway.

In order to quantify the semantic similarity between entities, one

must first quantify the similarity of terms used to describe them.

Fig. 1. Overview of OVA workflow
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Semantic similarity between two terms, a and b, can be described as

the amount of information shared by the two terms. Given a hier-

archical ontology structure, this can be quantified thus:

Simða; bÞ ¼
ICMICAða;bÞ

maxICa ; ICb

(1)

where ICMICA(a,b) is the information content (IC) of the most in-

formative common ancestor (MICA) of the terms a and b. In infor-

mation theory, the IC of a term t can be given as:

ICt ¼ �lnðPtÞ (2)

where Pt is the probability of observing the term in a gold standard

corpus. UniprotKB (Magrane and Consortium, 2011) annotations is

a frequently used corpus for estimating IC of Gene Ontology terms

and has been shown to facilitate robust semantic similarity measure-

ments (Pesquita et al., 2009b). However, the annotation corpora

that could be used to calculate the IC of terms within other biomed-

ical ontologies are rarely complete or bias-free. Furthermore, there

are a number of issues that can arise when estimating IC using a cor-

pus, including bias towards the better characterized concepts, ‘or-

phan’ terms and the variability of the measure due to the evolution

of the corpus (Lord et al., 2003). Thus, in order to accurately quan-

tify similarities between terms within multiple ontologies, a different

approach is needed. Here, we modify a previously described top-

ology-based measure (Mazandu and Mulder, 2012).

The probability of occurrence of a term can be estimated using

the intrinsic ontology structure—terms further away from the root

are expected to be more specific and thus occur less frequently. For

example, The Human Phenotype Ontology term ‘Abnormality of

the eye’ (HP:0000478) is less informative than the term ‘Glaucoma’

(HP:0000501), its descendant.

The level of the term in the ontology graph does not always cor-

relate with its specificity. However, a number of topological charac-

teristics in the ontology graph can help correct where this is not the

case. The number of direct descendants of each term can be inter-

preted thus: if a term has a large number of children, its children are

more specific than those of a term that has fewer children, as it

encompasses more branches in the sub-domain. Furthermore, parents

and their positions within the ontology graph should be taken into

account. A term that descends from highly specific parent terms can

be reasoned to be more informative than a term descending from less

specific parent terms. The original approach (Mazandu and Mulder,

2012) considers the specificity of all direct ancestors of a term, using

a product formula to calculate probabilities of occurrence, which, in

particular in ‘deeper’ ontologies, can result in the inflation of specifi-

city of terms with more than one direct ancestor; and this propagates

down the ontology tree. In our approach, we consider only the most

informative direct ancestor of a term in order to model a lower rate

of IC gain while traversing down the ontology tree.

An ontology is never cyclic—thus, while a term may have mul-

tiple parents, it is impossible for a term to have a parent that is also

its descendant. However, multiple direct ancestors of a given term

may have child-parent relationships of their own. This property of

the ontology graph allows calculating the IC of each term recur-

sively, starting from the root of the ontology:

Pt ¼

1 if root

Pa

Ca
� 0:2 if t 0is a0 a

Pa

Ca
� 0:4 if t 0part of0 a

8>>>>><
>>>>>:

(3)

Where Pa is the probability of occurrence of a direct ancestor of

term t and Ca represents the number of children direct parents of

term t have. We only consider ‘is_a’ and ‘part_of’ relationship types

in all ontologies, giving more weight to ‘is_a’ type edges. Thus, using

this approach, the similarity of a term to itself is 1, as the MICA of a

term and itself is itself. Similarly, because the IC of the root is �ln

(1)¼0, any two terms for which the only common ancestor is root

will have a similarity of 0. This definition defines a normalized range

of semantic similarity for two terms.

The similarity measure described here was thus applied to the

three domains of the Gene Ontology, The Human Phenotype

Ontology, Uberpheno, Uberon and The Pathway Ontology, with IC

of each term, and pairwise similarities between all terms within each

ontology stored in an intermediate MySQL database.

Semantic similarity between two entities—genes or diseases—is

calculated from pairwise ontology term similarities. An entity is

rarely annotated with just a single term—thus, a measure to com-

bine pairwise similarities into a single score is needed. Although

three approaches are frequently used in the literature (Pesquita

et al., 2008)—the average, maximum or best match average of pair-

wise similarities- here we use the best match average approach, as

this provides the highest score resolution (Pesquita et al., 2009a).

Pairwise semantic similarity approaches for gene semantic simi-

larity can suffer from a bias arising from ‘shallow’ annotations.

