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Abstract

In this paper we consider estimation of common structural breaks in panel data models

with interactive fixed effects which are unobservable. We introduce a penalized principal

component (PPC) estimation procedure with an adaptive group fused LASSO to detect the

multiple structural breaks in the models. Under some mild conditions, we show that with

probability approaching one the proposed method can correctly determine the unknown num-

ber of breaks and consistently estimate the common break dates. Furthermore, we estimate

the regression coefficients through the post-LASSO method and establish the asymptotic

distribution theory for the resulting estimators. The developed methodology and theory are

applicable to the case of dynamic panel data models. The Monte Carlo simulation results

demonstrate that the proposed method works well in finite samples with low false detection

probability when there is no structural break and high probability of correctly estimating

the break numbers when the structural breaks exist. We finally apply our method to study

the environmental Kuznets curve for 74 countries over 40 years and detect two breaks in the

data.
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1 Introduction

As the availability of panel or longitudinal data increases in the last few decades, panel data

studies have become increasingly popular among a wide group of statisticians and econome-

tricians. Analysis of panel data sets has various advantages over that of purely time series or

cross-sectional data sets. A relatively less exploited advantage of the panel data is that it pro-

vides researchers with more flexibility to model cross-sectional dependence over individual units

and uncover possible structural changes over time. Structural breaks are, indeed, quite common

in many areas such as economics and finance, and may occur for various reasons. For example,

the celebrated environmental Kuznets curve may shift as a result of a growing public awareness

of environmental issues, a technological breakthrough, or an international coordination and co-

operation on environmental protection. If such structural changes are ignored in the modelling,

subsequent statistical analyses may lead to incorrect inferences or misleading predictions.

In recent years, there has been a growing literature on the estimation and test of structural

breaks in panel data models. Generally speaking, most of the existing literature falls into two

categories depending on whether the parameters of interest are allowed to be heterogenous across

subjects or not. The first category focuses on homogenous panel data models (c.f., De Watcher

and Tzavalis, 2012; and Qian and Su, 2015b) and the second category considers estimation

and inference of common breaks in heterogenous panel data models (c.f., Bai, 2010; Kim, 2011;

Baltagi et al., 2015). Despite the vast literature on multiple structural breaks in the time

series framework (c.f., Csörgö and Horváth, 1997; Bai and Perron, 1998; Qu and Perron, 2007;

Harchaoui and Lèvy-Leduc, 2010; Chan et al., 2014; Qian and Su, 2015a), most of the existing

work on panel structural breaks focuses on the estimation and inference of a single structural

break in panel data models. The only exception is the paper by Qian and Su (2015b) which

considers shrinkage estimation of common breaks in panel data models. However, Qian and

Su’s (2015b) modelling framework does not allow the existence of cross-sectional dependence,

which limits the applicability of their techniques as cross-sectional dependence commonly exists

in many panel data sets nowadays (such as the panel climate and environmental data).

In this paper, we aim to estimate multiple structural breaks in panel data models with

cross-sectional dependence which is described through the unobservable interactive fixed effects.
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Such a cross-sectional dependence structure has received increasing interest in the analysis of

panel data in recent years; see, for example, Pesaran (2006), Bai (2009), Bai and Li (2014), and

Moon and Weidner (2014, 2015). However, to the best of our knowledge, there is virtually no

work on estimating multiple structural breaks in panel data models with interactive fixed effects

and possible dynamic structure (such as the dynamic autoregressive panel data models). As in

Qian and Su (2015b), we apply the shrinkage idea through the adaptive group fused LASSO

(AGF-LASSO) to estimate the multiple structural break dates. Nevertheless, the existence of

the unobservable interactive fixed effects in our model makes the estimation techniques and the

development of the asymptotic theory much more involved than those in Qian and Su (2015b). In

Section 2 below, we introduce a novel penalized principal component (PPC) estimation procedure

via AGF-LASSO to estimate both the regression coefficients and the factor loadings. Similar

to the sparsity result in the high-dimensional variable selection literature (c.f., Fan and Li,

2001, 2006), we establish the consistency for the detection of multiple structural breaks, which

indicates that both the number of breaks and the break dates can be consistently estimated.

Furthermore, we also estimate the regression coefficients through the post-LASSO method and

then establish the asymptotic distribution theory of the resulting estimators, which generalizes

the results in Bai (2009) and Moon and Weidner (2014) where there is no structural break.

The simulation studies show that the proposed PPC method has a high probability of correctly

estimating the number of breaks when the structural breaks exist in panel data models, and a

low probability of false detection when there is no structural break. Furthermore, we study the

environmental Kuznets curve for 74 countries over 40 years by using our method and find that

there exist two structural breaks in the data.

The rest of the paper is organized as follows. Section 2 introduces the model and the PPC

estimation method. Section 3 gives the asymptotic properties for the PPC estimator as well as

the post-LASSO estimator. Section 4 discusses the determination of the number of the factors

and the choice of the tuning parameter in the PPC estimation procedure and reports the Monte

Carlo simulation results. Section 5 gives the empirical application of the proposed model and

method. Section 6 concludes the paper. Appendices A and B give the assumptions and the

proofs of the asymptotic results, respectively. Some technical lemmas as well as their proofs are

collected in Appendix C of the supplemental document.

Notation. For an m× n real matrix A we denote its transpose as A′, its Frobenius norm as

‖A‖ (≡ [tr(AA′)]1/2), its spectral norm as ‖A‖sp (≡ [µmax (AA′)]
1/2

), and its Moore-Penrose
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generalized inverse as A+, where µmax (·) denotes the maximum eigenvalue of a square matrix.

Let PA = A (A′A)
+
A′ and MA = Im − PA, where Im is an m ×m identity matrix. When

A is symmetric with m = n, we use µr(A) to denote its rth largest eigenvalue by counting

multiple eigenvalues multiple times, and µmax(A) and µmin(A) to denote the largest and smallest

eigenvalues of A, respectively. Let vec(A) be the vectorization of A and Tr(A) the trace of a

square matrix A. Let 0 denote a null matrix or vector whose size may change from line to line,

and 1{·} be the usual indicator function. The operator
P→ denotes convergence in probability,

D→ convergence in distribution, and plim probability limit. We use (N,T ) → ∞ to denote that

both N and T pass to infinity jointly.

2 Model and estimation

In this section, we first introduce a panel data model with interactive fixed effects and an

unknown number of structural breaks, and then propose the PPC estimation method.

2.1 The model

Let Yit be the dependent variable for subject i measured at time t where i = 1, ..., N, and

t = 1, ..., T . We consider the following panel data model with interactive fixed effects

Yit = β′
tXit + λ′

ift + εit, i = 1, ..., N, t = 1, ..., T, (2.1)

where Xit is a p × 1 vector of explanatory variables, βt is a p × 1 vector of unknown slope

coefficients which may change over time, λi and ft denote an R0×1 vector of unobservable factor

loadings and common factors, respectively, both of which may be correlated with Xit, and εit

is the idiosyncratic error term. The dimension of the unknown coefficient vector, p ≡ pNT , is

allowed to be diverging as (N,T ) → ∞, and the dimension of the vectors for the factor loadings

and common factors, R0, is a fixed positive integer. Throughout the paper, we denote the true

value of a parameter vector with a superscript 0. For instance, β0
t , λ

0
i and f0

t denote the true

values of βt, λi and ft, respectively. We allow the regression coefficients to vary over the time

and model (2.1) thus includes the classical linear panel data models with interactive fixed effects

(c.f., Pesaran, 2006; Bai, 2009; Moon and Weidner, 2015) as a special case. As in these papers,

we assume that both the cross-sectional size N and the time series length T pass to infinity,

which is called as “large dimensional panel” in the literature.
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In this paper we assume that the true regression coefficients
{
β0
1, ..., β

0
T

}
exhibit certain

sparse nature such that the total number of distinct vectors in the set is given by m0+1, which

is unknown but typically much smaller than the time series length T . We allow m0 ≡ m0
T to be

divergent at an appropriate rate as T → ∞. More specifically, we let

β0
t = α0

j for t = T 0
j−1, ..., T

0
j − 1 with j = 1, ...,m0 + 1,

where we adopt the convention that T 0
0 = 1 and T 0

m0+1 = T + 1. The indices T 0
j , j = 1, ...,m0,

indicate that there are m0 unobserved break points/dates and the number m0 + 1 denotes the

total number of regimes. We are interested in estimating the unknown number of structural

breaks, the unobservable break dates, and the regression coefficients in different regimes. Let

β =
(
β′
1, ..., β

′
T

)′
, αm = (α′

1, ..., α
′
m+1)

′, Λ =
(
λ1, λ2, ..., λN

)′
, F =

(
f1, f2, ..., fT

)′
, and Tm =

(T1, ..., Tm) . Throughout the paper, we use m0, α0
m0 =

(
α0′
1 , ..., α

0′
m0+1

)′
and T 0

m0 =
(
T 0
1 , ..., T

0
m0

)

to denote the true number of structural breaks, the true vector of distinct regression coefficients,

and the set of true break dates, respectively.

2.2 PPC estimation

We consider the PPC estimation of the unknown components
(
β0,Λ0,F 0

)
, the true values of(

β,Λ,F
)
. Let Yt =

(
Y1t, ..., YNt

)′
and Xt =

(
X1t, ..., XNt

)′
. In order to apply the PPC method,

we define the objective function through

Q̃NT,γ

(
β,Λ,F

)
=

1

NT

N∑

i=1

T∑

t=1

(
Yit −X ′

itβt − λ′
ift
)2

+
γ

T

T∑

t=2

ẇt

∥∥βt − βt−1

∥∥ , (2.2)

which can be written as

1

NT

T∑

t=1

(Yt −Xtβt −Λft)
′ (Yt −Xtβt −Λft) +

γ

T

T∑

t=2

ẇt

∥∥βt − βt−1

∥∥ ,

where γ ≡ γNT > 0 is a tuning parameter and ẇt is a data-driven weight defined by

ẇt =
∥∥β̇t − β̇t−1

∥∥−κ
, t = 2, ..., T, (2.3)

β̇t, t = 1, ..., T , are the preliminary estimates of the regression coefficients βt, and κ is a user-

specified positive constant that usually takes value 2 in the literature. In this paper, the pre-

liminary estimation
{
β̇t, t = 1, ..., T

}
is constructed to minimize the first term of the objective

function in (2.2) by ignoring the penalization device.
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By concentrating F out in the first term of the objective function (2.2), we can readily obtain

the following objective function

Q̂NT,γ (β,Λ) = Q̂NT (β,Λ) +
γ

T

T∑

t=2

ẇt

∥∥βt − βt−1

∥∥ , (2.4)

where

Q̂NT (β,Λ) =
1

NT

T∑

t=1

(Yt −Xtβt)
′
MΛ (Yt −Xtβt) .

Following Moon and Weidner (2014), we can further concentrate Λ out in (2.4) and obtain the

objective function

Q̄NT,γ (β) = Q̄NT (β) +
γ

T

T∑

t=2

ẇt

∥∥βt − βt−1

∥∥ , (2.5)

where

Q̄NT (β) =
1

N

N∑

r=R0+1

µr

[
1

T

T∑

t=1

(Yt −Xtβt) (Yt −Xtβt)
′

]
. (2.6)

It can be seen that the penalization device in the above objective functions is closely related

to the literature on the adaptive LASSO (Zou, 2006), the group LASSO (Yuan and Lin, 2006),

and the fused LASSO (Tibshirani et al., 2005; Rinaldo, 2009). The use of the Frobenius norm ‖·‖
for the vector difference βt − βt−1 generalizes the fused LASSO to the group fused LASSO; and

the use of the weights {ẇt} makes the LASSO procedure adaptive. Therefore, we can call our

penalized estimation procedure as an adaptive group fused LASSO (AGF-LASSO) procedure.

Following Bai and Ng’s (2002) principal component method under the identification restric-

tions that Λ′Λ/N = IR0
and F ′F is a diagonal matrix, the minimizers to the objective function

defined in (2.4), β̂ =
(
β̂
′

1, ..., β̂
′

T

)′
and Λ̂ satisfy that

β̂ = argmin
β

Q̂NT,γ(β, Λ̂), (2.7)

and
[ 1

NT

T∑

t=1

(
Yt −Xtβ̂t

)(
Yt −Xtβ̂t

)′]
Λ̂ = Λ̂V NT (2.8)

where V NT is a diagonal matrix consisting of the R0 largest eigenvalues of the matrix in the

square brackets in (2.8) arranged in descending order. Furthermore, the common factor F 0 can

be estimated by

F̂ = (f̂1, f̂2, ..., f̂T )
′ with f̂t = N−1Λ̂

′
(Yt −Xtβ̂t). (2.9)
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An iterative algorithm based on (2.7) and (2.8) can be implemented in practice to estimate β0

and Λ0. Note that the above calculations are different from those in the existing literature such

as Bai (2009) and Lu and Su (2015) by switching the role of Λ and F , because the regression

coefficients are heterogeneous over time.

With the estimated regression coefficients β̂t, the set of estimated break dates are given

by T̂m̂ = (T̂1, ..., T̂m̂) where 2 ≤ T̂1 < ... < T̂m̂ ≤ T such that ‖β̂t − β̂t−1‖ 6= 0 at t = T̂j

for j = 1, ..., m̂. The set T̂m̂ divides the time interval [1, T ] into m̂ + 1 regimes such that the

parameter estimates remain constant within each regime. Notice that if T̂m̂ = T, the last break

occurs at the end of the sample and the (m̂+ 1)th regime has only one time series observation

for each cross-sectional unit. Let T̂0 = 1 and T̂m̂+1 = T + 1. Define α̂j = α̂j(T̂m̂) = β̂T̂j−1
as the

estimate of α0
j for j = 1, ..., m̂ + 1. In the sequel, we usually suppress the dependence of α̂j on

T̂m̂ (or the tuning parameter γ) unless necessary. For example, we let α̂m̂ =
(
α̂′
1, α̂

′
2, ..., α̂

′
m̂+1

)′

which denotes α̂m̂(T̂m̂) =
[
α̂1(T̂m̂)′, α̂2(T̂m̂)′, ..., α̂m̂+1(T̂m̂)′

]′
.

3 Asymptotic properties

In this section, we give the large sample theory including the consistency of the proposed PPC

estimator and the limiting distribution of the post-LASSO estimator.

3.1 Consistency of the PPC estimator

We start with the consistency result of the PPC estimator β̂ with preliminary convergence rates.

Theorem 3.1 Suppose that Assumptions 1 and 2(i)(ii) in Appendix A holds. Then we have

(i)
∥∥β̂ − β0

∥∥2/T = OP (p/N + 1/T ) = OP

(
δ−2
p,NT

)
, and (ii)

∥∥∥β̂t − β0
t

∥∥∥ = OP

(
δ−1
p,NT

)
, where

δp,NT = min(
√

N/p,
√
T ).

Theorems 3.1 (i) and (ii) establish the preliminary mean square and point-wise convergence

rates of {β̂t}, respectively, which is a very general result by allowing the existence of multiple

jumps or drops in the regression coefficients. As we allow the regression coefficients vary over

time, there is less observational information available for the estimation of each regression coef-

ficient (compared with the model without any structural break). This would in turn affect the

estimation accuracy of the factor loading matrix and convergence rates for the parameter esti-

mators. The divergent dimension of the regression coefficients at each time point further slows
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down the convergence rates. It is easy to find that the total number of the unknown elements

in the set {β0
t } is pT . Hence, it is not surprising that in Theorem 3.1 we can only obtain the

OP

(
δ−1
p,NT

)
convergence rate for the PPC estimator β̂t, which is much slower than the optimal

root-(NT ) rate obtained by Bai (2009) and Moon and Weidner (2014) (after bias correction)

when there is no change point for the regression coefficients and the dimension of the regression

coefficients is fixed.

Recall that T 0
m0 =

{
T 0
1 , ..., T

0
m0

}
denotes the set of true break dates. Let T c = {2, ..., T}

\T 0
m0 . Let θ01 = β0

1, θ̂1 = β̂1, θ
0
t = β0

t − β0
t−1 and θ̂t = β̂t − β̂t−1 for t = 2, ..., T. The following

theorem establishes the detection consistency, which, in some sense, is analogous to the sparsity

result in the high-dimensional variable selection literature.

Theorem 3.2 Suppose that Assumptions 1 and 2 in Appendix A hold. Then

lim
(N,T )→∞

P
(∥∥θ̂t

∥∥ = 0 for all t ∈ T c
)
= 1.

Theorem 3.2 shows that with probability approaching one (w.p.a.1), all the zero vectors

in
{
θ0t
}
must be estimated as exactly zero, which is a well-known sparsity result in the high-

dimensional variable selection literature (c.f., Fan and Li, 2006). On the other hand, by Theorem

3.1(ii), we know that the estimators of the nonzero vectors in
{
θ0t
}
are consistent by noting that

β̂t− β̂t−1 consistently estimates θ0t = β0
t −β0

t−1. A combination of Theorems 3.1 and 3.2 implies

that the AGF-LASSO penalty has the ability to identify the true regression model with the

correct number of structural breaks and the correct break dates, which is stated in the following

corollary.

Corollary 3.3 Suppose that Assumptions 1 and 2 in Appendix A hold. Then (i)

lim
(N,T )→∞

P
(
m̂ = m0

)
= 1,

and (ii)

lim
(N,T )→∞

P(T̂1 = T 0
1 , ..., T̂m0 = T 0

m0) = 1.

