
ILP Approaches to the Blockmodel Problem

Les Proll

School of Computing, University of Leeds, Leeds LS2 9JT, UK
email: lgp@comp.leeds.ac.uk

1



Abstract

Blockmodelling is a method for identifying structural similarities

or equivalences between elements which has applications in a variety

of contexts, including multiattribute performance assessment. One

criterion for forming blocks results in a difficult nonlinear integer pro-

gramme. We give several integer linear programming formulations

of this problem and provide comparative computational results. We

show that methods of reducing symmetry proposed by Sherali and

Smith are not effective in this case and propose an iterative approach

in which the size of the problem is reduced.

Keywords: integer programming, nonlinear programming, blockmodel,
symmetry

1 Introduction

The technique of blockmodelling originated in sociology [?] where it was
used principally to identify structural similarities between elements in social
networks [?, ?]. More recently it has been used to analyse multiattribute
measures of performance in airlines [?], airports [?, ?, ?] and universities [?].
Blockmodelling provides an alternative to the strict ranking or ‘league table’
approach to relative performance assessment and, it is claimed [?], may have
some advantages over the well established technique of data envelopment
analysis [?]. In this context the performance, pi, of unit i is assessed via:

pi =
∑

j

wjvj(xij)

where xij is the performance of unit i on criterion j, vj(.) are value func-
tions mapping the performance measures to a common scale and wj are
normalised, user-specified weights. Any given set of weights gives a ranking
of the units. However there is likely to be some uncertainty as to what values
should be assigned to the weights, leading to potential criticism of the rank-
ing. There have been several approaches to analysing the sensitivity of the
ranking to variations in the weights, including mathematical programming
[?] and simulation [?]. The approach taken in block modelling is to recog-
nise that the ranking may be sensitive and, instead, to look for sets of units
whose performance scores are similar under different weights. To achieve
this, probability distributions for the weights are proposed and distributions
of the performance scores, pi, obtained by simulation. From the latter, prob-
abilistic estimates of the differences between the performance scores of pairs

2



of units can be obtained. A pair of units can be viewed as having similar
performance if the standardised difference between their scores is less than
some threshold [?].

Essentially units in the scenario under study are represented by nodes
in an undirected graph; an interaction between two units is represented by
the presence of an edge between the corresponding nodes. Conventionally
there is an edge connecting each node to itself. Two units are structurally
similar if they have similar patterns of interaction. The blockmodel concept
is to identify a partition of the graph into sets of mutually similar nodes,
or blocks. Frequently there will be several possible partitions of the graph
so that some means of choosing between them may be desirable. We might
require that a block is a complete subgraph, i.e. that nodes in a block
are structurally equivalent rather than structurally similar. However this
may result in an undesirably large number of blocks. Jessop [?] proposes
a criterion, maximum concentration, that favours the formation of a small
number of large, dense blocks, i.e. blocks for which the intra-block edge
density is close to 1. Justification of this approach and discussion of other
approaches is given in [?]. Here we concentrate on the computational aspects
of Jessop’s approach.

2 Jessop’s Model and a Transformation

The formulation of the block model problem suggested by Jessop [?] is:

MAX HHI =

b∑

k=1

(

n∑

i=1

λik)
2 (1)

subject to
b∑

k=1

λik = 1 (i = 1, 2, · · · , n) (2)

n∑

i=1

n∑

j=1

xijλikλjk ≥ β(

n∑

i=1

λik)
2 (k = 1, 2, · · · , b) (3)

λik = 0 or 1 ∀i , k (4)

where λik = 1 if node i is allocated to block k, 0 otherwise, n is the number
of nodes, b is the maximum number of blocks to be formed, xij is 1 if there
is an edge connecting nodes i and j, 0 otherwise, and β is a parameter which
represents the minimum acceptable block density. The value of β is normally

3



chosen to be close to 1. In some circumstances there may be additional con-
straints on block sizes. For example, in sociological applications, it may be
necessary to prohibit singleton blocks [?]; in design applications [?], maxi-
mum block size may be limited. Such constraints can be easily incorporated
into the model.

Writing the number of nodes in block k as sk =
∑n

i=1
λik, it can be seen

that HHI is the sum of squares of block sizes. HHI represents a measure of
concentration of the nodes into blocks and clearly favours the formation of
a small number of large blocks. It is essentially the same as the Herfindahl-
Hirschman Index [?], a popular measure of industrial concentration in an
economy. When β = 1, HHI is a multiple of the proportion of edges which are
contained within blocks. It seems natural to prefer block structures for which
this proportion is higher. Constraints (2) are set partitioning constraints
which insist that every node is allocated to a single block. Constraints (3)
may be rewritten: ∑n

i=1

∑n

j=1
xijλikλjk

s2
k

≥ β

As
∑n

i=1

∑n

j=1
xijλikλjk is the number of intra-block edges in block k, the

left hand side of this constraint can be seen to represent the edge density of
the block. Hence constraints (3) require the edge density of each block to
reach a given threshold, β.