Although a pair of terms deep within the ontology separated by the

same distance will have higher semantic similarity than those closer

to the root, the semantic similarity between a term and itself is al-

ways 1. Thus, two highly functionally divergent genes could contain

a high-level annotation such as ‘protein binding’ and the resulting

match would lead to an increase in the final pairwise score which

may bias the results. We attempt to address this issue by taking into

consideration the IC of a term where terms being compared are

equal. We modify the frequently used best match average approach

to adjust perfect matches to contribute less to the final score if they

are not informative, and more if they are.

2.3 Scoring
Initially, we derive an annotation profile of functions, processes, cel-

lular and anatomical components, pathways and model organism

phenotypes that may be relevant to the query human disease. This is

accomplished in two ways. First, using phenotype semantic similar-

ity, we select all genes which have been previously linked to diseases

presenting similar phenotypes to the query. We use direct gene anno-

tations as part of the annotation profile. Second, given a query dis-

ease, we can derive annotations by reasoning across ontologies,

starting from phenotype terms. For example, UberPheno phenotype

term ‘abnormal(ly) disrupted determination of left/right symmetry’

(ZP:0000333) can be directly linked to GO Biological Process term

‘determination of left/right symmetry’ (GO:0007368); similarly,

Uberon anatomical ontology term ‘heart’ (UBERON:0000948) can

be linked to multiple Gene Ontology terms such as ‘heart morpho-

genesis’ (GO:0009653), phenotype terms such as ‘Cardiomegaly’

(HP:0001640) and pathway ontology terms such as ‘cardiovascular

system disease pathway’ (PW:0000020).

For each candidate gene, we compare direct ontology annota-

tions to the disease annotation profile. Using the semantic similarity

measure described above, similarity scores are computed in every

domain for each candidate gene.

One of the major hurdles to overcome in a knowledge-based ap-

proach to candidate gene prioritization is the inconsistency of the

level and quality of annotations across the genome. Although the
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better studied genes are more likely to have high quality annota-

tions, less well characterized yet more relevant genes can be over-

looked simply because information available about them is

incomplete. We aim to address this issue in OVA using two different

approaches. We use annotations from model organism (mouse and

fish) orthologs to both support the human data and to compensate

where data for human genes remains incomplete. Furthermore, for

each candidate disease gene, we consider the neighborhood within

the human interactome. Interacting groups of proteins are more

likely to participate in the same or similar processes, and thus, if a

protein lacking in quality functional annotations is known to inter-

act with a group of proteins for which informative annotations are

available, these can be extended to apply to the poorly annotated

gene.

We define the interactome neighborhood as a set of genes shar-

ing direct interactions with the gene in question. These are derived

from mentha (Calderone et al., 2013), a collection of curated phys-

ical protein-protein interactions from several primary databases.

Here, we use a gene set enrichment approach to select only annota-

tions which are over-represented in the interactome neighborhood

in order to reduce noise and extract common functions. A Fisher’s

exact test was used to test for term enrichment within the interac-

tome neighborhood against whole interactome background.

Bonferroni correction (Armstrong, 2014) was applied to account for

multiple testing. Terms with corrected P<0.01 in the interactome

neighborhood are retained for comparison.

We consider and compare three different approaches to arrive at

final aggregate ranks: the average of similarity scores across all do-

mains; a weighted average; and a supervised learning approach.

The weighted average approach gives more weight to features

which can be considered more informative—e.g. while information

about cellular localization of a protein is important, a mouse model

with a highly similar phenotype to query disease is a much stronger

predictor of a good candidate disease gene. Additionally, this ap-

proach can dynamically adjust the similarity score weights based on

information available about the candidate gene. A low score of a

gene poorly annotated in a particular domain is not always compar-

able to a low score derived from multiple informative annotations.

In order to find an optimum scoring function for the multiple

derived metrics, we consider a supervised learning approach. We use

two-thirds of all OMIM diseases with at least one known causative

disease gene to create a training dataset and use our scoring func-

tions to assign a semantic similarity score for each category for each

known disease gene and a matched randomly selected gene. We

label each instance as either ‘disease gene’ or ‘non-disease gene’ and

consider each score as a feature to be learned. Furthermore, we also

consider a number of other features for each instance, such as the

number and informativeness of annotations that support each score;

proximity in the interactome to known disease genes; disease type.

We use an established data mining java package WEKA (Hall

et al., 2009) to train a Random Forest (RF) model—ensemble learn-

ing algorithm which constructs and combines information gained

from multiple decision trees and is robust to overfitting.