3.2 Post-LASSO estimation

We next introduce the post-LASSO estimation of the regression coefficients, which can improve

the convergence rate of the PPC estimation given in Theorem 3.1. For any p(m+1)-dimensional
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vector αm =
(
α′
1, ..., α

′
m+1

)′
and Tm = {T1, ..., Tm} with 1 < T1 < ... < Tm ≤ T, we define the

objective function by

QNT

(
αm,Λ,F ; Tm

)
=

1

NT

m+1∑

j=1

Tj−1∑

t=Tj−1

N∑

i=1

(
Yit −X ′

itαj − λ′
ift
)2

=
1

NT

m+1∑

j=1

Tj−1∑

t=Tj−1

(Yt −Xtαj −Λft)
′
(Yt −Xtαj −Λft) . (3.1)

By concentrating F out in the above objective function, we readily obtain the following post-

LASSO objective function

QNT

(
α,Λ; Tm

)
=

1

NT

m+1∑

j=1

Tj−1∑

t=Tj−1

(
Yt −Xtαj

)′
MΛ

(
Yt −Xtαj

)
. (3.2)

Let α̃m (Tm) =
[
α̃1(Tm)′, ..., α̃m+1(Tm)′

]′
and Λ̃ (Tm) =

[
λ̃1(Tm), ..., λ̃N (Tm)

]′
denote the mini-

mizers of the objective function defined in (3.2) for given Tm. By setting Tm as T̂m̂ = (T̂1, ..., T̂m̂),

the set of the estimated break dates constructed in Section 2.2, we obtain the post-LASSO es-

timators α̃m̂ ≡ α̃m̂(T̂m̂) and Λ̃ ≡ Λ̃(T̂m̂).

We next study the asymptotic distribution of the post-LASSO estimators. Corollary 3.3

above implies that w.p.a.1 m̂ = m0 and T̂j = T 0
j for j = 1, ...,m0. Hence, it follows that α̃m̂

is asymptotically equivalent to the infeasible estimator α̃m0(Tm0) which is obtained only if one

knows the set T 0
m0 of the true break dates. Let τ j(T ) = T 0

j − T 0
j−1,

BNT (1) =
[
BNT,1(1)

′, ..., BNT,m0+1(1)
′
]′

and

BNT (2) =
[
BNT,1(2, 1)

′ −BNT,1(2, 2)
′, ..., BNT,m0+1(2, 1)

′ −BNT,m0+1(2, 2)
′
]′
,

where for j = 1, ...,m0 + 1

BNT,j(1) =
1

N2Tτ j(T )

T 0
j −1∑

t=T 0
j−1

X ′
tM Λ̃m0

εε′Λ̃m0

( 1
N

Λ0′Λ̃m0

)+( 1
T
F 0′F 0

)+
f0
t ,

BNT,j(2, 1) =
1

Nτ j(T )

T 0
j −1∑

t=T 0
j−1

X ′
tΛ

0
( 1
N

Λ0′Λ0
)+( 1

T
F 0′F 0

)+( 1

NT

T∑

s=1

f0
s ε

′
sεt
)
,

BNT,j(2, 2) =
1

Nτ j(T )

T 0
j −1∑

t=T 0
j−1

X ′
tΛ

0
( 1
N

Λ0′Λ0
)+( 1

T
F 0′F 0

)+( 1

NT

T∑

s=1

f0
t ε

′
sε

∗
t

)
,
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and ε∗t = 1
T

∑T
s=1 χstεs with χst = f0′

s

(
1
T F

0′F 0
)+

f0
t , ε = (ε1, ..., εT ) with εt =

(
ε1t, ..., εNt

)′
.

We then define

BNT = Ω+
NT

[
BNT (1) +BNT (2)−BNT (3)

]
,

where ΩNT and BNT (3) are defined in Appendix A. Let

DNT = diag
{√

Nτ1(T ), ...,
√

Nτm0+1(T )
}
⊗ Ip,

where ⊗ denotes the Kronecker product, and S be a k0 × p(m0 + 1) matrix with full row rank

and k0 being a fixed positive integer.

Theorem 3.4 Suppose that Assumptions 1–3 in Appendix A hold. Then conditional on m̂ =

m0, we have

SDNT

(
α̃m̂ −α0 +BNT

) D−→ N
(
0, SΩ+

0 Ω1Ω
+
0 S

′
)
,

where Ω0 and Ω1 are defined in Assumption 3 in Appendix A.

Despite the use of different notations and proof strategies, Ω+
NTBNT (1) and Ω+

NTBNT (2)

correspond to the terms −C and −B in Bai (2009) or −W−1B3 and −W−1B2 in Moon and

Weidner (2014), respectively. However, these two papers assume that the dimension p is fixed and

there is no structural break on the regression coefficients. Hence, our asymptotic distribution

theory is derived under a more general framework. Like the term −W−1B1 in Moon and

Weidner (2014), Ω+
NTBNT (3) arises here because we allow the regressor vector Xit to contain

lagged dependent variable (e.g., Yi,t−1) and it is vanishing under Bai’s (2009) conditions A-E that

include the independence between εit and (Xjs, λ
0
j , f

0
s ) for all i, t, j, s and thus rule out dynamics

in the regression equation. As Bai (2009) remarks, in the absence of both serial/cross-sectional

correlations and heteroskedasticity and under his Assumption D, all of these three bias terms are

asymptotically negligible. In the general case, the bias terms of the post-LASSO estimates can

be removed by constructing a bias-corrected estimate. Following Bai (2009) in the case of static

panels or Moon and Weidner (2014) in the case of dynamic panels, one can easily construct a

bias corrected version of our post-LASSO estimate. We omit the details as the extension is quite

straightforward.

Note that the above theorem holds without requiring that N and T diverge to infinity at the

same speed and the latter condition was assumed in both Bai (2009) and Moon and Weidner

(2014). For the easiness of presentation, we need to assume that τ j(T ) = T 0
j − T 0

j−1 ∝ T/m0 in

Assumption 3(ii) in Appendix A, which implies that each regime specific regression coefficient
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vector α0
j can be estimated at the same convergence rate OP (

√
pm0/(NT )) after possible bias

correction. Apparently, it is possible to weaken this last assumption to T 0
j − T 0

j−1 → ∞ and

then we can anticipate that α̃j (Tm)’s would have different convergence rates to their true values

across different regimes.

4 Practical issues in model estimation and simulation study

In this section we first discuss the determination of the number of factors and the choice of the

tuning parameter γ in the PPC estimation procedure, then introduce the algorithm to implement

the estimation method, and finally conduct a set of Monte Carlo experiments to evaluate the

finite sample performance of the proposed method.

4.1 Determination of the number of factors

In the above analysis we assume that the number of factors R0 is known. In practice, one has to

determine it from data. Here we use R to denote a generic number of factors and assume that

it is bounded from above by a finite integer Rmax ≥ R0. We propose a BIC-type information

criterion to determine R0 before embarking on the AGF-LASSO procedure.

Let β̇t,R, ḟt,R and λ̇i,R denote the PCA estimators (without the penalization device) of βt,

ft,R and λi,R by assuming R factors in the model using the normalization rule: Λ′
RΛR/N = IR

and F ′
RFR is a diagonal. Note that we have made the dependence of the parameters and their

estimators on R explicitly here. Let β̇R =
(
β̇
′

1,R, ..., β̇
′

T,R

)′
. Define

V (R, β̇R) =
1

N

N∑

r=R+1

µr

[
1

T

T∑

t=1

(
Yt −Xtβ̇t,R

)(
Yt −Xtβ̇t,R

)′
]
.

Following Bai and Ng (2002), we consider the BIC-type information criterion defined by

BIC (R) = lnV (R, β̇R) + ρ1R, (4.1)

where ρ1 ≡ ρ1,NT is pre-determined which plays the role of ln (NT ) /(NT ) in the case of the

conventional BIC criterion. Let R̂ = argmin0≤R≤Rmax
BIC (R), which estimates the number of

the factors.

Theorem 4.1 Suppose that Assumptions 1–4 in Appendix A hold. Then

P
(
R̂ = R0

)
→ 1 as (N,T ) → ∞.

11



The above theorem shows that the use of BIC (R) can consistently estimate R0. To implement

the above information criterion, one needs to choose the penalty coefficient ρ1. Following Bai

and Ng (2002), we can set

ρ1 =
(N + T ) p

NT
ln

(
NT

N + T

)
or ρ1 =

(N + T ) p

NT
ln
(
δ2NT

)

where δNT = min{
√
N,

√
T} is defined as in Section 3. The penalty coefficient in Bai and Ng

(2002) corresponds to p = 1 in the above definitions of ρ1. In our simulations we use the first

specification of ρ1 and search for R̂ in the range of {1, 2, . . . , 5} when R0 = 2.

4.2 Choice of the tuning parameter

We now discuss the choice of the tuning parameter γ in the PPC estimation procedure, which

is an important issue when the penalized methodology is used in practice. Let

α̃m̂γ = α̃m̂γ (T̂m̂γ ) =
[
α̃1(T̂m̂γ )

′, ..., α̃m̂γ+1(T̂m̂γ )
′
]′

denote the set of the post-LASSO estimates of the regression coefficients based on the break

dates in T̂m̂γ = T̂m̂γ (γ), where we make the dependence of various estimates on γ explicitly.

Let σ̃2(T̂m̂γ ) = QNT

(
α̃m̂γ , Λ̃, F̃ ; T̂m̂γ

)
, where F̃ is defined similarly to F̂ in (2.9) with Λ̂ and

β̂t replaced by Λ̃ and α̃j(T̂m̂γ ) when T̂j−1 ≤ t ≤ T̂j − 1. We then propose to select the tuning

parameter γ by minimizing the following information criterion:

IC (γ) = ln
[
σ̃2(T̂m̂γ )

]
+ ρ2p

(
m̂γ + 1

)
, (4.2)

where ρ2 ≡ ρ2,NT is pre-determined such that ρ2 → 0 and ρ2δ
2
NT → ∞. Let γ̂ =argminγ IC (γ) .

Theorem 4.2 Suppose that Assumptions 1–2 and 3(ii) and 5 in Appendix A hold. Then

P
(
m̂γ̂ = m0

)
→ 1 as (N,T ) → ∞.

The above theorem shows that by minimizing IC (γ), we can obtain a data-driven γ̂ that

ensures the correct determination of the number of breaks. When we minimize the objective

function in (4.2), we do not restrict γ to satisfy Assumptions 3(i) and (iii) in Appendix A. If

these two additional conditions also hold, we know from Corollary 3.3 that m̂γ̂ = m0 w.p.a.1.

But in practice, it is hard to ensure such conditions and Theorem 4.2 becomes handy.

In the following simulation, we choose ρ2 = c log(min(N,T ))/min(N,T ), where c is a positive

constant. This choice of ρ2 satisfies the two restrictions specified above. To implement the
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information criterion in practice, we find an upper bound for the tuning parameter, γmax, that

would yield zero break in every data generating process (DGP), and a lower bound γmin that

would yield many breaks. We then search for the optimal tuning parameter on the 20 evenly-

distributed logarithmic grids in the interval [γmin, γmax]. To determine c, we use a data-

driven method that is similar to the one in Hallin and Liska (2007). Specifically, given an

N0 > 0, we examine subsamples (Yit, Xit), i = 1, ..., Nj , t = 1, ..., T , where j = 1, . . . , J and

N0 < N1 < · · · < NJ = N . We examine a range of possible values for c, say [cmin, cmax], where

cmin leads to a large number of breaks and cmax leads to zero break for all choices of γ. For each

c, we find the number of breaks in each subsample, m̂j , with j = 1, . . . , J . Let m̄c =
1
J

∑J
j=1 m̂j ,

we select the smallest c ∈ [cmin, cmax] that satisfies Sc =
1
J

∑
(m̂j − m̄c)

2 = 0 and m̄c < T − 1.

Intuitively, the constant c should be chosen such that the estimated number of breaks is constant

across the subsamples. In our simulations we set Nj = N − J + j and J = 3.

4.3 Implementation of the estimation method

The implementation of the PPC estimation method consists of two steps. In the first step, the

preliminary estimation β̇t is obtained along with the estimated number of factors R̂. Given

a generic number of factors, β̇t is obtained by minimizing the first term of Q̃NT,γ

(
β,Λ,F

)
in

(2.2). The minimization problem is solved using an iterative algorithm based on (2.7) and (2.8)

with Q̂NT,γ(β, Λ̂) replaced by Q̂NT (β, Λ̂), the first term of Q̂NT,γ(β, Λ̂). The starting values

for the iteration are chosen to be the pooled least squares estimates, assuming that coefficients

are time-invariant and that no factor structure exists.

In the second step, given a generic tuning parameter γ, we use the following iterative algo-

rithm to minimize Q̃NT,γ

(
β,Λ,F

)
, yielding the set of breaks corresponding to γ. Let θ1 = β1

and θt = βt − βt−1, t = 2, . . . , T , and let θ = (θ1, . . . , θT )
′,

(1) Initialize θ(0), which implies an initial set of breaks and an initial estimation of parameters

in each regime.

(2) Given the initial set of breaks and parameter estimates, calculate factors F (i) using eigen-

value decomposition, where the superscript (i) denotes the i-th iteration.

(3) Given F (i), update θ(i) (or equivalently β(i)) that minimizes Q̂NT,γ (β,Λ) in (2.4). This

calculation utilizes a block-coordinate-descent algorithm similar to Qian and Su (2015b).

13



The updated θ(i) implies a new set of breaks, and the post-LASSO procedure is used to

obtain new estimates of parameters in each regime.

(4) Repeat (2)-(3) until ‖θ(i)−θ(i−1)‖ drops below a pre-determined threshold. Use the post-

LASSO procedure to obtain the final estimate of parameters, factors and their loadings.

In the above iterative algorithm, the starting values for the iterations are chosen to be the

preliminary estimates of the coefficients obtained in the first step. The post-LASSO procedure

minimizes QNT

(
αm,Λ,F ; Tm

)
in (3.1) with Tm replaced by the estimated set of break dates

in each iteration and with the starting values chosen to be the pooled least squares estimates

as in the first step. Finally, we obtain the set of break dates using the tuning parameter that

minimizes IC (γ) defined in (4.2).

4.4 Simulation

We consider the following data generating processes:

Yit = β1tZit + β2tXit + λ′
ift + σuit, i = 1, . . . , N, t = 1, . . . , T,

where ft =
[
ft(1), ft(2)

]′
and λi =

[
λi(1), λi(2)

]′
are two-dimensional random vectors, and

• DGP-1 (benchmark): Xit
i.i.d.∼ N(0, 1), Zit = 1, λi

i.i.d.∼ N(0, I2), ft
i.i.d.∼ N(0, I2), both λi

and ft are independent of Xit, uit
i.i.d.∼ N(0, 1) and is independent of Xit, λi and ft;

• DGP-2 (serial correlation in the common factor and heteroskedasticity in the error): Xit,

Zit, and λi are defined as in DGP-1, each of the two element in ft is an AR(1) process

with unit variance: ft(k) = 0.5ft−1(k) + ǫt(k) with ǫt =
[
ǫt(1), ǫt(2)

]′ i.i.d.∼ N(0, 0.75I2),

uit =
(
0.75 + 0.15x2it

)1/2
η∗it with η∗it

i.i.d.∼ N(0, 1) and independent of Xit, λi and ft;

• DGP-3 (dependent factors and serial correlation in the error): Xit = 0.5λ′
ift + 0.5(λ′

iι +

f ′
tι) + η⋄it with η⋄it

i.i.d.∼ N(0, 1) and ι = (1, 1)′, Zit and λi are defined as in DGP-1, ft

is defined as in DGP-2, for each i, uit is an independent ARMA(1,1) process with unit

variance such that uit = 0.5ui,t−1 + ǫuit + 0.5ǫui,t−1, where ǫuit
i.i.d.∼ N(0, 3/7).

• DGP-4 (dynamic panel): Xit = Yi,t−1, Zit
i.i.d.∼ N(0, 1), λi and uit are defined as in DGP-1,

ft is defined as in DGP-2.
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In order to evaluate the performance under different noise levels, we select the free parameter

σ to be either 0.5 or 1. In DGP-1 with no breaks, σ = 1 roughly corresponds to a signal-to-noise

ratio of 1. We also experiment on different levels of factor loadings λi and find that the impact

of the magnitude of the factor loadings on the performance of our method is small.

DGP-1 serves as the benchmark case where both the regressor and the idiosyncratic error

are sequences of strong white noise. DGP-2 introduces serial correlation in the common fac-

tor ft and conditional heteroskedasticity in the model errors. DGP-3 allows the dependence of

both the factor loadings and common factors on the regressor. In addition, DGP-3 introduces

serial correlation into the model errors, so the estimated model may be dynamically misspec-

ified. DGP-4 has a dynamic panel AR(1) structure. We experiment on four combinations of

dimensions: (N,T ) = (40, 40), (N,T ) = (80, 40), (N,T ) = (40, 80), and (N,T ) = (80, 80). The

data-driven method to select both the constant c in ρ2 and the tuning parameter γ is computa-

tionally intensive. As a result, we set the number of Monte Carlo replications to be 250, which

might be smaller than usual but good enough for our purpose.

For the DGPs 1–3, we set β1t = β2t = 1 for all t when no break exists, β1t = β2t = 1{1 ≤
t ≤ T/2} when there is one break, and β1t = β2t = 1{1 ≤ t ≤ ⌊T/3⌋}+ 1{T/2 < t ≤ T} when

there are two breaks. For the DGP-4, we set β1t = β2t = 0.5 for all t when there is no break,

β1t = β2t = 0.5 · 1{1 ≤ t ≤ T/2} when there is only one break, and β1t = β2t = 0.5 · 1{1 ≤ t ≤
⌊T/3⌋}+ 0.5 · 1{T/2 < t ≤ T} when there are two breaks.

We first evaluate the probability of falsely detecting breaks when there is no break in the

simulation design. Then we experiment on the DGPs with one or two breaks. We evaluate the

probability of correctly detecting the number of breaks and the accuracy of break date estimation

when breaks are detected. Tables 1, 2 and 3 report simulation results for the above DGPs. The

first panel of Table 1 reports the percentages of falsely detecting breaks when there is no break

(m0 = 0). The second and the third panels report the percentages of correctly estimating the

number of breaks when the true number of breaks is one and two, respectively. In Table 2,

we report the ratio of average Hausdorff distance (HD) between the estimated and true sets

of breaks to T , i.e., 100·HD(T̂m̂, T 0
m0)/T , conditional on correct estimation of the number of

breaks. Here the average is taken over 250 replications and the HD between two sets A and

B is defined as HD(A,B) = max{D (A,B) , D (B,A)} with D (A,B) ≡ supb∈B infa∈A |a− b|.
The mean squared or absolute errors of the parameter estimates are roughly proportional to the

Hausdorff error of the break-date estimation and hence are not reported. In Table 3 we report
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the percentages of correctly estimating the number of factors in the Monte Carlo replications.