The principal difficulty in solving this model is that its continuous relax-
ation has a nonconvex feasible region. The direction of optimisation com-
pounds the difficulty. Thus any attempt to solve this problem by branch and
bound requires a global optimisation routine to handle the node subproblems,
which potentially is computationally expensive. Commercial mathematical
programming systems such as CPLEX, LINGO, MOSEK and XPRESS-MP
[?] appear to support the solution of mixed integer quadratically constrained
problems only in the convex case. However the binary nature of the variables
allows the model to be linearized [?] by replacing the product term λikλjk by
a binary variable ωijk together with the logical implications:

λik = 0 ∨ λjk = 0 ⇔ ωijk = 0

ωijk = 1 ⇔ λik = 1 ∧ λjk = 1.

Taking account of the undirectedness of the graph edges, this gives:

MAX HHI =

b∑

k=1

(

n∑

i=1

λik + 2

n−1∑

i=1

n∑

j=i+1

ωijk) (5)

4



subject to
b∑

k=1

λik = 1 (i = 1, 2, · · · , n) (6)

2
n−1∑

i=1

n∑

j=i+1

(xij − β)ωijk ≥ (β − 1)
n∑

i=1

λik (k = 1, 2, · · · , b) (7)

ωijk ≤ λik (i = 1, 2, · · · , n− 1; j = i + 1, · · · , n; k = 1, 2, · · · , b) (8)

ωijk ≤ λjk (i = 1, 2, · · · , n− 1; j = i + 1, · · · , n; k = 1, 2, · · · , b) (9)

ωijk ≥ λik +λjk−1 (i = 1, 2, · · · , n−1; j = i+1, · · · , n; k = 1, 2, · · · , b)
(10)

λik = 0 or 1 ∀ i , k ; ωijk ≥ 0 ∀ i , j , k (11)

which we denote Model 1. Note that the variables ωijk can be treated as
continuous variables as constraints (8)-(10), together with the nonnegativity
of ωijk, force them to be binary in any feasible solution. The price paid
for the linearization is a substantial increase in problem size. There are an
additional 3bn(n − 1)/2 constraints and bn(n − 1)/2 variables as compared
to the quadratic model (1)-(3). Whilst n is fixed by the problem instance,
choice of b is a matter of judgement. We return to this point later.

3 Symmetry Considerations

The model detailed in Section 1 exhibits symmetry in that the labelling (1,
2, · · · , b) of the blocks, whilst necessary for the specification of the model,
is in reality arbitrary. Given a feasible allocation of nodes to blocks, any
permutation of the block labels will also give a feasible solution. Symmetry
is known to cause significant difficulties in tree search algorithms for the
solution of discrete optimisation problems. Discussion and examples are
given, for example, in Proll [?] and Sherali and Smith [?] in the case of
integer linear programming, Proll and Smith [?] and Smith et al. [?] in the
case of constraint programming, and Petrie et al. [?] in the case of hybrid
constraint programming/linear programming.

Sherali and Smith suggest two approaches to reducing the effect of sym-
metry: model reformulation in terms of variables which eliminate the sym-
metry, and augmenting the model with constraints which impose a valid
hierarchy on the (previously) feasible solutions. The first approach does not
seem possible here without resorting to column generation approaches, as do
Mehrotra and Trick [?], as the variables λik define which individual nodes

5



are allocated to a particular block, which is what we need to know. Hence
we employ the second approach.

An ordering of the blocks can be induced by insisting that they are in-
dexed in nonincreasing order of size. This can be implemented by adding the
constraints:

n∑

i=1

λi1 ≥
n∑

i=1

λi2 ≥ · · · ≥
n∑

i=1

λib. (12)

With this ordering, we can also impose:

n∑

i=1

λi1 ≥ ⌈n/b⌉. (13)

We denote the augmented model Model 2.
In their work on the SONET problem, Sherali and Smith also suggested

the use of:

n∑

i=1

iλi1 ≥
n∑

i=1

iλi2 ≥ · · · ≥
n∑

i=1

iλib (14)

as a means of distinguishing between symmetric arrangements. In this case,
suppose that, for example, we have an allocation in which nodes 1 and 2
are (fully) allocated to block i and nodes 3 and 4 are allocated to block
j (j < i). For simplicity suppose that all other nodes are distributed across
the remaining blocks, Then (12) allows this solution and also a solution in
which nodes 3 and 4 are allocated to block i and nodes 1 and 2 to block j,
the distribution of other nodes remaining unchanged. Such solutions are not
allowed by (14). As there are frequently many solutions containing blocks
of the same size, there is some hope that (14) might be more effective than
(12) in reducing the effects of symmetry. We denote the model comprising
(1)-(11) and (14) as Model 3.