Given a training data set consisting of n instances of genes, let

Vi¼ {f1 . . . fm} be a feature vector describing the ith gene and Li its

class label (‘disease gene’ or ‘non-disease gene’). Briefly, in a RF

model, each decision tree is constructed using a bootstrapped sample

of instances from the training data n and a randomly selected subset

of features f, consisting of x<m features. In a decision tree, a set of

rules describing L are learned from the training data by recursively

splitting the feature space at each node until all leaf nodes contain

instances from only one L class. Given an unknown instance, each

tree in an RF model ‘votes’ for the likeliest class label, with the per-

centage of individual trees voting for a given class representing the

posterior probability that the instance belongs to that particular

class. For more details on RF models, see (Breiman, 2001).

We find that the optimum performance/accuracy trade off was

reached with a model of 600 decision trees, each considering x¼6

random features. We pre-process the training dataset by removing

misclassified instances using 10-fold cross-validation of the original

model, as these likely represent outliers, and use it build the final

model. We classify each candidate gene using our model and use

classification prediction distribution to obtain the likelihood for the

class labels being correct. We use this confidence value for ‘disease

gene’ class to obtain final ranks for candidate genes.

2.4 Testing datasets
In order to assess the performance of OVA, we have used multiple

datasets. Initially, all OMIM (Online Mendelian Inheritance in

Man, http://www.omim.org/) and Orphanet disease entries with

known molecular basis were selected, comprising 1340 disease/gene

combinations for which two or more known causative genes have

been attributed and 2964 disease/gene pairs with only one known

causative gene. We use two thirds of these to train our model as

described above, while the remaining disease/gene pairs form testing

Datasets 1 and 2.

Dataset 1 consists of all OMIM or Orphanet disease entries not

used for training with at least two known causative genes attributed.

This dataset comprises of 442 disease-gene sets and aims to simulate

use cases where a novel disease gene causes a disease with a previ-

ously described genetic basis.

Dataset 2 consists of all OMIM or Orphanet disease entries not

used for training where only one known causative gene is known.

This dataset comprised 978 disease-gene sets and aims to simulate

use cases where a novel disease gene causes a disease with no previ-

ously known genetic basis.

All VCF files used for testing were generated by simulating the

presence of a single known deleterious variant into one of our in-

house exomes from healthy individuals.

Dataset 3 consists of 150 VCF files, each containing a known

deleterious variant from ClinVar (Landrum et al., 2014) database.

These were selected on the following criteria:

• Annotated as ‘Pathogenic’
• An insertion, deletion or single nucleotide substitution
• Annotated to an OMIM disease with at least one other known

disease gene

Dataset 4 consists of 20 VCF files, each containing a deleterious

variant that has been published since the beginning of January 2015.

These variants are summarized in Supplementary Data S1.

3 Results

We use Datasets 1 and 2 to assess OVA performance for simulated

disease cases both with and without a previous known molecular

basis. For each disease gene tested in Datasets 1 and 2, we remove

any known disease or human phenotype associations in our data-

base, in order to simulate cases of novel gene discovery. Human

phenotype-related features that directly link the test gene to disease

are also replaced with unknown values in the instance classification

step. We rank each test gene with respect to disease together with

200 randomly selected genes from the pool of all human genes

which have at least minimal Gene Ontology annotations in order to
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avoid any bias, as known disease genes are rarely entirely unanno-

tated. We assess three methods for obtaining the final scores, as dis-

cussed in the Methods section—average, a weighted average

approach and a machine learning approach.

Receiver operator characteristic (ROC) curves and correspond-

ing area under the curve (AUC) values were calculated using R pack-

age ‘ROCR’ (Sing et al., 2005). Figure 2A shows the ROC curves

obtained using Dataset 1, while Figure 2B shows the ROC curves

obtained using Dataset 2. There is a notable difference in perform-

ance between the three methods that is consistent across the datasets

used. Our model, which was trained using 32 features, is able to pri-

oritize candidate disease genes with greater accuracy than the aver-

age or a weighted average approaches using the same scores.

As expected, there is a notable difference in performance be-

tween Datasets 1 and 2. Performance of OVA is greatly enhanced

(AUC up to 0.9636) where knowledge about previously identified

molecular causes of the disease is available. However, extending the

search to diseases which cause similar phenotypes allows the priori-

tization of cases where little is known about the molecular causes of

a disease that is still robust (AUC up to 0.8985).