We summarize the major findings from these tables. (i) When there is no break in the

DGPs, the probabilities of falsely detecting breaks decline to zero as either N or T increases.

(ii) When there are one or two breaks, the probabilities of correctly estimating the number of

breaks converge fairly quickly to 100% or near 100% as both N and T increase. The detection

procedure performs slightly better at lower idiosyncratic noise levels (σ = 0.5) than at higher

noise level (σ = 1). The performance is robust to serial correlation in the common factor, serial

correlation and conditional heteroskedasticity in the errors, and the dependence of both the

factors and their loadings on the regressor. For the dynamic panel (DGP-4), the procedure

performs less satisfactorily. However, this may be due to the fact that the signal-to-noise ratio

in this case is roughly 1/3, much less than that in the other three DGPs. (iii) Conditional on the

correct estimation of the number of breaks, our procedure estimates the break dates accurately,

which can be seen from Table 2 (iv) Finally, Table 3 shows that the BIC-type information

criterion specified in (4.1) can accurately determine the number of factors for the interactive

fixed effects structure.

5 An empirical application to the environmental Kuznets curve

The environmental Kuznets curve (EKC) has become a standard feature in the environmental

policy literature. It hypothesizes that the relationship between income and the emission of

chemicals like sulfur dioxide (SO2) and carbon dioxide (CO2) or the natural resource usage has

an inverted U-shape, which is similar to the relationship between income and inequality in the

Kuznets curve hypothesis in economics. In this section we consider the following specification:

cit = β0t + β1tyit + β2ty
2
it + β3teit + λ′

ift + uit,

where cit represents the logarithm of per capita CO2 emission for country i in year t, yit represents

the logarithm of per capita income (gross domestic product, abbreviated as GDP), eit represents

the logarithm of per capita consumption of energy, ft is a vector of unobservable common factors

and λi is a vector of factor loadings. Our data-driven BIC criterion determines that the number

of factors is five. The controlling of energy consumption in EKC studies was used in the time

series regression setting in Ang (2007), and the panel data setting in Apergis and Payne (2009,

2010), Lean and Smyth (2010), Arouri et al. (2012) and Farhani et al. (2014). The panel data
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Table 1: The probabilities for falsely detecting breaks when there are none and of correctly

detecting the breaks when there are breaks

DGP σ N=T=40 N=40,T=80 N=80,T=40 N=T=80

m0 = 0, % of falsely detecting breaks when there are none.

0.5 0 0 0 0
1

1 0 0 0 0

0.5 0 0 0 0
2

1 0.4 0 0 0

0.5 2.8 1.2 0.4 0
3

1 1.2 0 0.4 0

0.5 0 0 0 0
4

1 0.4 0 0 0

m0 = 1, % of correctly detecting one break

0.5 100 100 100 100
1

1 98.8 99.6 100 100

0.5 100 100 100 100
2

1 99.6 99.2 100 100

0.5 99.2 100 100 100
3

1 91.6 98 100 99.6

0.5 97.6 99.6 100 100
4

1 79.2 76.8 95.2 98

m0 = 2, % of correctly detecting two breaks

0.5 100 100 100 100
1

1 99.2 98.4 100 100

0.5 99.6 100 100 100
2

1 98 99.2 100 100

0.5 99.2 100 100 100
3

1 87.2 92.4 98 99.2

0.5 94 92.8 99.2 100
4

1 54.8 58.4 94 94.4
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Table 2: Estimation accuracy for the break dates when there is one or two structural breaks
DGP σ N=T=40 N=40,T=80 N=80,T=40 N=T=80

m0 = 1

0.5 0.000 0.000 0.000 0.000
1

1.0 0.000 0.005 0.000 0.000

0.5 0.000 0.000 0.000 0.000
2

1.0 0.005 0.000 0.000 0.000

0.5 0.000 0.000 0.000 0.000
3

1.0 0.066 0.051 0.000 0.000

0.5 0.020 0.030 0.000 0.000
4

1.0 0.423 0.540 0.037 0.092

m0 = 2

0.5 0.000 0.000 0.000 0.000
1

1.0 0.010 0.005 0.000 0.000

0.5 0.000 0.000 0.000 0.000
2

1.0 0.010 0.015 0.000 0.000

0.5 0.000 0.000 0.000 0.000
3

1.0 0.006 0.011 0.000 0.005

0.5 0.027 0.032 0.000 0.000
4

1.0 0.246 0.300 0.011 0.053

Note. The table reports 100 ·HD(T̂m̂, T 0

m0)/T, averaged over 250 replications.

studies in the existing literature, however, assume that the coefficients are constant over time.

In our specification, we not only introduce the interactive fixed effects in the panel data models

but also allow time-varying coefficients that may capture the instability of the EKC brought by

the changing social, political, and economic environment in the past few decades.

We obtain the panel data set fromWorld Bank Development Indicators. The CO2 emission is

measured in metric tones per capita, income is measured using per capita real GDP in constant

2000 USD, and energy consumption is measured with kilogram of oil equivalent per capita. The

time frame is selected to be 1971-2010. We exclude OPEC countries, small countries whose

populations are less than six million, and other countries with missing observations during the

time span. In total, we have N = 74 countries and T = 40 time points.

The results are summarized in Table 4. The information criterion defined in (4.2) selects

a tuning parameter that identifies two breaks (m̂ = 2) in 1990 and 1992. In the first regime

of 1971-1990, the EKC hypothesis is confirmed, as the coefficient on the squared income is

significantly negative, implying an inverted U-shape. The elasticities of CO2 emission per capita

with respect to real income per capita in the regime is (0.198 − 0.02y), where y denotes the
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Table 3: The probabilities for correctly estimating the number of factors

DGP σ N=T=40 N=40,T=80 N=80,T=40 N=T=80

m0 = 0

0.5 100 100 100 100
1

1 98.8 100 100 100

0.5 100 100 100 100
2

1 100 100 100 100

0.5 100 100 100 100
3

1 98 100 100 100

0.5 100 100 100 100
4

1 98.8 100 100 100

m0 = 1

0.5 100 100 100 100
1

1 99.6 100 100 100

0.5 100 100 100 100
2

1 100 100 100 100

0.5 100 100 100 100
3

1 97.6 100 100 100

0.5 100 100 100 100
4

1 98.4 100 100 100

m0 = 2

0.5 100 100 100 100
1

1 99.6 100 100 100

0.5 100 100 100 100
2

1 100 100 100 100

0.5 100 100 100 100
3

1 97.6 100 100 100

0.5 100 100 100 100
4

1 98.8 100 99.6 100
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Table 4: A panel data estimation of the EKC for 74 countries from 1971 to 2010

m̂ Variables 1971-1989 1990-1991 1992-2010 IC

Intercept −5.816(0.075)c −4.641(1.168)c −6.222(0.187)c

yit 0.198(0.020)c −0.028(0.239) 0.332(0.037)c

2 y2it −0.010(0.001)c −0.004(0.014) −0.017(0.002)c -5.948

eit 0.847(0.003)c 0.798(0.041)c 0.821(0.005)c

Intercept −5.841(0.037)c

yit 0.248(0.010)c

0 y2it −0.013(0.001)c -5.940

eit 0.842(0.002)c

Note. Superscript a, b and c denotes significance level at 10%, 5%, and 1%, respectively. Standard errors

are given in parentheses.

logarithm of real GDP per capita. The threshold, or the turning points of the EKC, occurs at

the per capita income of 19,900 USD (2000). The second regime is a short one, covering only

two years, 1990 and 1991. In this regime, the coefficients on both yit and y2it are statistically

insignificant. The signs of these coefficients do not point to an inverted U-shape. This suggests

that, using a short panel or cross-section data set collected in a certain time period, one may

reject the EKC hypothesis, while a longer panel data would arrive at the opposite conclusion.

In the third regime of 1992-2010, the EKC hypothesis is again confirmed. The elasticities of

CO2 emission per capita with respect to real income per capita in the regime is (0.332−0.034y),

implying a threshold of 17,400 USD (2000). Comparing with the first regime, we may conclude

that the EKC has shifted leftward in the past two decades. The second regime of 1990-1991

may be regarded as a transition period from the first regime to the second regime, which is

more environment-friendly. We also report in Table 4 the case of zero break (m̂ = 0), where

coefficients are assumed to be constant. Here the EKC hypothesis is also confirmed, with a

threshold at 13,900 USD (2000). Interestingly, the panel data model with constant regression

coefficients paints the most optimistic EKC. If we estimate the regression coefficients in the

panel data model with two structural breaks detected by the PPC method, however, we see a

more cautious picture for the EKC.

6 Conclusions

In this paper, we study the estimation of the panel data models with interactive fixed effects

and multiple structural breaks, which substantially generalizes the existing work which either
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considers the panel models with interactive fixed effects but no structural break (c.f., Bai, 2009),

or the panel models with multiple structural breaks but under cross-sectional independence (c.f.,

Qian and Su, 2015b). We develop a novel PPC estimation procedure with the AGF-LASSO

penalty function to consistently estimate both the regression coefficients and the factor loadings.

Under some regularity conditions, we show that both the unknown number of structural breaks

and the unobservable break dates can be consistently estimated. In order to further improve

the convergence rates, we also estimate the regression coefficients (in different regimes) through

the post-LASSO method and then establish the asymptotic distribution theory of the resulting

estimators. In particular, the developed shrinkage estimation methodology and the asymptotic

theory are also applicable to the case of dynamic panel data. We introduce two data-driven

methods to determine the number of factors and choose the tuning parameter involved in the

PPC estimation procedure, respectively. The simulation studies show that the proposed PPC

method has a high probability of correctly estimating the number of breaks when the structural

breaks exist in the simulation design, and a low probability of false detection when there is no

structural break. We apply our method to study the EKC for 74 countries over 40 years and

find two breaks in the panel data.

Appendix

We first give in Appendix A some regularity conditions that are used to derive the asymptotic

results. Then we provide some technical lemmas and prove the main theoretical results in

Appendix B. The proofs of the technical lemmas are given in Appendix C of the supplemental

document.

A Assumptions

We start with the introduction of some notation. Denote

δNT = min(
√
N,

√
T ), δp,NT = min(

√
N/p,

√
T ),

∆NT = min
1≤j≤m0

∥∥α0
j+1 − α0

j

∥∥, ∆∗
NT = max

1≤j≤m0

∥∥α0
j+1 − α0

j

∥∥.

Let ξij =
∑T

t=1 εitεjt for 1 ≤ i, j ≤ N , and ξ∗ts =
∑N

i=1 εitεis for 1 ≤ t, s ≤ T . Define

ΩNT = ΦNT −Φ∗
NT , ΦNT = diag

(
Φ1, ...,Φm0+1

)
, Φ∗

NT =
(
Φ∗
jk

)
1≤j,k≤m0+1

,
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where

Φj =
1

Nτ j(T )

T 0
j −1∑

t=T 0
j−1

X ′
tMΛ

0Xt, Φ∗
jk =

1

NTτ j(T )

T 0
j −1∑

t=T 0
j−1

T 0
k−1∑

s=T 0
k−1

χstX
′
tMΛ

0Xs,

τ j(T ) = T 0
j − T 0

j−1 and χst = f0′
s

(
1
T F

0′F 0
)+

f0
t . In order to prove the asymptotic results stated

in Sections 3 and 4, we make the following assumptions.

Assumption 1 (i) There exist two positive definite matrices ΣF and ΣΛ such that

1

T
F 0′F 0 P→ ΣF ,

1

N
Λ0′Λ0 P→ ΣΛ.

Furthermore, both the common factors f0
t and the factor loadings λ0

i have finite 8-th moments.

(ii) Let the regressor Xt satisfy max1≤t≤T ‖Xt‖ = OP

(
p1/2N1/2

)
, and

cx ≤ inf
Λ

min
1≤t≤T

µmin

(
N−1X ′

tMΛXt

)
≤ max

1≤t≤T
µmax

(
N−1X ′

tXt

)
≤ c∗x

w.p.a.1, where 0 < cx < c∗x < ∞, and infΛ is taken with respect to Λ such that 1
NΛ′Λ = IR0

.

(iii) Let ε = (ε1, ..., εT ). The idiosyncratic error term εit satisfies E[εit] = 0 and E[ε8it] < cε for

each i and t and ‖ε‖sp =max(
√
N,

√
T ). where cε is a bounded positive constant. Furthermore,

max
1≤s,t≤T

E
[
‖X ′

tεs‖2
]
= O(pN), max

1≤t≤T
E
[
‖Λ0′εt‖2

]
= O(N), E

[
‖Λ0′εF 0‖2

]
= O(NT ),

max
1≤i,j≤N

E
[∥∥

T∑

t=1

T∑

s=1

εitεjsγtγ
′
s

∥∥2
]
= O(T 2), and max

1≤i,j≤N
E
[∥∥

T∑

t=1

T∑

s=1

εitεjsε
′
tεs
∥∥2
]
= O(N2T 2 + T 4),

where γt can be either 1 or f0
t .

(iv) Assume that max1≤i,j≤N Var(ξij) = max1≤i,j≤N Var(
∑T

t=1 εitεjt) = O(T ), and there exists

σij > 0 such that
∣∣E(ξij)

∣∣ ≤ σijT and
∑N

i=1

∑N
j=1 σ

2
ij = O(N). Furthermore, we have

max
1≤t≤T

E
[ T∑

s=1

(ξ∗ts)
2
]
= O

(
N2 +NT

)
, E

[∥∥
T∑

t=1

T∑

s=1

f0′
t ξ∗tsf

0
s

∥∥2
]
= O

(
N2T 2

)
.

Assumption 2 (i) The tuning parameter γ satisfies that

γ = o (1) , γm0∆−κ
NT δp,NT = O(1) as (N,T ) → ∞,

where κ is the user-specified positive constant defined in (2.3).

(ii) Let the following restrictions hold:

δp,NT∆NT → ∞, ∆∗
NT = O(p1/2), pN−1/2 + p1/2T−1/2 = o(1) as (N,T ) → ∞.
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(iii) Let γδκ+1
p,NT → ∞ as (N,T ) → ∞.

Assumption 3 (i) There exists a positive definite matrix Ω0 such that
∥∥ΩNT −Ω0

∥∥
sp

= oP (1).

(ii) There exist 0 < cτ ≤ c∗τ < ∞ such that

cτT

m0
≤ min

1≤j≤m0+1
τ j(T ) ≤ max

1≤j≤m0+1
τ j(T ) ≤

c∗τT

m0
.

(iii) Letting At =
∑T

s=1Λ
0′εsε

′
sεt, max1≤t≤T E(A2

t ) = O(N2(N + T )).

(iv) Letting Wj,NT = 1
Nτ j(T )

∑T 0
j −1

t=T 0
j−1

X ′
tMΛ

0(εt − ε∗t ) for j = 1, ...,m0 + 1 and WNT =

(W ′
1,NT , ..., W

′
m0+1,NT )

′, there exist BNT (3) and Ω1 such that

S∗DNT [WNT −BNT (3)]
D−→ N

(
0, S∗Ω1S

′
∗

)
,

where DNT is defined in Section 3.2, S∗ is an arbitrary k0×p(m0+1) matrix with full row rank,

and k0 is a fixed positive integer.

(v) Let (NT )1/2/δ3p,NT = o(1) and p/δp,NT = o(1) as (N,T ) → ∞.

Assumption 4 As (N,T ) → ∞, ρ1 → 0 and δ2p,NTρ1 → ∞.

Assumption 5 (i) For any 0 ≤ m < m0, there exists a positive constant cβ such that

min
Tm

min
αm

m0

T∆2
NT

m+1∑

j=1

Tj−1∑

t=Tj−1

∥∥β0
t − αj

∥∥2 ≥ cβ ,

where αm and Tm are defined in Section 3.2.

(ii) As (N,T ) → ∞, m0

T∆2
NT

(pN−1/2 + p1/2T−1/2) = o (1) .

(iii) As (N,T ) → ∞, m0pρ2 → 0 and δ2p,NT pρ2 → ∞.

Remark A.1. Assumption 1 imposes some standard moment conditions on Xit, f
0
t , λ

0
i and

εit, which are analogous to those in the existing literature such as Bai and Ng (2002), Bai

(2009), Bai and Li (2014), Lu and Su (2015), and Moon and Weidner (2015). As we allow p,

the dimension of the regression coefficients, to be divergent, some of our moment conditions

might be slightly stronger than those in the literature. Assumptions 1(iii) and (iv) allow weak

form of cross-sectional dependence and serial dependence among Xit, f
0
t , λ

0
i and εit. In partic-

ular, unlike Pesaran (2006) and Bai (2009), we do not assume independence between εit and

(Xjs, f
0
s , λ

0
j ) for all i, j, t, s, and our theories are thus applicable to the dynamic autoregressive

panel data models with interactive fixed effects. Assumption 2 imposes some mild restrictions

on the tuning parameter γ and the jump sizes of the regression coefficients, which can be easily
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justified. For example, assuming that the jump sizes are bounded away from zero and infinity

and N ∼ T , Assumption 2 can be simplified to γ = o(1), γm0(N/p)1/2 = O(1), p = o(N1/2)

and γ(N/p)(κ+1)/2 → ∞. Assumption 3 imposes some additional conditions for the proof of

the asymptotic distribution theory of the post-LASSO estimation, which can be verified under

some primitive conditions. For example, if we assume that {εit, λ0
i } are independent across i

and for each i, {εit} is a martingale difference sequence with respect to the σ-field generated by

(εi,t−1, . . . , εi1, f
0
t−1, . . . , f

0
1 , λ

0
i ) and {εit, Xit} satisfy some strongly mixing conditions, then the

moment condition in Assumption 3(iii) holds. Assumption 4 indicates that ρ1 has to shrink to

zero at an appropriate rate to avoid both over-selection and under-selection of the number of

factors. Assumptions 5(i)(ii) impose conditions to avoid the selection of model with fewer breaks

than the true number by using an information criterion proposed in Section 4.2. Assumption

5(iii) parallels Assumption 4.