4 Computational Experiments

Computational experiments on Models 1, 2 and 3 were performed on seven
problem instances ranging in size from 20 to 47 nodes using CPLEX 8.1 on
a 2.8GHz processor running under Fedora Core 4 Linux. The parameter β
was set to 1.0 in all cases. Initial experiments suggested little hope of getting
proven optimal solutions to these problems in a viable time. The smallest
problem was stopped after 17 hours of cpu time using Model 1, at which

6



time over 1 million nodes had been explored, the number of active nodes was
still increasing at a substantial rate and the integrality gap was still 65%.
The same problem was allowed to run to proven optimality using Model 2; a
process which took in excess of 131 hours. Clearly the branch and cut search
has to be a truncated one. A maximum cpu time limit of 600 secs was set
for problems 1-3 and 900 secs for problems 4-7.

Jessop [?] describes a constructive heuristic for the blockmodel problem
in the case β = 1. This was used to determine the maximum number of
blocks, b, to be considered for each problem instance. Table 1 shows the
problem data and the results obtained with the heuristic, where Vh is the
HHI value attained and bh is the corresponding number of blocks.

Problem Nodes Edges Density(%) Vh bh

1 20 95 50 58 9
2 30 117 27 104 12
3 33 162 31 99 13
4 40 282 36 254 9
5 40 408 52 336 8
6 47 393 36 321 10
7 47 569 54 403 8

Table 1: Problem data and heuristic solutions

Problem 1 arises from an analysis of the results of a particular season in
the Barclays Premier League, the top division in English soccer [?]. Problem
2 arises from elective choices in an MBA programme [?]. Problem 3 is taken
from a study of dwellings within a city [?]. Problems 6 and 7 arise from
a multicriteria assessment of airport performance [?]; problems 4 and 5 are
subsets of problems 6 and 7 respectively.

Table 2 shows that the potentially large MILP model is substantially re-
duced by CPLEX Presolve [?]. The reason for the magnitude of the reduction
is clear. The insistence that the blocks are fully dense (β = 1) implies that
if nodes i and j are not connected by an edge they cannot be in the same
block. Hence the variables ωijk and associated constraints can be deleted, or
indeed not generated. This will not be the case for other values of β.

A number of branching strategies were tried with no clear ‘winner’. The
results for Model 1, displayed in Table 3, were obtained with the CPLEX
default strategies except that priority was given to branching in the up di-
rection on the λ variables and that the search was directed to concentrate on
feasibility.

7



Initial After Presolve
Problem Rows Columns Rows Columns

1 5168 1899 2871 1043
2 15715 5992 5311 2164
3 20651 7306 7235 2535
4 21119 7389 9832 2898
5 18777 6568 11505 3584
6 29253 10161 13916 3960
7 26008 9032 16103 4928

Table 2: Problem size

Best Upper
Problem V0 V1 HHI No Ne Na Bound

1 210.00 210.00 78 5904 20411 1974 152
2 264.00 262.50 128 2843 3721 307 224
3 357.00 355.92 117 0 1271 344 325
4 604.00 602.55 276 1592 1619 341 543
5 856.00 855.00 340 273 928 301 782
6 833.00 833.00 337 390 461 154 798
7 1185.00 1185.00 505 440 579 183 1111

Table 3: Results for Model 1

In Table 3, V0 is the objective value of the LP relaxation, V1 is the ob-
jective value after the addition of cuts, Best HHI is the objective value of
the best integer feasible solution found, No is the number of the node at
which this solution was found, Ne is the number of nodes explored prior to
termination, Na is the number of active nodes remaining at termination.

The LP relaxation is clearly quite weak and not much improved by
CPLEX cuts, despite there being of the order of 200 - 400 cuts generated at
the root node. Nor are these cuts effective at later nodes. Progress in the
search is characterized by a slow rate of reduction in the upper bound. The
experiments suggest that it is relatively easy to find feasible solutions, a high
proportion of which are found by CPLEX’s heuristic.