The key parameter in OVA is the phenotype filter. In order to as-

certain how sensitive our algorithm is to various amounts of input

noise, we have used Dataset 1 to simulate cases where the phenotype

is inaccurately or inadequately described. Introducing additional ir-

relevant query phenotypes had less of an impact on the accuracy of

the results than excluding relevant terms (Supplementary Fig. S1A

and B); however, our method tolerates minor levels of noise. OVA

incorporates an extensive variant filtering step available for VCF

files, including support for multi-sample VCF files with multiple af-

fected/unaffected patients that can be often available to researchers

studying rare genetic diseases. As such, we compared variant priori-

tization capabilities of OVA with another recently reported variant

prioritization tool, ExomeWalker (Smedley et al., 2014) which uses

a current state-of-the-art algorithm for network-based gene priori-

tization, coupled with a variant scoring approach. We use Dataset 3

to see how these two tools compare. In order to simulate novel gene

discovery, we supply all known genes for the disease (except the test

gene) as seeds to ExomeWalker; for OVA, any associations between

test gene and disease are removed as previously described. For both

tools, we provide the inheritance mode of the disease for each test

instance and use default parameters.

Figure 3 shows the disease gene rank distributions obtained by

both tools. Out of 150 VCF files, in 20% of the cases OVA ranked

the true disease gene first, with ExomeWalker performing similarly

at 16%. A total of 64% of instances were ranked in the top 10 by

OVA, compared with 51% by ExomeWalker. Although

ExomeWalker scored 58% of all cases very accurately and the other

42% poorly, only 10% test cases were ranked outside the top 100

by OVA.

Additionally, as OVA can be used to prioritize genes as well as

variants, we have opted to compare our approach with another gene

prioritization tool, G2D (Perez-Iratxeta et al., 2007). G2D can pri-

oritize candidates using data from GO annotations, sequence simi-

larity, MeSH terms and STRING protein-protein interactions. We

have chosen this tool for comparison due to parallels in data sources

used by OVA; use of ‘seed’ gene input which enables a cross-valid-

ation based testing approach that we applied to OVA and

ExomeWalker; and finally, a straight forward web application that

facilitates automation for large testing data sets. Using Dataset 1, we

provided as input to G2D a 100 MB genomic region containing a

test gene and other known genes associated with the disease as

Fig. 2 ROC curves showing the performance of OVA while using Dataset 1 (A) and Dataset 2 (B). Each dataset was prioritized using three methods—the average

(green), the weighted average (red) and a classifier (blue) built using a supervised learning approach

Fig. 3. Performance comparison between OVA and ExomeWalker using 150

exomes
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seeds, and similarly prioritized all genes within the same region with

OVA. Although OVA significantly outperformed G2D (AUC

0.9593 versus 0.8524, Supplementary Fig. S2), some of the differ-

ences in accuracy could be accounted for by somewhat outdated

data used by G2D (as of this writing, last updated in 2010).

Finally, in order to verify that our results are consistent with real

cases of novel disease gene discovery, we use our model to prioritize

20 recently published novel disease gene mutations (Dataset 4). We

use a version of our database frozen before publication dates to as-

sess performance. Table 1 summarizes the results. The ranking is

overall somewhat poorer than that observed using our other data-

sets, with 14 out of 20 genes ranked in the top 25.

4 Discussion

The development of open biomedical ontologies has exploded in the

last decade and alongside it the coverage and accuracy of annota-

tions. Here we take advantage of this rich resource to bring together

ontologies from across multiple domains to produce OVA, a know-

ledge-based gene and variant prioritization tool. OVA utilizes

human and model organism phenotypes, functional annotations,

curated pathways, cellular localizations and anatomical terms to

find genes most relevant to a query phenotype.

OVA exploits The Human Phenotype Ontology and Uberpheno

structure and annotations to facilitate comparisons between human

diseases and animal models. Terms pertaining to model organism

phenotypes [e.g. ‘Abnormal snout morphology’ (MP:0000443)] are

bridged to human phenotype terms [e.g. ‘Abnormality of the nose’

(HP:0000366)] by Uberpheno, allowing us to quantify similarities

between them from the ontology graph. As numerous large scale

phenotyping efforts are currently under way, such as those under-

taken by The International Mouse Phenotype Consortium (Skarnes

et al., 2011), utilizing model organism phenotype data in a general-

ized gene prioritization approach is becoming more viable as cover-

age increases.