B Proofs of the main asymptotic results

In this appendix, we give the detailed proofs of the asymptotic results in Sections 3 and 4. We

start with two technical lemmas whose proofs are provided in Appendix C of the supplemental

document.

Lemma B.1 Suppose that Assumption 1 in Appendix A holds and pN−1/2 + p1/2T−1/2 = o(1).

Let β̇ =
(
β̇′
1, ..., β̇

′
T

)′
be the preliminary estimates of the regression coefficients which mini-

mize, Q̂NT (β,Λ), the first term of the objective function defined in (2.4). Then
∥∥β̇t − β0

t

∥∥ =

OP

(
p1/2N−1/2 + T−1/2

)
= OP

(
δ−1
p,NT

)
for any t = 1, 2, ..., T , where δp,NT is defined as in

Appendix A.

Lemma B.2 Suppose that Assumption 1 Appendix A holds and let ηNT = 1
T

∑T
t=1 ‖β̂t − β0

t ‖2.
Then we have

(i) 1
NT

∑T
t=1(β̂t − β0

t )
′X ′

tM Λ̂
εt = OP

(
δ−1
p,NT η

1/2
NT

)
,

(ii)
∑T

t=1 f
0′
t Λ0′M

Λ̂
εt = OP

(
δ−2
NT + δ−1

p,NT η
1/2
NT

)
, and

(iii) 1
NT

∑T
t=1 ε

′
t

(
P

Λ̂
− P

Λ
0

)
εt = OP

(
δ−2
NT

)
.

We next give the proof of Theorem 3.1 by using the above two lemmas.

Proof of Theorem 3.1. (i) Recall that the penalized estimate of β0 is denoted by β̂ =
(
β̂
′

1, ..., β̂
′

T

)′
and the estimated factor loading matrix is denoted by Λ̂. Note that

Yt −Xtβ̂t = Xt(β
0
t − β̂t) +Λ0f0

t + εt. (B.1)
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Then, by (B.1) and using the fact that M
Λ

0Λ0 = 0, we have

Q̂NT,γ

(
β̂, Λ̂

)
− Q̂NT,γ

(
β0,Λ0

)
=

1

T

T∑

t=1

[
Q̂∗

NT,t(βt,Λ) + Q̂⋄
NT,t(βt,Λ)

]

+
γ

T

∑

t∈T 0

m0

ẇt

[∥∥β̂t − β̂t−1

∥∥−
∥∥β0

t − β0
t−1

∥∥
]

+
γ

T

∑

t∈T c

ẇt

[∥∥β̂t − β̂t−1

∥∥−
∥∥β0

t − β0
t−1

∥∥
]
, (B.2)

where

Q̂∗
NT,t(βt,Λ) =

1

N

[(
β̂t − β0

t

)′
X ′

tM Λ̂
Xt

(
β̂t − β0

t

)
− 2
(
β̂t − β0

t

)′
X ′

tM Λ̂
Λ0f0

t + f0′
t Λ0′M

Λ̂
Λ0f0

t

]
,

Q̂⋄
NT,t(βt,Λ) =

1

N

[
− 2
(
β̂t − β0

t

)′
X ′

tM Λ̂
εt + 2f0′

t Λ0′M
Λ̂
εt − ε′tP Λ̂

εt + ε′tPΛ0εt

]
.

As β0
t − β0

t−1 = 0 for t ∈ T c, the last term on the right hand side of (B.2) satisfies that

γ

T

∑

t∈T c

ẇt

[∥∥β̂t − β̂t−1

∥∥−
∥∥β0

t − β0
t−1

∥∥
]
=

γ

T

∑

t∈T c

ẇt

∥∥β̂t − β̂t−1

∥∥ ≥ 0. (B.3)

By the triangle inequality, the Cauchy-Schwarz inequality, Lemma B.1 and Assumption 2(ii) in

Appendix A, we can prove that

∑

t∈T 0

m0

ẇt

[∥∥β̂t − β̂t−1

∥∥−
∥∥β0

t − β0
t−1

∥∥
]

≤ OP (∆
−κ
NT )

∑

t∈T 0

m0

∥∥β̂t − β0
t

∥∥

≤ OP (∆
−κ
NT )(m

0)1/2



∑

t∈T 0

m0

∥∥β̂t − β0
t

∥∥2



1/2

≤ OP (∆
−κ
NT )(m

0T )1/2

(
1

T

T∑

t=1

∥∥β̂t − β0
t

∥∥2
)1/2

.

Note that Assumption 2(i) implies that γ(m0)1/2T−1/2∆−κ
NT = o(δ−1

p,NT ) where δp,NT = min(
√

N/p,
√
T ).

This, together with the above argument, indicates that

γ

T

∑

t∈T 0

m0

ẇt

[∥∥β̂t − β̂t−1

∥∥−
∥∥β0

t − β0
t−1

∥∥
]
= oP

(
δ−1
p,NT η

1/2
NT

)
. (B.4)

By Lemma B.2, we can readily show that

1

T

T∑

t=1

Q̂⋄
NT,t(βt,Λ) = OP

(
δ−2
NT + δ−1

p,NT η
1/2
NT

)
. (B.5)
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Combining (B.4) and (B.5), we have

Q̂NT,γ

(
β̂, Λ̂

)
− Q̂NT,γ

(
β0,Λ0

)
≥ 1

T

T∑

t=1

Q̂∗
NT,t(βt,Λ) +OP

(
δ−2
NT + δ−1

p,NT η
1/2
NT

)
. (B.6)

Define the vectors:

d̂β = β̂ − β0 and d̂Λ =
1

N1/2
vec(M

Λ̂
Λ0),

where vec(·) denotes the vectorization of a matrix; and define the matrices:

Â =
1

N
diag

(
X ′

1M Λ̂
X1, ..., X

′
TM Λ̂

XT

)
, B̂ = (F 0′F 0)⊗ IN , and

Ĉ =
1

N1/2

[
f0
1 ⊗M

Λ̂
X1, ..., f

0
T ⊗M

Λ̂
XT

]
,

where ⊗ denotes the Kronecker product. It is easy to verify that

1

NT

T∑

t=1

(
β̂t − β0

t

)′
X ′

tM Λ̂
Xt

(
β̂t − β0

t

)
=

1

T
d̂
′

βÂd̂β ,

1

NT

T∑

t=1

(
β̂t − β0

t

)′
X ′

tM Λ̂
Λ0f0

t =
1

NT

T∑

t=1

Tr
{
M

Λ̂
Λ0f0

t

(
β̂t − β0

t

)′
X ′

tM Λ̂

}
=

1

T
d̂
′

ΛĈd̂β ,

1

NT

T∑

t=1

f0′
t Λ0′M

Λ̂
Λ0f0

t =
1

NT

T∑

t=1

Tr
(
M

Λ̂
Λ0f0

t f
0′
t Λ0′M

Λ̂

)
=

1

T
d̂
′

ΛB̂d̂Λ,

where we have used the following facts on matrix calculation: Tr
(
A1A2A3

)
= vec′

(
A1

)(
A2 ⊗

Ik

)
vec
(
A3

)
and Tr

(
A1A2A3A4

)
= vec′

(
A1

)(
A2 ⊗ A′

4

)
vec
(
A′

3

)
with k being the size of the

column vectors in A3. Using the above notations, we may show that

1

T

T∑

t=1

Q̂∗
NT,t(βt,Λ) =

1

T

(
d̂
′

βÂd̂β − 2d̂
′

ΛĈd̂β + d̂
′

ΛB̂d̂Λ

)
=

1

T

(
d̂
′

βD̂d̂β + d̂
′

∗B̂d̂∗

)
, (B.7)

where D̂ = Â−Ĉ
′
B̂

+
Ĉ and d̂∗ = d̂Λ−B̂

+
Ĉd̂β . By Assumption 1(i), we may show that the min-

imum eigenvalue of 1
T B̂ is bounded away from zero w.p.a.1, i.e., there exists a positive constant

c1 such that µmin

(
B̂/T

)
> c1 for sufficiently large T . We next show that µmax

(
Ĉ

′
Ĉ/T

)
= oP (1).

Letting νst = f0′
s f0

t , it is easy to verify that

Ĉ
′
Ĉ =

1

N




ν11X
′
1M Λ̂

X1 ν12X
′
1M Λ̂

X2 ... ν1TX
′
1M Λ̂

XT

ν21X
′
2M Λ̂

X1 ν22X
′
2M Λ̂

X2 ... ν2TX
′
2M Λ̂

XT

...
...

. . .
...

νT1X
′
TM Λ̂

X1 νT2X
′
TM Λ̂

X2 ... νTTX
′
TM Λ̂

XT




.
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Letting

Ĉ1 =
1

N




ν11X
′
1M Λ̂

X1 ν12X
′
1M Λ̂

X2 ... ν1TX
′
1M Λ̂

XT

0 ν22X
′
2M Λ̂

X2 ... ν2TX
′
2M Λ̂

XT

...
...

. . .
...

0 0 ... νTTX
′
TM Λ̂

XT




and Ĉd = 1
N diag

(
ν11X

′
1M Λ̂

X1, ..., νTTX
′
TM Λ̂

XT

)
, we have

Ĉ
′
Ĉ = Ĉ1 + Ĉ

′

1 − Ĉd. (B.8)

By the fact that the eigenvalues of a block upper/lower triangular matrix are the combined

eigenvalues of its diagonal block matrices, Weyl’s inequality, and Assumptions 1(i) and (ii), we

have

T−1µmax(Ĉ
′
Ĉ) ≤ T−1{2µmax(Ĉ1)− µmin(Ĉd)}

≤ 2T−1 max
1≤t≤T

∥∥f0
t

∥∥2 µmax

(
N−1X ′

tM Λ̂
Xt

)

= OP (T
−1)OP (T

1/4)OP (1) = OP (T
−3/4),

where we use the fact that max1≤t≤T ‖f0
t ‖2 = OP

(
T 1/4

)
by Assumption 1(i) and the Markov

inequality. On the other hand, we note that the minimum eigenvalue of Â is positive and

bounded away from zero w.p.a.1. Hence, the matrix D̂ is asymptotically positive definite as its

minimum eigenvalue is positive and bounded away from zero w.p.a.1 by using the above facts.

Then, by (B.7) and (B.8), we can readily show that there exist two positive constants c2 and c3

such that

c2
T
‖d̂β‖2 + c3‖d̂∗‖2 ≤

1

T

T∑

t=1

Q̂∗
NT,t(βt,Λ), (B.9)

which indicates that

c2
T
‖d̂β‖2 + c3‖d̂∗‖2 +OP

(
δ−2
NT + δ−1

p,NT η
1/2
NT

)
≤ Q̂NT

(
β̂, Λ̂

)
− Q̂NT

(
β0,Λ0

)
. (B.10)

Multiplying both sides of (B.10) by δ2p,NT and noting that 1
T ‖d̂β‖2 = ηNT and Q̂NT

(
β̂, Λ̂

)
−

Q̂NT

(
β0,Λ0

)
≤ 0, we readily show that

c2δ
2
p,NT ηNT +OP (1) +OP (1) ·

[
δ2p,NT ηNT

]1/2 ≤ 0. (B.11)

When δ2p,NT ηNT is sufficiently large, the first term on the left hand side of (B.11) would dominate

the other two terms, which would lead to a contradiction. Hence, we must have that δ2p,NT ηNT
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is stochastically bounded, implying that ηNT = OP

(
pN−1 + T−1

)
. This completes the proof of

Theorem 3.1(i).

(ii) The proof for the point-wise convergence result is similar to the proof of Theorem 3.2(ii)

in Qian and Su (2015b), where the condition γm0∆−κ
NT δp,NT = O(1) in Assumption 2(i) is used

to handle the penalty term. We omit the details to save space.

We have thus completed the proof of Theorem 3.1. �

Proof of Theorem 3.2. To prove the sparsity, it is equivalent to showing

P
(∥∥θ̂t

∥∥ 6= 0 for some t ∈ T c
)
→ 0 (B.12)

as (N,T ) → ∞. We consider two cases: (i) 2 ≤ t ≤ T − 1 and t ∈ T c; and (ii) t = T and t ∈ T c.

Recall that δp,NT = min(p−1/2N1/2, T 1/2).

For case (i), there would be two possible circumstances: (i.1) t + 1 = T 0
j ∈ T 0

m0 for some

j = 1, ...,m0; and (i.2) t + 1 ∈ T c. We invoke subdifferential calculus (e.g., Bersekas, 1995,

Appendix B.5) to obtain the following Karush-Kuhn-Tucker condition with respect to βt to the

objective function in (2.4):

δp,NT

[
−2

N
X ′

tM Λ̂

(
Yt −Xtβ̂t

)
+ γẇt

β̂t − β̂t−1∥∥β̂t − β̂t−1

∥∥ − γẇt+1
β̂t+1 − β̂t∥∥β̂t+1 − β̂t

∥∥

]
= 0, (B.13)

where for any p × 1 vector a with ‖a‖ = 0, a/‖a‖ is defined as an arbitrary p × 1 vector

with Frobenius norm smaller than or equal to 1. Let UNT,1 = 1
NX ′

tM Λ̂

(
Yt − Xtβ̂t

)
, UNT,2 =

γẇt
β̂t−β̂t−1∥∥β̂t−β̂t−1

∥∥ and UNT,3 = γẇt+1
β̂t+1−β̂t∥∥β̂t+1−β̂t

∥∥ . Following the proof of Theorem 3.1 and using

Lemma B.2, we may show that

δp,NT ‖UNT,1‖ = OP (1). (B.14)

If circumstance (i.1) holds, by Lemma B.1 and Assumption 2(ii), we have

ẇt+1 = ‖β̇t+1 − β̇t‖−κ ≤
[

min
1≤j≤m0

∥∥α0
j+1 − α0

j

∥∥+OP

(
δ−1
p,NT

)]−κ
= OP (∆

−κ
NT ), (B.15)

which together with Assumption 2(i), indicates that

δp,NT ‖UNT,3‖ = OP (γδp,NT∆
−κ
NT ) = OP (1). (B.16)

However, for case (i) with 2 ≤ t ≤ T − 1 and t ∈ T c, by Lemma B.1, we may show that w.p.a.1

ẇt = ‖β̇t − β̇t−1‖−κ ≥ Cδκp,NT , (B.17)
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for some positive constant C. Hence, it is not difficult to see that when θ̂t 6= 0,

δp,NT ‖UNT,2‖ ≥ Cγδκ+1
p,NT → ∞ (B.18)

by using Assumption 2(iii). By (B.14), (B.16) and (B.18), the equation (B.13) cannot hold

as (N,T ) → ∞. Hence, θ̂t can only take the value of 0 at which ||θ̂t|| is not differentiable.

Furthermore, as an implication of the above result, if t = T 0
j − 1 ∈ T c for some j = 1, ...,m0,

then we have

δp,NTγẇt
β̂t − β̂t−1∥∥β̂t − β̂t−1

∥∥ = δp,NTγẇT 0
j −1

β̂T 0
j −1 − β̂T 0

j −2∥∥β̂T 0
j −1 − β̂T 0

j −2

∥∥ = OP (1). (B.19)

We next prove (B.12) for circumstance (i.2 ). Following the above argument, we can show

that when t = T 0
j − 2 and θ̂T 0

j −2 6= 0,

δp,NT

N
X ′

tM Λ̂

(
Yt −Xtβ̂t

)
= OP (1), δp,NTγẇt

β̂t − β̂t−1∥∥β̂t − β̂t−1

∥∥ → ∞, (B.20)

which, together with (B.19), implies that (B.13) cannot hold as (N,T ) → ∞. Hence, θ̂T 0
j −2 can

only be 0. Deducting in this way until we reach t = T 0
j−1 + 1 ∈ T c, we can complete the proof

of sparsity for case (i).

For case (ii), note that the consequence of the Karush-Kuhn-Tucker condition with respect

to βT leads to

δp,NT

[
1

N
X ′

TM Λ̂

(
YT −XT β̂T

)
+ γẇT

β̂T − β̂T−1∥∥β̂T − β̂T−1

∥∥

]
= 0. (B.21)

As there is only one penalty term in (B.21), the proof is much simpler than that for case (i).

Hence, we omit the details here.

We have completed the proof of Theorem 3.2. �

Proof of Corollary 3.3. By Theorem 3.2, as (N,T ) → ∞, no time point in T c can be identified

as the break time, which implies that m̂ ≤ m0. On the other hand, by Theorem 3.1, for any

t ∈ T 0
m0 , ∥∥∥θ̂t

∥∥∥ =
∥∥∥β̂t − β̂t−1

∥∥∥ =
∥∥β0

t − β0
t−1

∥∥+OP (δ
−1
p,NT ) =

∥∥θ0t
∥∥+OP (δ

−1
p,NT ),

which indicates that ‖θ0t ‖ = OP (δ
−1
p,NT ) if θ̂t = 0 (i.e., t ∈ T 0

m0 is not identified as a break point).

However, the conclusion ‖θ0t ‖ = OP

(
δ−1
p,NT

)
would violate the condition δp,NT∆NT → ∞ which
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is assumed in Assumption 2(ii). Hence, each time point in T 0
m0 must be identified as the break

time, which implies that m̂ = m0 w.p.a.1 and thus both the results (i) and (ii) are proved. �

To prove the asymptotic distribution theory for the post-LASSO estimator in Theorem 3.4,

we need to use the following lemma whose proof is given in Appendix C of the supplemental

document. Let Λ̃m0 ≡ Λ̃(T 0
m0) be the infeasible estimator of the factor loadings in the post-

LASSO estimation procedure, H̃ =
(
1
T F

0′F 0
)(

1
NΛ0′ Λ̃m0

)
Ṽ

+
NT , and α̃m0 ≡ α̃m0(T 0

m0), where

Ṽ NT will be defined later in (B.25).