Table 4 shows the results obtained with Models 2 and 3. Sherali and
Smith showed that incorporating a similar set of symmetry breakers in their
model for the SONET problem [?] leads to substantial improvement in per-
formance. This is not the case here; neither Model 2 nor Model 3 perform as
well as Model 1. However it may be noted that Sherali and Smith were able

8



to run their instances of the SONET problem to proven optimality. This is
not the case for the problem studied here as the search necessarily has to be
truncated because of the observed slow progress towards proven optimality.

Model 2 Model 3
Best Best

Problem V0 V1 HHI V0 V1 HHI
1 210.00 208.14 78 210.00 208.41 70
2 264.00 260.40 110 264.00 261.45 -
3 357.00 355.63 107 357.00 355.48 89
4 604.00 601.40 238 604.00 601.81 216
5 856.00 854.81 246 856.00 853.97 294
6 833.00 831.12 283 833.00 831.45 321
7 1185.00 1183.08 367 1185.00 1183.73 355

Table 4: Results for Models 2 and 3

Sherali and Smith observed that CPLEX’s heuristic finds it much more
difficult to find feasible solutions when the symmetry breakers are present,
particularly early on in the search. The experiments reported here echo
this. A feasible solution of Model 1 was found at the root node for each
problem and, in four of the seven cases, was better than that found by
Jessop’s heuristic. A first feasible solution of Models 2 and 3 was never
found at the root node and, for the larger problems in particular, took a
significant amount of the limited search time to find, for example Model
2 took 542 seconds to find a first IFS for problem 6. For each problem,
the solution found was worse than that found by Jessop’s heuristic. This
goes some way to explaining why the use of the symmetry breakers does not
appear beneficial in a truncated search. Trick [?] discusses other reasons why
tightening the LP relaxation of an ILP at the modelling stage may not be
beneficial.

It is easily shown [?] that, given a feasible solution, any improved feasible
solution will have an HHI value which is better by at least 2. This fact,
together with the HHI value found by the heuristic, can be used to set cutoffs
which potentially prune the search tree. Given the comments on first feasible
solutions above, this may be expected to be particularly advantageous to
Models 2 and 3. However Table 5, which shows the objective value of the
incumbent at termination for Models 1, 2 and 3 obtained using this cutoff
strategy, does not support this expectation. The performance of Models 2
and 3 remains worse than that of Model 1, failing to improve on the initial
solution in the majority of cases. Nor does the performance of Model 1

9



consistently improve because of the cutoff.

Model 1 Model 2 Model 3
Initial Best Upper Best Upper Best Upper

Problem Cutoff HHI Bound HHI Bound HHI Bound
1 58 78 153 78 148 74 156
2 104 126 223 116 230 118 248
3 99 119 325 99 333 99 344
4 254 274 540 262 565 254 557
5 336 352 854 336 790 336 789
6 321 339 808 321 797 321 805
7 403 503 1113 403 1135 403 1153

Table 5: Results with Cutoffs Imposed

Thus our experience reinforces the warnings of Ragsdale and Shapiro [?]
that use of such cutoffs may, in fact, degrade performance of a branch and
cut search, particularly when the search is truncated.

Table 5 also shows that Models 2 and 3 are not especially successful in
decreasing the upper bound on the objective function compared to Model 1.
Table 6 shows the progress of Models 1 and 2 on problem 2 at approximately
600 second intervals. Progress on the other problems is similar and does
not suggest that the symmetry breaking constraints become more beneficial
when the search is less truncated.

Model 1 Model 2 Model 1 Model 2
no initial cutoff with initial cutoff

Time Best Upper Best Upper Best Upper Best Upper
(secs) HHI Bound HHI Bound HHI Bound HHI Bound

0 98 262 - 261 104 262 104 261
600 128 224 110 225 126 223 116 230

1200 128 219 114 219 126 216 116 217
1800 136 215 122 215 126 212 128 214
2400 136 211 128 212 126 209 128 210
3000 136 208 128 208 128 206 128 207
3600 136 206 132 207 128 204 128 205

Table 6: Progress of Models 1 & 2 on Problem 2

The preprocessing phase in CPLEX 8.1 includes an option, which does not
appear to be available in other MILP solvers, to detect symmetry patterns

10



and to add symmetry breaking cuts to an MILP model. By default this
option is switched off, as was the case for the experiments described earlier.
Table 7 displays results for Model 1 with this option switched on. The
results show that the CPLEX symmetry cuts are effective in tightening the
LP relaxation of Model 1, resulting in substantially decreased initial upper
bounds in all but problem 6. Better values of the objective function are
obtained for problems 2 - 5, including a proven optimal solution to problem
2, but a worse value for problem 7. The case of problem 6 is a strange one
as CPLEX does not detect a symmetry pattern even though one obviously
exists. There do not appear to be any features of problem 6 that clearly
distinguish it from the other problems which might explain this behaviour.
Note also that the presence of these symmetry breaking cuts does not affect
the ability of CPLEX’s heuristic to find an IFS at the root node in every
case.