Gene ontology annotations have proved to be one of the most

frequently utilized sources of gene functional knowledge in compu-

tational biology, with numerous applications taking advantage of

this structured and highly curated resource. GO has also been heav-

ily utilized as a data source for various candidate disease gene priori-

tization applications. However, while candidate prioritization

methods using Gene ontology semantic similarity measures have

generally been demonstrated to be effective, there are a number of

drawbacks that this type of methodology suffers from that can de-

tract from usability, accuracy and utility.

The majority of tools catalogued at Gene Prioritization Portal

(Bornigen et al., 2012) require the user to supply ‘seed’ genes—genes

already known to be associated with the disease—and score candi-

dates based on similarity to these. This is a major limitation of this

approach, as in the case of rare or novel phenotypes, any prioritiza-

tion based on similarity to known disease genes is impossible.

Furthermore, the quality of available annotations of the supplied

genes largely determines the success of this type of approach, while

also allowing for little functional heterogeneity among disease

genes.

Here, we supplement this approach by building links across mul-

tiple ontologies. This allows enhancing the functional profile against

which all candidate genes are scored by reasoning directly from a

disease phenotype, as well as known genes. Consequently, this ap-

proach eliminates the requirement for the user to supply known

‘seed’ genes and reduces the reliance on quality seed gene

annotations.

The integration of data from across multiple ontologies can sup-

plement knowledge where it may be incomplete or inadequate in a

particular domain. Although most human genes now have GO an-

notations available, ‘shallow’ annotations—i.e. low IC terms—are

still prevalent. Similarly, there are a number of terms that while they

may not be considered uninformative, are not meaningful for candi-

date gene prioritization without further context. Two genes anno-

tated with the term ‘regulation of transcription, DNA-templated’

(GO:0006355) would be considered highly functionally similar, and

yet could participate in regulation of entirely different pathways.

Accordingly, pathway ontology annotations can serve to fill in this

knowledge gap, helping to decide whether a gene is truly relevant to

the query phenotype and improving prioritization accuracy by

removing noise.

Here, we simulate novel gene discovery in well and poorly char-

acterized diseases and show that our method is capable of meaning-

ful candidate gene prioritization even when direct functional

knowledge about the disease is lacking (Fig. 2). By inferring new

gene-disease associations through phenotype semantic similarity

search and cross-ontology bridges, OVA attempts to deduce missing

annotations, enabling gene prioritization for new and rare human

diseases and supplementing the functional profile of better charac-

terized phenotypes. We show that our model distinguishes relevant

genes accurately and, coupled with our variant filtering approach,

performs better than another recently published variant prioritiza-

tion tool (Fig. 3).

Knowledge-based candidate gene/variant prioritization methods

have been known to perform worse than reported when predicting

novel disease genes (Bornigen et al., 2012). However, large scale as-

sessment using novel disease genes is not feasible. Cross-validation-

based methods of individually removing direct disease-gene associ-

ations can serve to simulate novel gene discovery by ensuring that

the test gene does not contribute to the query annotation profile.

However, there is a degree of knowledge circularity in ontology an-

notations that is difficult to account for. By prioritizing VCF files

containing 20 newly reported mutations in novel disease genes, we

show that there is agreement between these results and those ob-

tained from a larger, simulated dataset (Table 1 and Fig. 3), al-

though the novel variant dataset prioritization was somewhat less

accurate. Thus, we maintain that our results on previously described

disease genes represent a reasonable approximation of the true ac-

curacy of OVA.

Through an interactive and intuitive web interface, OVA allows

the user to control many aspects of the prioritization process. OVA

employs The Human Phenotype Ontology to facilitate detailed

Table 1. The prioritization results of Dataset 4, consisting of 20

novel disease gene VCF files (see Supplementary Data S1 for

details)

Ranking Count Percentage

(%)

Genes

First 3 15 CACNA1B, COQ4, WWOX

Top 10 8 40 CACNA1B, COQ4, WWOX, KCNA2,

NALCN, SEMA3D, SLC9A1, USP8

Top 25 14 70 CACNA1B, COQ4, WWOX, KCNA2,

NALCN, SEMA3D, SLC9A1, USP8,

AFF4, DCDC2, DTNA, ETV6,

KCNC1, PNKP

Not in

top 25

6 30 CHCHD10, COL17A1, DDX58,

PTRH2,SNRPB, CEP120
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phenotypes queries in addition to previously described diseases, ena-

bling prioritization for novel diseases. OVA can be accessed freely at

http://dna2.leeds.ac.uk:8080/OVA/index.jsp through any modern

browser with JavaScript support.
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Köhler,S. et al. (2009) Clinical diagnostics in human genetics with semantic

similarity searches in ontologies. Am. J. Hum. Genet., 85, 457–464.
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