Lemma B.3 Suppose that the conditions in Theorem 3.4 hold. Then,

(i) for each j = 1, ...,m0 + 1, we have

∥∥∥ 1

Nτ j(T )

T 0
j −1∑

t=T 0
j−1

X ′
t

(
M

Λ̃m0
−M

Λ
0

)
εt+BNT,j(2, 1)

∥∥∥ = OP

(
δ−1
NT (m

0)−1/2‖α̃m0
−α0‖+ δ−3

p,NT

)
,

where τ j(T ) and BNT,j(2, 1) are defined as in Theorem 3.4;

(ii) for each j = 1, ...,m0 + 1, we have

∥∥∥ 1

Nτ j(T )

T 0
j −1∑

t=T 0
j−1

X ′
tM Λ̃m0

(
Λ0 − Λ̃m0H̃

+)
f0
t +

1

Nτ j(T )

T 0
j −1∑

t=T 0
j−1

X ′
tMΛ

0ε∗t +BNT,j(1)

−BNT,j(2, 2) +
(
Φ∗
j1, ...,Φ

∗
j,m0+1

)
(α̃m0 −α0)

∥∥∥ = OP

(
pδ−1

p,NT (m
0)−1/2‖α̃m0

−α0‖+ δ−3
p,NT

)
,

where ε∗t = 1
T

∑T
s=1 χstεs, Φ

∗
jk, 1 ≤ j, k ≤ m0 + 1, are defined at the beginning of Appendix A,

and BNT,j(1) and BNT,j(2, 2), j = 1, ...,m0 + 1, are defined as in Theorem 3.4.

We are now ready to prove Theorem 3.4.

Proof of Theorem 3.4. Let GT =
{
T̂j = T 0

j for j = 1, ...,m0
}
. By Corollary 3.3, we readily

have

P
{
SDNT

(
α̃m̂ −α0) ∈ C

∣∣m̂ = m0
}

= P
{
SDNT

(
α̃m̂ −α0) ∈ C,GT

∣∣m̂ = m0
}
+ P

{
SDNT

(
α̃m̂ −α0) ∈ C,Gc

T

∣∣m̂ = m0
}

= P
{
SDNT

(
α̃m0 −α0) ∈ C

}
+ o(1), (B.22)

where C ⊂ R
k0 , Gc

T is the complement of GT and α̃m0 = α̃m0(Tm0) is the infeasible estimate

of α0. Hence, throughout the proof, we can replace m̂ and T̂j (j = 1, ..., m̂) by m0 and T 0
j ,

respectively, which would not affect the asymptotic distribution of the post-LASSO estimator.
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Letting m = m0 and Tj = T 0
j in the objective function (3.1), we have

QNT

(
αm0 ,Λ,F ; T 0

m0

)
=

1

NT

m0+1∑

j=1

T 0
j −1∑

t=T 0
j−1

(
Yt −Xtαj −Λft

)′(
Yt −Xtαj −Λft

)
,

and

min
F

QNT

(
αm0 ,Λ,F ; T 0

m0

)
=

1

NT

m0+1∑

j=1

T 0
j −1∑

t=T 0
j−1

(
Yt −Xtαj

)′
MΛ

(
Yt −Xtαj

)
. (B.23)

Recall that Λ̃m0 = Λ̃(T 0
m0) which is defined as in Lemma B.3. Let

Φ̃NT (Λ̃m0) = diag
{
Φ̃1(Λ̃m0), ..., Φ̃m0+1(Λ̃m0)

}
and

Ξ̃NT (Λ̃m0) =
[
Ξ̃1(Λ̃m0)′, ..., Ξ̃m0+1(Λ̃m0)′

]′
,

where Φ̃j(Λ̃m0) = 1
Nτ j(T )

∑T 0
j −1

t=T 0
j−1

X ′
tM Λ̃m0

Xt, and Ξ̃j(Λ̃m0) = 1
Nτ j(T )

∑T 0
j −1

t=T 0
j−1

X ′
tM Λ̃m0

Yt for

j = 1, ...,m0 + 1. Then, the solution
(
α̃m0 , Λ̃m0

)
to the minimization of the objective function

in (B.23) satisfies

α̃m0 = Φ̃
+
NT (Λ̃m0)Ξ̃NT (Λ̃m0) with α̃m0j = Φ̃+

j (Λ̃m0)Ξ̃j(Λ̃m0), (B.24)

and 
 1

NT

m0+1∑

j=1

Tj−1∑

t=Tj−1

(
Yt −Xtα̃m0j

)(
Yt −Xtα̃m0j

)′

 Λ̃m0 = Λ̃m0Ṽ NT , (B.25)

where α̃m0j is the j-th p-dimensional element of α̃m0 and Ṽ NT is a diagonal matrix consisting

of the R0 largest eigenvalues of the above matrix in the square brackets in (B.25) arranged in

descending order.

To simplify the notation, we further let Λ̃ ≡ Λ̃m0 in the remaining proof when no confusion

can arise. For j = 1, ...,m0 + 1, using the expression that Yt = Xtα
0
j + Λ0f0

t + εt for t ∈
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[T 0
j−1, T

0
j − 1] and the fact that M

Λ̃
Λ̃ = 0, we have

Ξ̃j(Λ̃) =
1

Nτ j(T )

T 0
j −1∑

t=T 0
j−1

X ′
tM Λ̃

(
Xtα

0
j +Λ0f0

t + εt
)

=
[ 1

Nτ j(T )

T 0
j −1∑

t=T 0
j−1

X ′
tM Λ̃

Xt

]
α0
j +

1

Nτ j(T )

T 0
j −1∑

t=T 0
j−1

X ′
tM Λ̃

(
Λ0 − Λ̃H̃

+)
f0
t

+
1

Nτ j(T )

T 0
j −1∑

t=T 0
j−1

X ′
tM Λ̃

εt.

Plugging the above expression into the formula of α̃m0j in (B.24) yields

Φ̃j(Λ̃)
(
α̃m0j − α0

j

)
=

1

Nτ j(T )

T 0
j −1∑

t=T 0
j−1

X ′
tM Λ̃

(
Λ0 − Λ̃H̃

+)
f0
t +

1

Nτ j(T )

T 0
j −1∑

t=T 0
j−1

X ′
tM Λ̃

εt. (B.26)

We first consider the second term on the right hand side of (B.26). By Lemma B.3(i),

∥∥∥ 1

Nτ j(T )

T 0
j −1∑

t=T 0
j−1

X ′
tM Λ̃

εt −
1

Nτ j(T )

T 0
j −1∑

t=T 0
j−1

X ′
tMΛ

0εt +BNT,j(2, 1)
∥∥∥

= OP

(
δ−1
NT (m

0)−1/2‖α̃m0
−α0‖+ δ−3

p,NT

)
(B.27)

for each j = 1, ...,m0+1. On the other hand, for the first term on the right hand side of (B.26),

by Lemma B.3(ii), we have

∥∥∥ 1

Nτ j(T )

T 0

j −1∑

t=T 0

j−1

X ′
tM Λ̃

m0

(
Λ0 − Λ̃m0H̃

+)
f0
t +

1

Nτ j(T )

T 0

j −1∑

t=T 0

j−1

X ′
tMΛ0ε∗t +BNT,j(1)−BNT,j(2, 2)

+
(
Φ∗

j1, ...,Φ
∗
j,m0+1

)
(α̃m0 −α0)

∥∥∥ = OP

(
δ−1

NT (m
0)−1/2‖α̃m0

−α0‖+ δ−3

p,NT

)
, (B.28)

Recall that ΩNT = ΦNT −Φ∗
NT with ΦNT and Φ∗

NT defined at the beginning of Appendix

A. Then, using the definitions of BNT (1) and BNT (2) in Section 3.2, the definition of WNT

in Assumption 3(iv), the condition (NT )1/2 = o(δ3p,NT ) in Assumption 3(v) as well as (B.26)–

(B.28), we have

∥∥SDNT

[
ΩNT (α̃m0 −α0) +BNT (1) +BNT (2)−WNT

]∥∥ = oP (1). (B.29)

32



Furthermore, by Assumptions 3(i)(iv) and noting that Ω0 is positive definite, we have

SDNT

[
α̃m0 −α0 +BNT

] D−→ N
(
0, SΩ+

0 Ω1Ω
+
0 S

′
)
,

where BNT = Ω+
NT

[
BNT (1) + BNT (2) − BNT (3)

]
. We have thus completed the proof of

Theorem 3.4. �

To prove Theorem 4.1 in Section 4.1, we need the following lemma whose proof is given in

Appendix C of the supplemental document.

Lemma B.4 Suppose that the conditions in Theorem 4.1 hold. Then

(i) there exists a cR > 0 such that plim inf(N,T )→∞

[
V (R, β̇R)− V (R0, β̇R0

)
]
≥ cR for each

R with 1 ≤ R < R0,

(ii) V (R, β̇R)− V (R0, β̇R0
) = OP

(
δ−2
p,NT

)
for each R with R ≥ R0.

Proof of Theorem 4.1. The proof is analogous to that of Corollary 1 in Bai and Ng (2002).

For notational simplicity, let V (R) = V (R, β̇R) for all R. Note that

BIC (R)− BIC (R0) = ln [V (R) /V (R0)] + (R−R0) ρ1.

We discuss the following two cases: (a) R < R0, and (b) R0 < R ≤ Rmax.

For case (a), by Lemma B.4(i), V (R) /V (R0) > 1+ǫ0 and thus ln [V (R) /V (R0)] ≥ ǫ0/2 for

some ǫ0 > 0 w.p.a.1. This, in conjunction with the fact that (R−R0) ρ1 → 0 under Assumption

4, implies that BIC (R)− BIC (R0) ≥ ǫ0/4 w.p.a.1. It follows that

P (BIC (R)− BIC (R0) > 0) → 1

as (N,T ) → ∞ for any R < R0.

For case (b), we apply Lemma B.4(ii) and Assumption 4 to obtain

P (BIC (R)− BIC (R0) > 0) = P (ln [V (R) /V (R0)] + (R−R0) ρ1 > 0)

= P
(
OP (1) + (R−R0) ρ1δ

2
p,NT > 0

)
→ 1

as (N,T ) → ∞ for any R0 < R ≤ Rmax. Consequently, the minimizer of BIC (R) can only be

achieved at R = R0 w.p.a.1. That is, P(R̂ = R0) → 1 for any R ∈ [1, Rmax] as (N,T ) → ∞. �

Let Tm consist of Tm = {T1, ..., Tm} such that 2 ≤ T1 < ... < Tm ≤ T, T0 = 1 and Tm+1 =

T + 1; and let T̄m consist of Tm = {T1, ..., Tm} such that Tm0 ⊂ Tm, 2 ≤ T1 < ... < Tm ≤ T for

m0 < m ≤ mmax. To prove Theorem 4.2, we need the following two useful lemmas.
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Lemma B.5 Suppose that the conditions in Theorem 4.2 hold. Then there exists a positive

constant cm such that

min
0≤m<m0

inf
Tm∈Tm

m0

T∆2
NT

[
σ̃2(Tm)− σ̃2(T 0

m0)
]
≥ cm + oP (1) .

Lemma B.6 Suppose that the conditions in Theorem 4.2 hold. Then we have

max
m0<m≤mmax

sup
Tm∈T̄m

δ2p,NT

∣∣σ̃2(Tm)− σ̃2(T 0
m0)
∣∣ = OP (1) .

Proof of Theorem 4.2. Denote Γ = [0, γmax], a bounded interval in R
+, which is divided into

three subsets Γ0, Γ− and Γ+ as follows

Γ0 =
{
γ ∈ Γ : m̂γ = m0

}
, Γ− =

{
γ ∈ Γ : m̂γ < m0

}
, and Γ+ =

{
γ ∈ Γ : m̂γ > m0

}
.

Clearly, Γ0, Γ− and Γ+ denote the three subsets of Γ in which the correct-, under- and over-

number of breaks are selected by the AGF-LASSO procedure, respectively. Recall that α̃m̂γ =

(α̃1(T̂m̂γ )
′, ..., α̃m̂γ+1(T̂m̂γ )

′)′ and Λ̃(T̂m̂γ ) denote the post-LASSO estimators of the regression

coefficients and factor loadings based on the break dates in T̂m̂γ = T̂m̂γ (γ) = (T̂1 (γ) , ..., T̂m̂γ (γ)),

where we make the dependence of various estimates on γ explicit. Recall that σ̃2(T̂m̂γ ) =

QNT (α̃m̂γ , Λ̃(T̂m̂γ ); T̂m̂γ ). Let γ
0 ≡ γ0NT denote an element in Γ0 that also satisfies the conditions

on γ in Assumptions 2(i) and (iii), and let T̂j(γ
0) be the AGF-LASSO estimate of the true break

date T 0
j using the tuning parameter γ0. For any γ0 ∈ Γ0, we have m̂γ0 = m0 w.p.a.1, and by

Corollary 3.3,

lim
(N,T )→∞

P
(
T̂j(γ

0) = T 0
j , j = 1, ...,m0

)
= 1.

It follows that w.p.a.1 σ̃2(T̂m̂γ0
) = σ̃2(T 0

m0). By the proof of Lemma B.5 in Appendix C of the

supplemental document,

σ̃2(T 0
m0) =

1

NT

m0+1∑

j=1

T 0
j −1∑

t=T 0
j−1

+1

[Yt −Xtα̃j(Tm0)]′M
Λ̃
[Yt −Xtα̃j(Tm0)]

=
1

NT

T∑

t=1

ε′tεt +OP (δ
−2
p,NT )

P→ σ2
0,

where σ2
0 ≡ lim(N,T )→∞

1
NT

∑T
t=1 E [ε′tεt] . Thus σ̃2(T 0

m0)
P→ σ2

0 and IC
(
γ0
)
= ln(σ̃2(T 0

m0)) +

ρ2p(m
0 +1)

P→ ln(σ2
0) as ρ2p

(
m0 + 1

)
= o (1) by Assumption 5(iii). We next consider the cases

of under- and over-fitted models separately.
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Case 1 (Under-fitted model with m̂γ < m0): By Lemma B.5 and Assumption 5(iii),

P

(
inf

γ∈Γ−

IC (γ) > IC
(
γ0
))

= P

(
inf

γ∈Γ−

m0

T∆2
NT

[
ln
(
σ̃2(T̃m̂γ )/σ̃

2(T 0
m0)
)
+ ρ2p

(
m̂γ −m0

)]
> 0

)

≥ P (c/2 + oP (1) > 0) → 1,

where c is a positive constant.

Case 2 (Over-fitted model with m̂γ > m0): For given Tm = {T1, ..., Tm} ∈ Tm, we let T̄m∗+m0 =
{
T̄1, T̄2, ..., T̄m∗+m0

}
denote the union of Tm and T 0

m0 with elements ordered in non-descending

order: 2 ≤ T̄1 < T̄2 < · · · < T̄m∗+m0 ≤ T for some m∗ ∈ {0, 1, ...,m}. Let
(
α̃m(Tm), Λ̃ (Tm)

)
= arg min

(αm,Λ)
QNT (αm,Λ; Tm)

subject to Λ′Λ/N=IR0 . Let σ̃2(Tm) ≡ QNT (α̃m(Tm), Λ̃ (Tm) ; Tm) and let σ̃2(T̄m∗+m0) be anal-

ogously defined. In view of the fact that σ̃2(T̄m∗+m0) ≤ σ̃2(Tm) for all Tm ∈ Tm,

δ2p,NT

[
σ̃2(T̄m∗+m0)− σ̄2

NT

]
= OP (1)

uniformly in Tm ∈ Tm by Lemma B.6, and δ2p,NT pρ2 → ∞ by Assumption 5(iii), we have

P

(
inf

γ∈Γ+

IC(γ) > IC(γ0)

)

≥ P

(
min

m0<m≤mmax

inf
Tm∈Tm

{
δ2p,NT

[
ln
(
σ̃2(Tm)/σ̃2(Tm0)

)]
+ δ2p,NTρ2p

(
m−m0

)}
> 0

)

≥ P

(
min

m0<m≤mmax

inf
Tm∈Tm

{
δ2p,NT

[
ln
(
σ̃2(T̄m∗+m0)/σ̃2(Tm0)

)]
+ δ2p,NTρ2p

(
m−m0

)}
> 0

)

→ 1.

We have completed the proof of Theorem 4.2 �
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Supplementary Material for

“Panel Data Models with Interactive Fixed Effects

and Multiple Structural Breaks”

This supplemental document provides the proofs of all the technical lemmas in Appendix B

of the main document.

C Proofs of the technical lemmas

In this appendix we give the detailed proofs of the technical lemmas used in Appendix B. Before

proving Lemma B.1 on the convergence rates of β̇t, we give some preliminary results. Let

b = (b′1, b
′
2, ..., b

′
T )

′ where bt is a p-dimensional column vector and let C be a positive constant

whose value may change from line to line. Recall that δNT = min(
√
N,

√
T ).

Lemma C.1 Suppose that Assumption 1 in Appendix A holds. Then we have

(i) supb supΛ

∣∣∣ 1
NT

∑T
t=1 b

′
tX

′
tMΛεt

∣∣∣ = OP (pN
−1/2 + p1/2T−1/2),

(ii) supΛ

∣∣∣ 1
NT

∑T
t=1 f

0′
t Λ0′MΛεt

∣∣∣ = OP (δ
−1
NT ),

(iii) supΛ

∣∣∣ 1
NT

∑T
t=1 ε

′
tPΛεt

∣∣∣ = OP (δ
−2
NT ),

(iv) 1
NT

∑T
t=1 ε

′
tPΛ

0εt = OP (N
−1),

where supb is taken with respect to b such that ‖b‖ ≤ C(pT )1/2 and supΛ is taken with respect

to Λ such that 1
NΛ′Λ = IR0

.

Proof of Lemma C.1. (i)Note that 1
NT

∑T
t=1 b

′
tX

′
tMΛεt =

1
NT

∑T
t=1 b

′
tX

′
tεt− 1

N2T

∑T
t=1 b

′
tX

′
tΛΛ′εt

if 1
NΛ′Λ = IR0

. By Assumption 1(iii) and the Cauchy-Schwarz inequality, we have

∣∣
T∑

t=1

b′tX
′
tεt
∣∣ =

( T∑

t=1

‖bt‖2
)1/2 ·

( T∑

t=1

‖X ′
tεt‖2

)1/2
= OP

(
pTN1/2

)
(C.1)

for ‖b‖2 =
∑T

t=1 ‖bt‖2 ≤ CpT . On the other hand, by some elementary calculations, we have

∣∣
T∑

t=1

b′tX
′
tΛΛ′εt

∣∣ ≤
T∑

t=1

∣∣b′tX ′
tΛΛ′εt

∣∣ ≤ max
1≤t≤T

∥∥X ′
tΛ
∥∥

T∑

t=1

∥∥bt
∥∥∥∥Λ′εt

∥∥

≤ max
1≤t≤T

∥∥X ′
tΛ
∥∥
( T∑

t=1

∥∥bt
∥∥2
)1/2( T∑

t=1

∥∥Λ′εt
∥∥2
)1/2

.