Best Upper
Problem V1 HHI Bound

1 136.00 78 94
2 144.07 136 136
3 198.10 125 162
4 415.17 280 339
5 667.35 398 553
6 833.00 337 799
7 857.47 481 767

Table 7: Results for Model 1 with Symmetry Preprocessing

5 Alternative Approaches

As any solution of Model 1 is a partition of a fixed number of nodes into
distinct blocks, the HHI value of a solution, which is a quadratic function of
block size, will tend to increase as the number of blocks decreases. It is easily
shown that an upper bound on HHI for a problem with n nodes and exactly
b blocks is (n − b + 1)2 + b − 1, which is strictly increasing as b decreases.
However it is not true, in general, that the maximum value of HHI attainable
by a solution in b blocks is at least as large as the maximum value of HHI
attainable by a b + 1 block solution. Nevertheless it would seem reasonable
to allow the tendency of HHI to increase with decreasing number of blocks to
influence the search by giving preference to solutions with a smaller number

11



of blocks. One approach is to introduce variables δk representing the presence
(δk = 1) or absence (δk = 0) of block k and to replace (5)-(11) by:

MIN Z = Q(

b∑

k=1

δk)−

b∑

k=1

(

n∑

i=1

λik + 2

n−1∑

i=1

n∑

j=i+1

ωijk) (15)

subject to (6)-(11) and:

n∑

i=1

λik ≤ (n− bL + 1)δk (k = 1, 2, · · · , b) (16)

δk = 1 (k = 1, · · · , bL) (17)

δk = 0 or 1 (k = bL + 1, · · · , b) (18)

where bL is a lower bound on the number of blocks. We denote this Model
4. Unless the edge density of the graph is at least β, in which case the
problem is trivial, bL ≥ 2. Setting Q = n2 + 1 gives pre-emptive priority
to minimising the number of blocks [?]. Results for Model 4 under similar
conditions to those used in the experiments with Model 1 recorded in Table
3 are given in Table 8. The only change to the conditions was that the
branching strategy gave priority to the δ variables over the λ variables and,
within the δ variables, to the down direction, i.e. to eliminating a block.

Problem V0 V1 Blocks Best HHI
1 1145.97 1795.40 6 78
2 8136.02 8191.59 10 136
3 7471.90 8378.33 10 125
4 8160.87 12204.00 8 280
5 5952.31 8027.63 6 390
6 12909.30 19057.00 9 353
7 8615.57 12075.00 6 519

Table 8: Results for Model 4

For Model 4, the CPLEX default cut strategy is much more effective,
both at the root node, as indicated in Table 8, and throughout the search.
Model 4 finds the same solution as Model 1 for problem 1 but gives a better
solution on termination for all the other problems.

Models 1-4 require the maximum number of blocks across which the nodes
are to be allocated to be fixed. In the experiments previously reported in this
paper, this was fixed at the number of blocks formed in the solution provided

12



by Jessop’s heuristic. The relatively good results provided by Model 4 sug-
gest that looking for solutions with a small number of blocks is productive.
Disaggregating (15) gives a two stage process, firstly minimising the number
of blocks via Model 5 and then maximising HHI via Model 1. This has some
advantage in that the search space for Model 1 is reduced by the elimination
of n(n − 1)/2 constraints and n + n(n − 1)/2 variables for a reduction of 1
in b. Model 5 is:

MIN
b∑

k=1

δk (19)

subject to (6)-(11), (15)-(17). It is run iteratively to allow the bounds bL, b
on the number of blocks to be revised. The procedure is:

Set bL = 2, b = bh, terminate = false
While not terminate do

Solve Model 5
If Model 5

(i) proves no IFS exists, terminate = true
(ii) finds an IFS with b∗ blocks

b← b∗ − 1
bL ← ⌈V1⌉

(iii) does not find an IFS, bL ← ⌈V1⌉
If bL = b∗ terminate = true

Solve Model 1

Model 5 is run until the earliest of the following events occurs: (i) an
integer feasible solution is found, (ii) 100 nodes of the search tree have been
explored, (iii) 60 seconds cpu time have been used. The allowed run time of
Model 1 is then fixed so that, for comparison purposes, the total cpu time
is the same as that allowed in the experiments reported in Table 3. The
sequence of results obtained with Model 5 are displayed in Table 9.