1



By the restriction on Λ and Assumption 1(ii), we have

max
1≤t≤T

∥∥X ′
tΛ
∥∥2 = max

1≤t≤T
tr
(
Λ′XtX

′
tΛ
)
≤ max

1≤t≤T
µmax

(
X ′

tXt

)
‖Λ‖2 = OP (N

2). (C.2)

On the other hand, using 1
NΛ′Λ = IR0

and Assumption 1(iii), we have

T∑

t=1

||Λ′εt||2 =
T∑

t=1

Tr(Λ′εtε
′
tΛ) = Tr(Λ′εε′Λ)

≤ N ‖ε‖2sp Tr(Λ′Λ/N) = NR0 ‖ε‖2sp = OP (N(N + T )) . (C.3)

It follows that
∣∣

T∑

t=1

b′tX
′
tΛΛ′εt

∣∣ = OP

(
p1/2(N2T 1/2 +N3/2T )

)
, (C.4)

as ‖b‖ ≤ C(pT )1/2. Then, by (C.1) and (C.4), we can complete the proof of (i).

(ii) By the definition of MΛ and noting that 1
NΛ′Λ = IR0

, we have

1

NT

T∑

t=1

f0′
t Λ0′MΛεt =

1

NT

T∑

t=1

f0′
t Λ0′εt −

1

N2T

T∑

t=1

f0′
t Λ0′ΛΛ′εt.

By Assumptions 1(i) and (iii), we readily have

∣∣
T∑

t=1

f0′
t Λ0′εt

∣∣ =
( T∑

t=1

‖f0′
t ‖2

)1/2 ·
( T∑

t=1

‖Λ0′εt‖2
)1/2

= OP (
√
NT ). (C.5)

On the other hand, as in the proof of (C.4) above we can show

∣∣
T∑

t=1

f0′
t Λ0′ΛΛ′εt

∣∣ = OP (N
2T 1/2 +N3/2T ). (C.6)

We then complete the proof of (ii) by using (C.5) and (C.6).

(iii) As 1
NΛ′Λ = IR0

, we have 1
NT

∑T
t=1 ε

′
tPΛεt =

1
N2T

∑T
t=1 ε

′
tΛΛ′εt, which together with

(C.3), completes the proof of (iii).

(iv) Using Assumption 1(iii) and the fact 1
NΛ0′Λ0 P−→ ΣΛ under Assumption 1(i), we have

∣∣∣ 1

NT

T∑

t=1

ε′tPΛ
0εt

∣∣∣ ≤ 1

N

∥∥∥
( 1

N
Λ0′Λ0

)+∥∥∥ · 1

NT

T∑

t=1

∥∥Λ0′εt
∥∥2

= OP (N
−1) ·OP (1) ·OP (1) = OP (N

−1), (C.7)

which completes the proof of (iv).

We has thus completed the proof of Lemma C.1. �
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Lemma C.2 Suppose that Assumption 1 in Appendix A holds and pN−1/2 + p1/2T−1/2 = o(1).

Let β̇ = (β̇
′

1, ..., β̇
′

T )
′ and Λ̇ =

(
λ̇
′

1, ..., λ̇
′

N

)′
be the preliminary estimates of β0 and Λ0 which

minimize Q̂NT (β,Λ), the first term of the objective function defined in (2.4). Then

1

T

T∑

t=1

‖β̇t − β0
t ‖2 = OP

(
pN−1/2 + p1/2T−1/2

)
= oP (1).

Proof of Lemma C.2. The proof of this lemma is similar to that of Theorem 3.1 in Appendix

B of the main document. Notice that

Q̂NT

(
β,Λ

)
=

1

T

T∑

t=1

[ 1
N

(
Yt −Xtβt

)′
MΛ

(
Yt −Xtβt

)]
≡ 1

T

T∑

t=1

Q̂NT,t(βt,Λ) (C.8)

and

Yt −Xtβ̇t = Xt(β
0
t − β̇t) +Λ0f0

t + εt. (C.9)

Then, by (C.8) and (C.9) and using the fact that M
Λ

0Λ0 = 0, we have

QNT

(
β̇, Λ̇

)
−QNT

(
β0,Λ0

)

=
1

T

T∑

t=1

1

N

[(
Yt −Xtβ̇t

)′
M

Λ̇

(
Yt −Xtβ̇t

)
−
(
Yt −Xtβ

0
t

)′
M

Λ
0

(
Yt −Xtβ

0
t

)]

=
1

T

T∑

t=1

1

N

[(
β̇t − β0

t

)′
X ′

tM Λ̇
Xt

(
β̇t − β0

t

)
− 2
(
β̇t − β0

t

)′
X ′

tM Λ̇
Λ0f0

t + f0′
t Λ0′M

Λ̇
Λ0f0

t

]

+
1

T

T∑

t=1

1

N

[
− 2
(
β̇t − β0

t

)′
X ′

tM Λ̇
εt + 2f0′

t Λ0′M
Λ̇
εt − ε′tP Λ̇

εt + ε′tPΛ
0εt

]
. (C.10)

By Lemma C.1 above, we can prove that

1

NT

T∑

t=1

[
−2
(
β̇t−β0

t

)′
X ′

tM Λ̇
εt+2f0′

t Λ0′M
Λ̇
εt−ε′tP Λ̇

εt+ε′tPΛ
0εt

]
= OP

(
pN−1/2+p1/2T−1/2

)
.

(C.11)

Let ḋβ = β̇ − β0 and ḋΛ = 1
N1/2 vec(M Λ̇

Λ0) where vec(·) denotes the vectorization of a

matrix. Define

Ȧ =
1

N
diag

(
X ′

1M Λ̇
X1, ..., X

′
TM Λ̇

XT

)
, Ḃ = (F 0′F 0)⊗ IN , and

Ċ =
1

N1/2

[
f0
1 ⊗M

Λ̇
X1, ..., f

0
T ⊗M

Λ̇
XT

]
,

3



where ⊗ denotes the Kronecker product. It is easy to verify that

1

NT

T∑

t=1

(
β̇t − β0

t

)′
X ′

tM Λ̇
Xt

(
β̇t − β0

t

)
=

1

T
ḋ
′

βȦḋβ ,

1

NT

T∑

t=1

(
β̇t − β0

t

)′
X ′

tM Λ̇
Λ0f0

t =
1

NT

T∑

t=1

Tr
{
M

Λ̇
Λ0f0

t

(
β̇t − β0

t

)′
X ′

tM Λ̇

}
=

1

T
ḋ
′

ΛĊḋβ ,

and

1

NT

T∑

t=1

f0′
t Λ0′M

Λ̇
Λ0f0

t =
1

NT

T∑

t=1

Tr
(
M

Λ̇
Λ0f0

t f
0′
t Λ0′M

Λ̇

)
=

1

T
ḋ
′

ΛḂḋΛ,

where we have used the following fact on matrix calculation that Tr
(
A1A2A3

)
= vec′

(
A1

)(
A2⊗

Ik

)
vec
(
A3

)
and that Tr

(
A1A2A3A4

)
= vec′

(
A1

)(
A2 ⊗ A′

4

)
vec
(
A′

3

)
with k being the size of

the column vectors in A3 (in the first equation). With the above notations, we may show that

1

T

T∑

t=1

1

N

[(
β̇t − β0

t

)′
X ′

tM Λ̇
Xt

(
β̇t − β0

t

)
− 2
(
β̇t − β0

t

)′
X ′

tM Λ̇
Λ0f0

t + f0′
t Λ0′M

Λ̇
Λ0f0

t

]

=
1

T

(
ḋ
′

βȦḋβ − 2ḋ
′

ΛĊḋβ + ḋ
′

ΛḂḋΛ

)
=

1

T

(
ḋ
′

βḊḋβ + ḋ
′

∗Ḃḋ∗

)
,

where Ḋ = Ȧ − Ċ
′
Ḃ

+
Ċ and ḋ∗ = ḋΛ − Ḃ

+
Ċḋβ . By Assumption 1(i), we may show that

the minimum eigenvalue of 1
T Ḃ is bounded away from zero w.p.a.1, i.e., there exists a positive

constant c4 such that µmin

(
Ḃ/T

)
> c4 w.p.a.1. Using a decomposition similar to (B.8) in

Appendix B, we can readily show that µmax

(
Ċ

′
Ċ/T

)
= oP (1). By Assumption 1(ii), we can

also show that the minimum eigenvalue of Ȧ is bounded away from zero w.p.a.1, i.e., there exists

a positive constant cx (defined in Assumption 1(ii)) such that µmin

(
Ȧ
)
> cx w.p.a.1. Hence, we

have proved that the matrix Ḋ is asymptotically positive definite as its minimum eigenvalue is

positive and bounded away from zero w.p.a.1.

Note that

1

T

(
ḋ
′

βḊḋβ + ḋ
′

∗Ḃḋ∗

)
+OP

(
pN−1/2 + p1/2T−1/2

)
≤ QNT

(
β̇, Λ̇

)
−QNT

(
β0,Λ0

)
≤ 0, (C.12)

ḋ
′

∗Ḃḋ∗ is asymptotically nonnegative, and ḋ
′

βḊḋβ ≥ c5‖ḋβ‖2 where c5 is a positive constant. It

follows that 1
T ‖ḋβ‖2 = 1

T

∑T
t=1 ‖β̇t − β0

t ‖2 = OP (pN
−1/2 + p1/2T−1/2) = oP (1), completing the

proof of Lemma C.2. �

Lemma C.3 Suppose that Assumption 1 in Appendix A holds and pN−1/2 + p1/2T−1/2 = o(1).

Let Ḣ ≡ ḢNT =
(
1
T F

0′F 0
)(

1
NΛ0′Λ̇

)
V̇

+
NT , where V̇ NT is analogously defined as V NT in (2.7)

with β̂t replaced by β̇t. Denote η̇NT = 1
T

∑T
t=1 ‖β̇t − β0

t ‖2. Then we have

4



(i) 1
N

∥∥Λ̇−Λ0Ḣ
∥∥2 = OP

(
δ−2
NT + η̇NT

)
,

(ii) 1
N

(
Λ̇−Λ0Ḣ

)′
Λ0Ḣ = OP

(
δ−2
NT + η̇

1/2
NT

)
,

(iii) 1
N

(
Λ̇−Λ0Ḣ

)′
Λ̇ = OP

(
δ−2
NT + η̇

1/2
NT

)
,

(iv) 1
N

(
Λ̇

′
Λ̇− Ḣ

′
Λ0′Λ0Ḣ

)
= OP

(
δ−2
NT + η̇

1/2
NT

)
,

(v)
∥∥P

Λ̇
− P

Λ
0Ḣ

∥∥ = OP

(
δ−2
NT + η̇

1/2
NT

)
,

(vi) 1
NT

∑T
s=1(Λ̇−Λ0Ḣ)

′
εsγ

′
s = OP

(
δ−2
NT + η̇

1/2
NT

)
with γs = 1 or f0

s , and

(vii) 1
NT

∑T
s=1 ||(Λ̇−Λ0Ḣ)

′
εs||2 = OP

(
(1 +NT−1)(δ−2

NT + η̇NT )
)
.

Proof of Lemma C.3. (i) By (2.7) and (C.9) and letting dt = β̇t − β0
t , we have

Λ̇V̇ NT −Λ0ḢV̇ NT

=
[ 1

NT

T∑

t=1

(
Yt −Xtβ̇t

)
(Yt −Xtβ̇t)

]
Λ̇−Λ0ḢV̇ NT

=
{ 1

NT

T∑

t=1

[
−Xtdt +Λ0f0

t + εt
][

−Xtdt +Λ0f0
t + εt

]′}
Λ̇−Λ0ḢV̇ NT

=
1

NT

T∑

t=1

Xtdtd
′
tX

′
tΛ̇− 1

NT

T∑

t=1

Xtdtf
0′
t Λ0′Λ̇− 1

NT

T∑

t=1

Xtdtε
′
tΛ̇− 1

NT

T∑

t=1

Λ0f0
t d

′
tX

′
tΛ̇

+
1

NT

T∑

t=1

Λ0f0
t ε

′
tΛ̇− 1

NT

T∑

t=1

εtd
′
tX

′
tΛ̇+

1

NT

T∑

t=1

εtf
0′
t Λ0′Λ̇+

1

NT

T∑

t=1

εtε
′
tΛ̇

≡
8∑

j=1

u̇NT,j . (C.13)

Noting that Tr (AB) ≤ Tr (A)Tr (B) for conformable positive semidefinite matrices A and

B, ‖Λ̇‖ = OP (N
1/2) and max1≤t≤T µ2

max (X
′
tXt/N) = OP (1) by Assumption 1(ii), we have

‖u̇NT,1‖2 =
1

N2T 2

T∑

t=1

T∑

s=1

Tr(Xtdtd
′
tX

′
tΛ̇Λ̇

′
Xsdsd

′
sX

′
s)

≤
∥∥∥Λ̇
∥∥∥
2
{

1

NT

T∑

t=1

Tr(Xtdtd
′
tX

′
t)

}2

=
∥∥∥Λ̇
∥∥∥
2
{

1

NT

T∑

t=1

d′tX
′
tXtdt

}2

≤
∥∥∥Λ̇
∥∥∥
2
[
max
1≤t≤T

µ2
max

(
X ′

tXt/N
)]
{

1

T

T∑

t=1

‖dt‖2
}2

= OP (Nη̇2NT ). (C.14)

5



Noting that Tr (AB) ≤ Tr (AA′)1/2 Tr (BB′)1/2 for conformable matrices A and B, we have

‖u̇NT,2‖2 =
1

N2T 2

T∑

t=1

T∑

s=1

Tr(Xtdtf
0′
t Λ0′Λ̇Λ̇

′
Λ0f0

s d
′
sX

′
s)

≤
∥∥∥Λ̇
∥∥∥
2
µmax(Λ

0′Λ0)
1

N2T 2

T∑

t=1

T∑

s=1

Tr(Xtdtf
0′
t f0

s d
′
sX

′
s)

≤ 1

N

∥∥∥Λ̇
∥∥∥
2
µmax(Λ

0′Λ0/N)

(
1

T

T∑

t=1

{
Tr(f0

t d
′
tX

′
tXtdtf

0′
t )
}1/2

)2

≤
∥∥∥Λ̇
∥∥∥
2
µmax(Λ

0′Λ0/N)

[
max
1≤t≤T

µmax

(
X ′

tXt/N
)]
(

1

T

T∑

t=1

‖dt‖
∥∥f0

t

∥∥
)2

= OP (N)OP (1)OP (1)
1

T

T∑

t=1

‖dt‖2
1

T

T∑

t=1

∥∥f0
t

∥∥2 = OP (Nη̇NT ) , (C.15)

and analogously

‖u̇NT,4‖2 = OP

(
N

(
1

T

T∑

t=1

‖β̇t − β0
t ‖2
))

= OP (Nη̇NT ) . (C.16)

Noting that
∑T

t=1 ‖εt‖2 = OP (NT ) by Assumption 1(iii) and max1≤t≤T µmax (X
′
tXt/N) =

OP

(
1
)
by Assumption 1(ii), we can show that

‖u̇NT,3‖2 =
1

N2T 2

T∑

t=1

T∑

s=1

Tr(Xtdtε
′
tΛ̇Λ̇

′
εsd

′
sX

′
s) ≤

∥∥∥Λ̇
∥∥∥
2 1

N2T 2

T∑

t=1

T∑

s=1

Tr(Xtdtε
′
tεsd

′
sX

′
s)

≤
∥∥∥Λ̇
∥∥∥
2
{

1

NT

T∑

t=1

{
Tr(εtd

′
tX

′
tXtdtε

′
t)
}1/2

}2

≤ 1

N

∥∥∥Λ̇
∥∥∥
2
[
max
1≤t≤T

µmax

(
X ′

tXt/N
)]
{

1

T

T∑

t=1

‖εt‖ ‖dt‖
}2

≤ OP (1)
1

T

T∑

t=1

‖εt‖2
1

T

T∑

t=1

‖dt‖2 = OP (Nη̇NT ) (C.17)

and analogously

‖u̇NT,6‖2 = OP

(
N

T

T∑

t=1

‖β̇t − β0
t ‖2
)

= OP (Nη̇NT ) . (C.18)

The analysis of the remaining three terms is similar to the proof of Theorem 1 in Bai and

Ng (2002) by switching the roles of ft and λi. For u̇NT,5, using the fact that Λ0′Λ0 = OP (N),

6



‖Λ̇‖ = OP (N
1/2) and Assumptions 1(iii) and (iv), we can prove that

‖u̇NT,5‖2 =
1

N2T 2

T∑

t=1

T∑

s=1

Tr
(
Λ0f0

t ε
′
tΛ̇Λ̇

′
εsf

0′
s Λ0′

)
=

1

N2T 2

T∑

t=1

T∑

s=1

Tr
(
f0
t ε

′
tΛ̇Λ̇

′
εsf

0′
s Λ0′Λ0

)

= OP

(
1

NT 2

∥∥∥∥∥

T∑

t=1

T∑

s=1

N∑

i=1

N∑

k=1

εitεksλ̇
′

iλ̇kf
0
t f

0′
s

∥∥∥∥∥

)

= OP

(
1

NT 2

N∑

i=1

N∑

k=1

∣∣λ̇′

iλ̇k

∣∣
∥∥∥∥∥

T∑

t=1

T∑

s=1

εitεksf
0
t f

0′
s

∥∥∥∥∥

)

= OP




1

NT 2

(
N∑

i=1

N∑

k=1

‖λ̇i‖2‖λ̇k‖2
)1/2




N∑

i=1

N∑

k=1

∥∥∥∥∥

T∑

t=1

T∑

s=1

εitεksf
0
t f

0′
s

∥∥∥∥∥

2



1/2



= OP




1

T 2




N∑

i=1

N∑

k=1

∥∥∥∥∥

T∑

t=1

T∑

s=1

εitεksf
0
t f

0′
s

∥∥∥∥∥

2



1/2

 = OP (N/T ), (C.19)

and

‖u̇NT,7‖2 =
1

N2T 2

T∑

t=1

T∑

s=1

Tr
(
εtf

0′
t Λ0′Λ̇Λ̇

′
Λ0f0

s ε
′
s

)
=

1

N2T 2

T∑

t=1

T∑

s=1

Tr
(
Λ0′Λ̇Λ̇

′
Λ0f0

s ε
′
sεtf

0′
t

)

= OP

(
1

T 2

∥∥∥∥∥

T∑

t=1

T∑

s=1

f0
s ε

′
sεtf

0′
t

∥∥∥∥∥

)
= OP (N/T ). (C.20)

By the assumption that max1≤i,j≤N E
[∥∥∑T

t=1

∑T
s=1 εitεjsε

′
tεs
∥∥2
]
= O(N2T 2 + T 2) in Assump-

tion 1(iii), we can similarly prove

‖u̇NT,8‖2 = OP (N/T ). (C.21)

By (C.13)–(C.21), we can prove that

1

N

∥∥Λ̇V̇ NT −Λ0ḢV̇ NT

∥∥2 = OP (δ
−2
NT + η̇NT ). (C.22)

Premultiplying (C.13) by Λ̇
′
, and using the identification restriction on Λ̇: 1

N Λ̇
′
Λ̇ = IR0

,

(C.22) and Lemma C.2, we may show that

V̇ NT −
(

1

N
Λ̇

′
Λ0

)(
1

T
F 0′F 0

)(
1

N
Λ0′Λ̇

)
= oP (1). (C.23)

Furthermore, applying (C.12) in the proof of Lemma C.2 and noting that the matrix Ḃ is

positive definite, we can show that

1

N
Λ0′M

Λ̇
Λ0 =

1

N
Λ0′Λ0 −

(
1

N
Λ0′Λ̇

)(
1

N
Λ̇

′
Λ0

)
= oP (1),
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which together with Assumption 1(i), implies that 1
N Λ̇

′
Λ0 is asymptotically invertible and thus

V̇ NT is also asymptotically invertible. We can then complete the proof of (i) by using this fact

and (C.22).

(ii) Observe that by (C.13)

1

N

(
Λ̇−Λ0Ḣ

)′
Λ0Ḣ =

1

N

8∑

j=1

V̇
+
NT u̇

′
NT,jΛ

0Ḣ ≡ 1

N

8∑

j=1

u̇∗NT,j . (C.24)

By Assumption 1(i) and (C.14), we can readily prove

1

N
‖u̇∗NT,1‖ ≤

(
1

N1/2
‖u̇NT,1‖

)
· ‖V̇ +

NT ‖ ·
(

1

N1/2
‖Λ0Ḣ‖

)
= OP (η̇NT ) . (C.25)

Analogously, by (C.15) and (C.16), we can prove that

1

N
‖u̇∗NT,2‖ = OP

(
η̇
1/2
NT

)
and

1

N
‖u̇∗NT,4‖ = OP

(
η̇
1/2
NT

)
. (C.26)

For u̇∗NT,3, by the definition of u̇NT,3, we have

−u̇∗NT,3 = −V̇
+
NT u̇

′
NT,3Λ

0Ḣ =
1

NT
V̇

+
NT

T∑

t=1

Λ̇
′
εtd

′
tX

′
tΛ

0Ḣ

=
1

NT
V̇

+
NT

T∑

t=1

Ḣ
′
Λ0′εtd

′
tX

′
tΛ

0Ḣ +
1

NT
V̇

+
NT

T∑

t=1

(
Λ̇−Λ0Ḣ

)′
εtd

′
tX

′
tΛ

0Ḣ

≡ u̇∗NT,3a + u̇∗NT,3b. (C.27)

By the Cauchy-Schwarz inequality and Assumptions 1(ii) and (iii), we have

‖u̇∗NT,3a‖ ≤ C

T

T∑

t=1

‖Λ0′εtd
′
t‖ ≤ C

(
1

T

T∑

t=1

‖Λ0′εt‖2
)1/2(

1

T

T∑

t=1

‖dt‖2
)1/2

= OP

(
(Nη̇NT )

1/2
)
.

(C.28)

Similarly, with the help of Lemma C.3(i), we can also prove that

‖u̇∗NT,3b‖ = OP

(
Nη̇NT +Nδ−1

NT η̇
1/2
NT

)
. (C.29)

By (C.27)–(C.29), we have

1

N
‖u̇∗NT,3‖ = OP

(
η̇NT + δ−1

NT η̇
1/2
NT

)
. (C.30)

Similarly, we can also show that

1

N
‖u̇∗NT,6‖ = OP

(
η̇NT + δ−1

NT η̇
1/2
NT

)
. (C.31)
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For u̇∗NT,5, by the definition of u̇NT,5, we have

u̇∗NT,5 =
1

NT
V̇

+
NT

T∑

t=1

Ḣ
′
Λ0′εtf

0′
t Λ0′Λ0Ḣ +

1

NT
V̇

+
NT

T∑

t=1

(
Λ̇−Λ0Ḣ

)′
εtf

0′
t Λ0′Λ0Ḣ

≡ u̇∗NT,5a + u̇∗NT,5b. (C.32)

By Assumptions 1(i) and (iii), we have

‖u̇∗NT,5a‖ ≤ C
1

T

∥∥
T∑

t=1

Λ0′εtf
0′
t

∥∥ = OP

( 1
T

∥∥Λ0′εF 0
∥∥
)
= OP

(
N1/2T−1/2

)
. (C.33)

Using Lemma C.3(i), we can also prove that

‖u̇∗NT,5b‖ = OP

(
Nη̇NT +Nδ−2

NT

)
. (C.34)

By (C.32)–(C.34), we have
1

N
‖u̇∗NT,5‖ = OP

(
η̇NT + δ−2

NT

)
. (C.35)

Noting that Λ̇
′
Λ0 = OP (N) and using the assumption E

[∥∥Λ0′εF 0
∥∥2] = O(NT ) in Assumption

1(iii), we can also show that

1

N
‖u̇∗NT,7‖ = OP

(
η̇NT + δ−2

NT

)
and

1

N
‖u̇∗NT,8‖ = OP

(
η̇NT + δ−2

NT

)
. (C.36)

By (C.24)–(C.26), (C.30), (C.31), (C.35) and (C.36), we can complete the proof of (ii).

(iii) and (iv) The proofs of (iii) and (iv) can be completed by using the results in Lemmas

C.3(i) and (ii).

(v) Note that

P
Λ̇
− P

Λ
0Ḣ

= Λ̇
(
Λ̇

′
Λ̇
)+

Λ̇
′ −Λ0Ḣ

(
Ḣ

′
Λ0′Λ0Ḣ

)+
Ḣ

′
Λ0′ ≡

7∑

j=1

v̇NT,j , (C.37)

where

v̇NT,1 =
(
Λ̇−Λ0Ḣ

)(
Ḣ

′
Λ0′Λ0Ḣ

)+(
Λ̇−Λ0Ḣ

)′
,

v̇NT,2 =
(
Λ̇−Λ0Ḣ

)(
Ḣ

′
Λ0′Λ0Ḣ

)+
Ḣ

′
Λ0′,

v̇NT,3 =
(
Λ̇−Λ0Ḣ

)[(
Λ̇

′
Λ̇
)+ −

(
Ḣ

′
Λ0′Λ0Ḣ

)+](
Λ̇−Λ0Ḣ

)′
,

v̇NT,4 =
(
Λ̇−Λ0Ḣ

)[(
Λ̇

′
Λ̇
)+ −

(
Ḣ

′
Λ0′Λ0Ḣ

)+]
Ḣ

′
Λ0′,

v̇NT,5 = Λ0Ḣ
(
Ḣ

′
Λ0′Λ0Ḣ

)+(
Λ̇−Λ0Ḣ

)′
,

v̇NT,6 = Λ0Ḣ
[(
Λ̇

′
Λ̇
)+ −

(
Ḣ

′
Λ0′Λ0Ḣ

)+](
Λ̇−Λ0Ḣ

)′
,

v̇NT,7 = Λ0Ḣ
[(
Λ̇

′
Λ̇
)+ −

(
Ḣ

′
Λ0′Λ0Ḣ

)+]
Ḣ

′
Λ0′.

9



Using the results in Lemmas C.3(i) and (iv), we can prove (v).

(vi) The proof is analogous to that of part (ii) and thus omitted.

(vii) By Assumption 1(iii) and part (i),

1

NT

T∑

s=1

||(Λ̇−Λ0Ḣ)
′
εs||2 =

1

NT
Tr
(
(Λ̇−Λ0Ḣ)

′
εε′(Λ̇−Λ0Ḣ)

)

≤ 1

T
‖ε‖2sp ·

1

N
Tr
(
(Λ̇−Λ0Ḣ)

′
(Λ̇−Λ0Ḣ)

)

= OP ((1 +NT−1)(δ−2
NT + η̇NT )).

We have thus completed the proof of Lemma C.3. �

With the above three lemmas, we are ready to give the proof of Lemma B.1.

Proof of Lemma B.1. Let Q̂NT,t(βt,Λ) be defined as in (C.8), β̇ and Λ̇ be defined in Lemma

C.2, and Ḣ be defined in Lemma C.3. Note that

Yt −Xtβ̇t = Xt(β
0
t − β̇t) + Λ̇Ḣ

+
f0
t +

(
Λ0 − Λ̇Ḣ

+)
f0
t + εt. (C.38)

The preliminary estimate β̇t which minimizes Q̂NT,t(βt,Λ) (with respect to βt) satisfies that

( 1

N
X ′

tM Λ̇
Xt

)
(β̇t − β0

t ) =
1

N
X ′

tM Λ̇
εt +

1

N
X ′

tM Λ̇

(
Λ0 − Λ̇Ḣ

+)
f0
t , (C.39)

as M
Λ̇
Λ̇ = 0, where 0 is a null matrix or vector whose size may change from line to line.

We first consider the term 1
NX ′

tM Λ̇
εt. Notice that

1

N
X ′

tM Λ̇
εt =

1

N
X ′

tMΛ
0εt +

1

N
X ′

t

(
M

Λ̇
−M

Λ
0

)
εt. (C.40)

By the definition of M
Λ

0 , we have

1

N
X ′

tMΛ
0εt =

1

N
X ′

tεt −
1

N
X ′

tΛ
0(Λ0′Λ0)+Λ0′εt. (C.41)

By Assumption 1(iii), we can show that for each 1 ≤ t ≤ T

1

N
‖X ′

tεt‖ = OP

(
p1/2N−1/2

)
. (C.42)

By Assumptions 1(i)–(iii), we can show that for each 1 ≤ t ≤ T

‖X ′
tΛ

0‖ = OP (N), ‖Λ0′εt‖ = OP (N
1/2) and

(
1

N
Λ0′Λ0

)+
P−→ Σ+

Λ ,

which imply that
1

N
‖X ′

tΛ
0(Λ0′Λ0)+Λ0′εt‖ = OP

(
N−1/2

)
. (C.43)
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Thus, by (C.41)–(C.43), we have

1

N
‖X ′

tMΛ
0εt‖ = OP

(
p1/2N−1/2

)
. (C.44)

To derive the order of X ′
t

(
M

Λ̇
−M

Λ
0

)
εt, we need to investigate the term M

Λ̇
−M

Λ
0 . By

(C.37), we have

−(M
Λ̇
−M

Λ
0) = Λ̇

(
Λ̇

′
Λ̇
)+

Λ̇
′ −Λ0Ḣ

(
Ḣ

′
Λ0′Λ0Ḣ

)+
Ḣ

′
Λ0′ =

7∑

j=1

v̇NT,j . (C.45)

We next show that
1

N

∥∥X ′
t

( 7∑

j=1

v̇NT,j

)
εt
∥∥ = OP

(
δ−1
NT

)
. (C.46)

To save the space, we only consider the case of j = 5. Other cases can be studied similarly. For

X ′
tv̇NT,5εt, note that

v̇NT,5 = Λ0Ḣ
(
Ḣ

′
Λ0′Λ0Ḣ

)+(
Λ̇−Λ0Ḣ

)′
,

= Λ0Ḣ
(
Ḣ

′
Λ0′Λ0Ḣ

)+
V̇

+
NT

(
Λ̇V̇ NT −Λ0ḢV̇ NT

)′
,

= Λ0Ḣ
(
Ḣ

′
Λ0′Λ0Ḣ

)+
V̇

+
NT

( 8∑

j=1

u̇NT,j

)′
, (C.47)

where u̇NT,j , j = 1, ..., 8, are defined in the proof of Lemma C.3(i) above. By the fact that both

Ḣ and V̇ NT are asymptotically invertible and similar to the proof of Lemma C.3(i), we readily

prove that

1

N

∥∥∥∥∥∥
X ′

tΛ
0Ḣ

(
Ḣ

′
Λ0′Λ0Ḣ

)+
V̇

+
NT




5∑

j=1

u̇NT,j + u̇NT,8




′

εt

∥∥∥∥∥∥
= OP

(
δ−2
NT + δ−1

NT η̇
1/2
NT

)
. (C.48)

Meanwhile, by Assumptions 1(i)(ii) and noting that

max
1≤t≤T

E
[ T∑

s=1

∣∣ε′sεt
∣∣2 ] = max

1≤t≤T
E
[ T∑

s=1

(ξ∗st)
2
]
= O(N2 +NT )

by Assumption 1(iv), we can prove that

1

N

∥∥∥X ′
tΛ

0Ḣ
(
Ḣ

′
Λ0′Λ0Ḣ

)+
V̇

+
NT u̇

′
NT,6εt

∥∥∥

=
1

N

∥∥∥∥∥∥
X ′

tΛ
0Ḣ
(
Ḣ

′
Λ0′Λ0Ḣ

)+
V̇

+
NT

(
1

NT

T∑

s=1

εsd
′
sX

′
sΛ̇

)′

εt

∥∥∥∥∥∥

= OP

(
1

N2T

∥∥∥∥∥

T∑

s=1

Λ̇
′
Xsdsε

′
sεt

∥∥∥∥∥

)
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and

1

N2T

∥∥∥∥∥

T∑

s=1

Λ̇
′
Xsdsε

′
sεt

∥∥∥∥∥ ≤ N−1/2

(
1

N2T

T∑

s=1

∥∥∥Λ̇′
Xsds

∥∥∥
2
)1/2

·
(

1

NT

T∑

s=1

∥∥ε′sεt
∥∥2
)1/2

= OP


δ−1

NT

(
1

T

T∑

s=1

‖ds‖2
)1/2


 ,

which together with Lemma C.2, indicate that

1

N

∥∥∥X ′
tΛ

0Ḣ
(
Ḣ

′
Λ0′Λ0Ḣ

)+
V̇

+
NT u̇

′
NT,6εt

∥∥∥ = OP

(
δ−1
NT η̇

1/2
NT

)
. (C.49)

Similarly, we can also show that

1

N

∥∥∥X ′
tΛ

0Ḣ
(
Ḣ

′
Λ0′Λ0Ḣ

)+
V̇

+
NT u̇

′
NT,7εt

∥∥∥

=
1

N

∥∥∥∥∥∥
X ′

tΛ
0Ḣ
(
Ḣ

′
Λ0′Λ0Ḣ

)+
V̇

+
NT

(
1

NT

T∑

s=1

εsf
0′
s Λ0′Λ̇

)′

εt

∥∥∥∥∥∥
= OP (1)

1

NT

∥∥∥∥∥

T∑

s=1

f0
s ε

′
sεt

∥∥∥∥∥

= OP (N
−1/2)

(
1

T

T∑

s=1

∥∥f0
s

∥∥2
)1/2

·
(

1

NT

T∑

s=1

∥∥ε′sεt
∥∥2
)1/2

= OP

(
δ−1
NT

)
. (C.50)

Then, by (C.48)–(C.50) and using the fact that η̇NT = oP (1) in Lemma C.2, we can readily

prove that
1

N

∥∥X ′
tv̇NT,5εt

∥∥ = OP

(
δ−1
NT

)
. (C.51)

Then we complete the proof of (C.46), which implies that

1

N

∥∥X ′
t

(
M

Λ̇
−M

Λ
0

)
εt
∥∥ = OP

(
δ−1
NT

)
. (C.52)

We next consider the term 1
NX ′

tM Λ̇

(
Λ0 − Λ̇Ḣ

+)
f0
t . Note that

1

N
X ′

tM Λ̇

(
Λ0−Λ̇Ḣ

+)
f0
t =

1

N
X ′

tMΛ
0Ḣ

(
Λ0−Λ̇Ḣ

+)
f0
t +

1

N
X ′

t

(
M

Λ̇
−M

Λ
0Ḣ

)(
Λ0−Λ̇Ḣ

+)
f0
t .

(C.53)

Applying Lemmas C.3(i) and (v), we can find that 1
NX ′

tMΛ
0Ḣ

(
Λ0 − Λ̇Ḣ

+)
f0
t is the leading

term, which will be the major focus in the following proof. Note that

Λ0 − Λ̇Ḣ
+
=
(
Λ0ḢV̇ NT − Λ̇V̇ NT

)
V̇

+
NT Ḣ

+
.