13



Problem bL bU V1 b∗ HHI secs
1 2 8 3.20 8 56 0.25

4 7 4.15 7 64 0.44
5 6 5.00 6 68 0.28
5 5 - - - 1.77

2 2 11 9.28 11 94 1.61
10 10 10.00 10 134 1.02

3 2 12 7.14 12 97 6.77
8 11 8.51 11 107 14.51
9 10 9.00 10 121 2.46
9 9 9.00 - - 60.00

4 2 8 6.03 8 242 15.95
7 7 - - - 1.25

5 2 7 4.13 7 256 4.85
5 6 5.03 6 332 2.11

6 2 9 6.15 9 293 19.78
7 8 - - - 5.77

7 2 7 4.30 7 339 11.80
5 6 5.02 6 419 7.42

Table 9: Sequential bound determination

In Table 9, a V1 value of - denotes that the LP relaxation is infeasible, a
b∗ value of - denotes that it is proven that no IFS exists within the bounds
on the number of blocks. In most cases an IFS is found without branching.
Table 10 gives the results obtained in the final run of Model 1 with the
maximum number of blocks to be formed determined as above.

After Presolve Best Upper
Problem Rows Columns V0 V1 b HHI Bound

1 1910 690 210.00 207.65 6 78 117
2 4430 1470 264.00 257.83 10 136 224
3 5573 1950 357.00 353.44 10 125 316
4 8744 2576 604.00 600.50 8 280 540
5 8638 2688 856.00 852.67 6 390 680
6 13628 3960 833.00 831.12 9 363 781
7 11963 3696 1185.00 1182.06 6 519 1028

Table 10: Results from Model 1 with reduced number of blocks

14



The best HHI values found by this procedure are the same as those ob-
tained from Model 4 except for problem 6 for which a better solution is ob-
tained. In addition, the best solution is generally found considerably earlier
in the search.

The block modelling problem described here is essentially an optimisation
problem on a graph. As such it is related to a number of other well-studied
graph optimisation problems, such as maximal clique, minimum colouring
or maximal independent set [?]. When β = 1 a block is precisely a clique.
Further, the problem addressed by Model 5, finding the minimum number of
blocks, is equivalent to finding a minimum colouring of the complement of the
graph. Hence it may seem productive to explore this relationship. However
objective function (19) is a coarse one which potentially admits many optimal
solutions, whereas objective function (1) has more discriminatory power. Use
of (19) here is simply as an aid to the primary objective of maximising HHI.
Moreover methods for solving the graph optimisation problems referred to
above do not appear to extend to the block modelling problem with β < 1.
We prefer to explore here methods which are applicable to both cases.

In a further attempt to reduce the effect of symmetry, following the dis-
appointing performance of Models 2 and 3, the same device as in [?] was
used to remove some of the arbitrariness in the labelling of the blocks. This
can be done by insisting that block 1 contains one of the nodes of maximal
degree, further reducing the size of the ILPs. We denote as Model 6 the
model comprising Model 1 with the maximum number of blocks determined
by the iterative use of Model 5 and with block 1 partially specified in this
way. Table 11 shows the results from Model 6.

Best Upper
Problem V0 V1 HHI No Ne Bound

1 182.00 177.90 78 47 7778 78
2 230.00 226.00 136 289 3842 187
3 319.00 315.28 125 75 1364 282
4 542.00 539.22 280 280 1688 489
5 782.00 779.33 390 37 1310 607
6 745.50 751.65 363 305 858 700
7 1099.67 1097.45 519 261 522 911

Table 11: Results from Model 6

As Table 11 shows, the solution for Problem 1 is now a proven optimal
solution (given the maximum number of blocks considered), in approximately

15



88 secs. Although no better solutions are found for the remaining problems,
useful reductions in both the initial and final upper bounds are obtained.

Table 12 shows the effect of combining Model 6 and Model 2, i.e. making
a partial assignment to block 1 and adding constraints similar to (12) for
blocks 2, . . . , b and confirms the earlier finding that these constraints do not
help if the search is truncated. Worse solutions pertain at termination for
three of the four largest problems.

Best Upper
Problem V0 V1 HHI No Ne Bound

1 182.00 177.90 78 126 4878 78
2 230.00 223.90 136 780 2295 172
3 319.00 313.58 125 680 1023 283
4 542.00 540.12 274 302 997 496
5 782.00 779.41 390 444 690 600
6 745.50 752.79 333 355 432 710
7 1099.67 1096.67 507 299 434 932

Table 12: Results from Model 6 combined with Model 2

As Table 13 shows, the combination of Model 6 with CPLEX’s symme-
try preprocessor allows the search to be completed for all problems except
problem 6, for which symmetry is again not detected.

Best Upper Time
Problem V1 HHI Bound (secs)

1 130.89 78 78 6.79
2 167.31 136 136 7.16
3 199.66 125 125 135.34
4 437.62 280 280 396.69
5 628.59 390 390 35.75
6 751.65 363 700 900
7 855.00 519 519 152.87

Table 13: Results for Model 6 with Symmetry Preprocessing

It may be noted that running Model 6 without symmetry preprocessing
finds the same HHI values, but without proving their optimality. This may
give some confidence in using a solver without a symmetry preprocessing
feature.

16



As remarked earlier, it is possible that a better solution exists with a
larger number of blocks than considered in Model 6, even if the solution
found by Model 6 is ‘proven optimal’. This is evidenced by comparing the
result for problem 5 in Table 13 with that in Table 7. However the approach
described here offers a way of getting a good solution in reasonable time.
Obtaining a proven optimal solution to instances of the block model problem
is likely to be very expensive. For example, by using the approach described
here, we know that the best HHI value we can obtain for problem 1 with
most 6 blocks is 78. The upper bound on HHI for a 13 block solution is 76.
Hence to confirm or deny that the optimal HHI value for problem 1 is 78
would require looking at solutions with between 7 and 12 blocks. Attempts
to do so using Model 6 with the addition of the constraints:

n∑

i=1

λik ≥ 1 (k = 1, · · · , 7)

were abandoned without result after 20 hours. Even proving that there is no
better solution in exactly seven blocks took in excess of two hours.

6 The Case of Non-Full Density Blocks

When β < 1 the block density constraints (3) are weaker than when β =
1. Consequently we expect that there are likely to be many more feasible
partitions of each graph and a correspondingly larger search space. Also,
as noted earlier, the reductions achieved by presolve will not be as great
as is the case when β = 1. Additionally preliminary investigations showed
that CPLEX’s cuts were again ineffective and that, surprisingly, CPLEX’s
heuristics are not as effective in finding feasible solutions as for the full density
block case. These factors may make it more difficult to find good partitions
in a limited time. In recognition of this, the time limits on the branch and
cut search were increased to 1200 secs for Problems 2-3 and 1800 secs for
Problems 4-7.

The influence of the maximum number of blocks on the quality of solu-
tions obtained in a limited search time can be seen by comparing Tables 3
and 10. Clearly we would expect it be possible to form fewer blocks in the
non-full density case than in the full density case. If we can establish a good
estimate of the smallest number of blocks for which a feasible solution ex-
ists, this would mitigate, to some extent, the potential difficulty referred to
above. Although Jessop’s heuristic does not directly address the case of non-
full density blocks, it can be used to derive solutions for this case. Clearly

17



any feasible solution to the full block case is a feasible solution to the cor-
responding non-full block case and can potentially be improved as follows.
Suppose i, j are full density blocks with si, sj members respectively and that
there are eij edges connecting nodes in block i to nodes in block j. The
number of blocks can be reduced by 1 if:

s2

i + s2

j + 2eij ≥ β(si + sj)
2

as blocks i and j can be merged. Successive block mergers yield the results
in Table 14.

Problem b HHI
1 5 110
2 10 158
3 11 131
4 6 410
5 4 626
6 5 707
7 4 871

Table 14: Results from Heuristic for β = 0.8

Unfortunately the increased size of the subproblems and the inability of
the CPLEX heuristics to find feasible solutions early enough in the search
causes the procedure for reducing the number of blocks to be considered,
described in Section 5, to be ineffective. With the exception of Problem 1,
for which a 4 block solution was found, no feasible solutions or other useful
information was found within the imposed time limits of 90 secs for problems
1-3 and 120 secs for problems 4-7. We can, of course, use the number of blocks
provided by the procedure for β = 1, which is relatively cheap to compute,
if this improves on the number of blocks found by the heuristic for any value
β < 1. For the problems used here this is the case for Problem 3, for which
the heuristic gives 11 blocks with β = 0.8 whilst the procedure of Section 5
gives a 10 block solution for β = 1. Applying Model 1 with the maximum
number of blocks determined in this way gives the results in Table 15.

18



After Presolve Best Upper
Problem Rows Columns b HHI Bound

1 2875 1050 4 138 197
2 13090 4650 - - 315
3 15883 5610 10 149 427
4 14086 4920 5 542 719
5 11745 4100 3 782 1002
6 16267 5640 4 601 992
7 13023 4512 4 1141 1396

Table 15: Results from Model 1 for β = 0.8

The results achieved in Table 15 suggest that satisfactory results can be
obtained from Model 1 if the initial number of blocks is low. They are much
worse if the number of blocks is high, as is the case for Problems 2 and 3; this
is partly due to the relatively low density of the graph for these problems.

Table 16 gives the results obtained when a node of maximum degree is
‘anchored’ in block 1. Unlike the case of β = 1, the results with the anchored
model do not weakly dominate those of the unanchored model; worse values
of HHI being obtained for Problems 3 and 4 whilst a better value is obtained
for Problems 5 and 7. Each of the models fails to find a feasible solution in
one case. Adding either of the symmetry breaking constraints (12) or (14)
again is not beneficial to performance.

After Presolve Best Upper
Problem Rows Columns b HHI Bound

1 2065 760 4 138 179
2 12219 4350 10 162 278
3 14922 5280 10 141 401
4 13383 4680 5 540 658
5 8943 3120 3 806 909
6 15576 5405 - - 936
7 12470 4324 4 1141 1305

Table 16: Results from anchored Model 1 for β = 0.8

CPLEX’s symmetry preprocessing does not help as much as it did in the
full density case. Table 17 shows that, although a proven optimal solution
was obtained (in 577 secs) to problem 1, no IFS was found before termination

19



in three of the other cases and, in the remaining three, worse solutions were
obtained.

Best Upper
Problem HHI Bound

1 138 138
2 - 273
3 - 162
4 450 658
5 782 916
6 - 936
7 1069 1278

Table 17: Results for anchored Model 1 for β = 0.8 with Symmetry

Preprocessing

Although better HHI values are obtained via ILP for those problems for
which feasible solutions are found, the failure of the ILP approaches to always
find feasible solutions is problematic.

7 Conclusions

The results given in Table 11 suggest that, despite the weakness of the LP
relaxation, ILP does provide a means of getting substantially better qual-
ity solutions to full-density problems of up to 50 nodes than does Jessop’s
heuristic in a reasonable amount of time. Larger problems may well be prob-
lematic unless some problem specific cuts can be developed to tighten the
LP relaxation. This is even more important for the non-full density block
problem as the size of the resulting ILP may make it difficult to find good
solutions, even if only a small number of blocks need be formed. Finding
good solutions to the non-full density remains challenging.

The results reported here also suggest that we still do not understand
how to effectively handle symmetry in ILP. Some doubt is cast on the general
effectiveness of the symmetry breaking inequalities suggested by Sherali and
Smith [?] in cases in which it is not viable to allow a complete branch and cut
search. Margot’s work [?] on embedding symmetry breaking features within
a branch-and cut algorithm, which to some extent parallels developments in
constraint programming [?], may provide a more satisfactory approach.

20



8 Acknowledgements

I am grateful to Alan Jessop for helpful discussions, provision of data and
for supplying me with the code for his heuristic. I am also grateful to the
anonymous referees whose comments and suggestions were most helpful.

References

[1] NEOS Optimization Software Guide. http://www-
fp.mcs.anl.gov/otc/Guide/SoftwareGuide/, November 2004.

[2] I P Gent and B M Smith. Symmetry breaking during search in constraint
programming. In W Horn, editor, Proceedings of ECAI-2000, pages 599–
603. IOS Press, 2000.

[3] A Jessop. Multiple attribute probabilistic assessment of the performance
of some airlines. In M Koksalan and S Zionts, editors, Multiple Criteria

Decision Making in the New Millenium, pages 417–426. Springer, Berlin,
2001.

[4] A Jessop. Exploring structure: a blockmodel approach. Civil Engineer-

ing and Environmental Systems, 19:263–284, 2002.

[5] A Jessop. Blockmodels with maximum concentration. European Journal

of Operational Research, 148:56–64, 2003.

[6] K E Petrie, B M Smith, and N Yorke-Smith. Dynamic symmetry break-
ing in constraint programming and linear programming hybrids. Tech-
nical Report APES-81-2004, Apes Research Group, University of St An-
drews, 2004.

[7] L G Proll. Formulation of integer linear programs - an example. Inter-

national Journal of Mathematical Education in Science and Technology,
20:415–420, 1989.

[8] L G Proll and B M Smith. ILP and constraint programming ap-
proaches to a template design problem. INFORMS Journal on Com-

puting, 10:265–275, 1998.

[9] C T Ragsdale and G W Shapiro. Incumbent solutions in branch-and-
bound algorithms: setting the record straight. Computers and Opera-

tions Research, 23:419–424, 1996.

21



[10] H D Sherali and J C Smith. Improving discrete model representations
via symmetry considerations. Management Science, 47:1396–1407, 2001.

[11] H P Williams. Model Building in Mathematical Programming. John
Wiley and Sons, 4th edition, 1999.

22