We can apply the decomposition (C.13) for Λ0ḢV̇ NT −Λ̇V̇ NT , use the fact that MΛ
0Ḣ

Λ0Ḣ =

0 and both Ḣ and V̇ NT are asymptotically invertible, and then obtain

1

N
X ′

tMΛ
0Ḣ

(
Λ0 − Λ̇H

+)
f0
t = − 1

N
X ′

tMΛ
0Ḣ




3∑

j=1

u̇NT,j +

8∑

j=6

u̇NT,j


 V̇

+
NT Ḣ

+
f0
t . (C.54)
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Similar to the proof of Lemma C.3(i) and using the decomposition Λ̇ = (Λ̇−Λ
0
Ḣ) +Λ0Ḣ, we

may prove that

1

N

∥∥∥∥∥∥
X ′

tMΛ
0Ḣ


u̇NT,1 + u̇NT,3 +

8∑

j=6

u̇NT,j


 V̇

+
NT Ḣ

+
f0
t

∥∥∥∥∥∥
= OP

(
δ−1
NT + η̇NT

)
. (C.55)

Meanwhile, letting χst = f0′
s

(
1
T F

0′F 0
)+

f0
t , we may also obtain

− 1

N
X ′

tMΛ
0Ḣ

u̇NT,2V̇
+
NT Ḣ

+
f0
t =

1

N2T

T∑

s=1

X ′
tMΛ

0Ḣ
Xsdsf

0′
s Λ0′Λ̇V̇

+
NT Ḣ

+
f0
t

=
1

NT

T∑

s=1

X ′
tMΛ

0Ḣ
Xsχstds. (C.56)

Note that
1

N
X ′

tM Λ̇
Xt(β̇t − β0

t )
P∼ 1

N
X ′

tMΛ
0Ḣ

Xtdt, (C.57)

where a
P∼ b denotes a = b(1 + oP (1)). By (C.39), (C.44), and (C.52)–(C.57), we have

∥∥∥∥∥
1

N
X ′

tMΛ
0Ḣ

Xtdt −
1

NT

T∑

s=1

X ′
tMΛ

0Ḣ
Xsχstds

∥∥∥∥∥ = OP

(
p1/2N−1/2 + T−1/2 + η̇NT

)
. (C.58)

Let LNT = diag
{

1
NX ′

1MΛ
0Ḣ

X1, ...,
1
NX ′

TMΛ
0Ḣ

XT

}
and LNT,∗ be the T × T block matrix

with the (t, s) block being 1
NT X

′
tMΛ

0Ḣ
Xsχst. By (C.58), we may show that

(
LNT −LNT,∗

)
ḋβ = RNT , (C.59)

where ḋβ is defined in the proof of Lemma C.2, RNT = (R′
1, . . . , R

′
T )

′ with

‖Rt‖ = OP

(
p1/2N−1/2 + T−1/2 + η̇NT

)
and

1

T

T∑

t=1

||Rt‖2 = OP

(
pN−1 + T−1 + η̇2NT

)
.

Using the arguments as used in the proofs of Theorem 3.1 and Lemma C.2, we can prove that

LNT −LNT,∗ is asymptotically positive definite with the smallest eigenvalue bounded away from

zero. Hence, (C.59) indicates that

1

T
‖ḋβ‖2 =

1

T

T∑

t=1

‖β̇t − β0
t ‖2 = OP

(
pN−1 + T−1 + η̇2NT

)
, (C.60)

which, in conjunction with the definition of η̇NT in the statement of Lemma C.3, implies that
1
T ‖ḋβ‖2 = OP

(
pN−1 + T−1

)
, and strengthens the consistency result in Lemma C.2. By the fact
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that the matrix 1
NX ′

tMΛ
0Ḣ

Xt is positive definite as well as (C.58) and (C.60), we can prove

that ∥∥∥β̇t − β0
t

∥∥∥ = OP

(
p1/2N−1/2 + T−1/2

)
= OP

(
δ−1
p,NT

)

for each t, completing the proof of Lemma B.1 in Appendix B. �

Proof of Lemma B.2. (i) Using the argument in the proof of Lemma C.2 (with some mod-

ifications), we may prove that ηNT = oP (1). Then, following the proofs of (C.44) and (C.52)

above, we can readily show that

1

N2T

T∑

t=1

∥∥X ′
tM Λ̂

εt
∥∥2 = OP

(
pN−1 + T−1

)
. (C.61)

Furthermore, by the Cauchy-Schwarz inequality, we have

1

NT

T∑

t=1

(β̂t−β0
t )

′X ′
tM Λ̂

εt = OP

(
p1/2δ−1

NT

)
·
(

1

T

T∑

t=1

∥∥∥β̂t − β0
t

∥∥∥
2
)1/2

= OP

(
δ−1
p,NT η

1/2
NT

)
. (C.62)

(ii) As Λ0′M
Λ

0 = 0, we have
∑T

t=1 f
0′
t Λ0′M

Λ̂
εt =

∑T
t=1 f

0′
t Λ0′

(
M

Λ̂
−M

Λ
0

)
εt. Similar to

the decomposition in (C.37), we have

P
Λ̂
− P

Λ
0H = Λ̂

(
Λ̂

′
Λ̂
)+

Λ̂
′ −Λ0H

(
H ′Λ0′Λ0H

)+
H ′Λ0′ ≡

7∑

j=1

vNT,j , (C.63)

where H ≡ HNT =
(
1
T F

0′F 0
)(

1
T Λ

0′Λ̂
)
V +

NT , V NT is defined in (2.7), and vNT,j , j = 1, ..., 7,

are analogously defined as v̇NT,j in the proof of Lemma C.3(v) with Λ̇ and Ḣ replaced by Λ̂

and H, respectively. We only need to show that

∣∣∣∣∣

T∑

t=1

f0′
t Λ0′

(
M

Λ̂
−M

Λ
0

)
εt

∣∣∣∣∣ =

∣∣∣∣∣∣

T∑

t=1

f0′
t Λ0′

( 7∑

j=1

vNT,j

)
εt

∣∣∣∣∣∣
= OP

(
δ−2
NT + δ−1

p,NT η
1/2
NT

)
. (C.64)

When (Λ̇, Ḣ) is replaced by (Λ̂,H), it is easy to verify that the convergence results in

Lemma C.3 still hold with η̇NT replaced by ηNT . By Assumption 1(iii),
∥∥∥∥∥

T∑

t=1

Λ0′εtf
0
t

∥∥∥∥∥ = OP (
√
NT ), (C.65)

which together with Lemma C.3 (with some modifications to allow the replacement of η̇NT , Λ̇,

and Ḣ by ηNT , Λ̂, and H, respectively) indicates that

1

NT

∥∥∥∥∥

T∑

t=1

f0′
t Λ0′ (vNT,2 + vNT,4 + vNT,7) εt

∥∥∥∥∥ = OP

(
(NT )−1/2(δ−2

NT + η
1/2
NT )

)
. (C.66)
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On the other hand, note that

∥∥∥∥∥

T∑

t=1

(
Λ̂V NT −Λ0HV NT

)′
εtf

0
t

∥∥∥∥∥ =

∥∥∥∥∥∥

T∑

t=1




8∑

j=1

uNT,j




′

εtf
0
t

∥∥∥∥∥∥
, (C.67)

where uNT,j , j = 1, ..., 8, are defined similarly to u̇NT,j in the proof of Lemma C.3 (i) with β̇t

and Λ̇ replaced by β̂t and Λ̂, respectively. Let d̂s = β̂s − β0
s. Then, by the definition of uNT,j

and using Assumptions 1(i)–(iii), we can prove that

∥∥∥∥∥

T∑

t=1

u′NT,1εtf
0
t

∥∥∥∥∥ =
1

NT

∥∥∥∥∥

T∑

t=1

T∑

s=1

Λ̂
′
Xsd̂sd̂

′
sX

′
sεtf

0
t

∥∥∥∥∥

= OP

(
T−1

)
·

T∑

t=1

‖f0
t ‖

T∑

s=1

‖d̂s‖2‖X ′
sεt‖

= OP

(
N1/2Tp1/2ηNT

)
, (C.68)

and
∥∥∥∥∥

T∑

t=1

u′NT,2εtf
0
t

∥∥∥∥∥ =
1

NT

∥∥∥∥∥

T∑

t=1

T∑

s=1

Λ̂
′
Λ0f0

s d̂
′
sX

′
sεtf

0
t

∥∥∥∥∥

= OP (T
−1)

T∑

t=1

‖f0
t ‖

T∑

s=1

‖d̂s‖‖f0
s ‖‖X ′

sεt‖

= OP

(
N1/2T (pηNT )

1/2
)
. (C.69)

By analogous arguments, we can also show that

∥∥∥∥∥

T∑

t=1

u′NT,4εtf
0
t

∥∥∥∥∥ = OP

(
N1/2Tη

1/2
NT

)
. (C.70)
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On the other hand, using Lemma C.3 we can show that
∥∥∥∥∥

T∑

t=1

u′NT,3εtf
0
t

∥∥∥∥∥ =
1

NT

∥∥∥∥∥

T∑

t=1

T∑

s=1

Λ̂
′
εsd̂

′
sX

′
sεtf

0
t

∥∥∥∥∥

=
1

NT

∥∥∥∥∥

T∑

t=1

T∑

s=1

H ′Λ′
0εsd̂

′
sX

′
sεtf

0
t

∥∥∥∥∥+
1

NT

∥∥∥∥∥

T∑

t=1

T∑

s=1

(
Λ̂−Λ0H

)′
εsd̂

′
sX

′
sεtf

0
t

∥∥∥∥∥

≤ ‖H‖
(

1

NT

T∑

s=1

||Λ′
0εs||2

)1/2

 1

NT

T∑

s=1

∥∥∥∥∥d̂
′
s

T∑

s=1

X ′
sεtf

0
t

∥∥∥∥∥

2



1/2

+

(
1

NT

T∑

s=1

||(Λ̂−Λ0H)′εs||2
)1/2


 1

NT

T∑

s=1

∥∥∥∥∥d̂
′
s

T∑

t=1

X ′
sεtf

0
t

∥∥∥∥∥

2



1/2

= OP

(
T (pηNT )

1/2
)
+OP

(
(1 +N1/2T−1/2)(δ−1

NT + η
1/2
NT )T (pηNT )

1/2
)

= OP

(
(1 +N1/2T−1/2δ−1

NT +N1/2T−1/2η
1/2
NT )T (pηNT )

1/2
)
, (C.71)

and analogously
∥∥∥∥∥

T∑

t=1

u′NT,5εtf
0
t

∥∥∥∥∥ =
1

NT

∥∥∥∥∥

T∑

t=1

T∑

s=1

Λ̂
′
εsf

0′
s Λ0′εtf

0
t

∥∥∥∥∥

=
1

NT

∥∥∥∥∥

T∑

s=1

T∑

t=1

H ′Λ′
0εsf

0′
s Λ0′εtf

0
t

∥∥∥∥∥+
1

NT

∥∥∥∥∥

T∑

s=1

T∑

t=1

(
Λ̂−Λ0H

)′
εsf

0′
s Λ0′εtf

0
t

∥∥∥∥∥

≤ ‖H‖ 1

NT
‖Λ0′εF 0‖2 + 1

NT

∥∥∥∥∥

T∑

s=1

(
Λ̂−Λ0H

)′
εsf

0′
s

∥∥∥∥∥
∥∥Λ0′εF 0

∥∥

= OP (1) +OP

(
N1/2T 1/2(δ−2

NT + η
1/2
NT )

)
. (C.72)

Using the fact that under Assumptions 1(i) and (iv)

T∑

s=1

∥∥∥∥∥

T∑

t=1

ε′sεtf
0
t

∥∥∥∥∥

2

≤
(

T∑

s=1

T∑

t1=1

‖ε′sεt1‖2
)(

T∑

t2=1

‖f0
t2‖

2

)
= OP

(
T 2N(N + T )

)
, (C.73)

we have∥∥∥∥∥

T∑

t=1

u′NT,6εtf
0
t

∥∥∥∥∥ =
1

NT

∥∥∥∥∥

T∑

t=1

T∑

s=1

Λ̂
′
Xsd̂sε

′
sεtf

0
t

∥∥∥∥∥

≤ 1

NT
max
1≤s≤T

‖Λ̂′
Xs‖ ·

(
T∑

s=1

‖d̂s‖2
)1/2

·




T∑

s=1

∥∥∥∥∥

T∑

t=1

ε′sεtf
0
t

∥∥∥∥∥

2



1/2

= OP (T
−1) ·OP

(
T 1/2η

1/2
NT

)
·OP

(
TN1/2(N1/2 + T 1/2)

)

= OP

(
η
1/2
NT (NT 1/2 +N1/2T )

)
. (C.74)
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Notice that
∥∥∥∥∥

T∑

t=1

u′NT,8εtf
0
t

∥∥∥∥∥ =
1

NT

∥∥∥∥∥

T∑

t=1

T∑

s=1

Λ̂
′
εsε

′
sεtf

0
t

∥∥∥∥∥

≤ 1

NT

∥∥∥∥∥

T∑

t=1

T∑

s=1

H ′Λ′
0εsε

′
sεtf

0
t

∥∥∥∥∥+
1

NT

∥∥∥∥∥

T∑

t=1

T∑

s=1

(
Λ̂−Λ0H

)′
εsε

′
sεtf

0
t

∥∥∥∥∥ .

For the first term on the right hand side, by the Cauchy-Schwarz inequality and Assumption

1(iii) and (C.73) we may show that

1

NT

∥∥∥∥∥

T∑

t=1

T∑

s=1

H ′Λ′
0εsε

′
sεtf

0
t

∥∥∥∥∥ ≤ 1

NT
‖H‖ ·

(
T∑

s=1

‖Λ′
0εs‖2

)1/2

·
(

T∑

s=1

∥∥
T∑

t=1

ε′sεtf
0
t

∥∥2
)1/2

= OP

(
(NT )−1/2

)
OP

(
TN1/2(N1/2 + T 1/2)

)
= OP

(
(NT )1/2 + T

)
.

For the second term on the right hand side, by Lemma C.3(vii) (with η̇NT , Λ̇, and Ḣ replaced

by ηNT , Λ̂, and H, respectively), we have

1

NT

∥∥∥∥∥

T∑

t=1

T∑

s=1

(
Λ̂−Λ0H

)′
εsε

′
sεtf

0
t

∥∥∥∥∥ ≤
(

1

NT

T∑

s=1

‖
(
Λ̂−Λ0H

)′
εs‖2

)1/2

·
(

1

NT

T∑

s=1

∥∥
T∑

t=1

ε′sεtf
0
t

∥∥2
)1/2

= OP

(
(1 +N1/2T−1/2)(δ−1

NT + η
1/2
NT )

)
OP

(
T +N1/2T 1/2

)

= OP

(
(T +N)(δ−1

NT + η
1/2
NT )

)
.

It follows that ∥∥∥∥∥

T∑

t=1

u′NT,8εtf
0
t

∥∥∥∥∥ = OP

(
(NT )1/2 + T +Nη

1/2
NT

)
. (C.75)

Finally, noting that
∣∣∑T

s=1

∑T
t=1 f

0′
s ε′sεtf

0
t

∣∣ = OP (NT ) by Assumption 1(iv), we can also show

that ∥∥∥∥∥

T∑

t=1

u′NT,7εtf
0
t

∥∥∥∥∥ = OP (N). (C.76)

By (C.67)–(C.76), we have

1

NT

∥∥∥∥∥

T∑

t=1

(
Λ̂V NT −Λ0HV NT

)′
εtf

0
t

∥∥∥∥∥ = OP

(
δ−2
NT + δ−1

p,NT η
1/2
NT

)
. (C.77)

With this, we readily prove that

1

NT

∥∥∥∥∥

T∑

t=1

f0′
t Λ0′(vNT,1 + vNT,3 + vNT,5 + vNT,6)εt

∥∥∥∥∥ = OP

(
δ−2
NT + δ−1

p,NT η
1/2
NT

)
, (C.78)
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which together with (C.66), leads to (C.64). Hence, we complete the proof of (ii).

(iii) This follows from Lemmas C.1(iii) and (iv). �

Before proving Lemma B.3 in Appendix B, we need to introduce two technical lemmas.

The first lemma is similar to Lemma C.3 with the preliminary estimates replaced by the post-

LASSO estimates. Let Λ̃m0 = Λ̃(T 0
m0) be the infeasible estimate of the factor loadings in the

post-LASSO estimation procedure, H̃ =
(
1
T F

0′F 0
)(

1
NΛ0′ Λ̃m0

)
Ṽ

+
NT with Ṽ NT defined in the

proof of Theorem 3.4 in Appendix B, and η̃NT = 1
m0

∑m0+1
j=1 ‖α̃m0j −α0

j‖2, where α̃m0j is the

j-th p-dimensional element of the infeasible estimate α̃m0 = α̃m0(T 0
m0).

Lemma C.4 Suppose that the conditions in Theorem 3.4 hold. Then we have

(i) 1
N

∥∥Λ̃m0 −Λ0H̃
∥∥2 = OP

(
δ−2
NT + η̃NT

)
,

(ii) 1
N

(
Λ̃m0 −Λ0H̃

)′
Λ0H̃ = OP

(
δ−2
NT + η̃

1/2
NT

)
,

(iii) 1
N

(
Λ̃m0 −Λ0H̃

)′
Λ̃m0 = OP

(
δ−2
NT + η̃

1/2
NT

)
,

(iv) 1
N

(
Λ̃

′

m0Λ̃m0 − H̃
′
Λ0′Λ0H̃

)
= OP

(
δ−2
NT + η̃

1/2
NT

)
,

(v)
∥∥P

Λ̃m0
− P

Λ
0H̃

∥∥ = OP

(
δ−1
NT + η̃

1/2
NT

)
,

(vi) 1
NT

∑T
s=1(Λ̃m0 −Λ0H̃)′εsγ

′
s = OP

(
δ−2
NT + η̃

1/2
NT

)
with γs = 1 or f0

s , and

(vii) 1
NT

∑T
s=1 ||(Λ̃m0 −Λ0H̃)′εs||2 = OP

(
(1 +NT−1)(δ−2

NT + η̃NT )
)
.

Proof of Lemma C.4. The proof is analogous to that of Lemma C.3. Hence, we only sketch

it. For notational simplicity, we let Ṽ ≡ Ṽ NT , and η̃j = α̃m0j −α0
j , j = 1, ...,m0+1. By (B.25)

in the proof of Theorem 3.4, we have

Λ̃m0Ṽ −Λ0H̃Ṽ

=




1

NT

m0+1∑

j=1

T 0
j −1∑

t=T 0
j−1

(
Yt −Xtα̃m0j

)(
Yt −Xtα̃m0j

)′

 Λ̃m0 −Λ0H̃Ṽ

=




1

NT

m0+1∑

j=1

T 0
j −1∑

t=T 0
j−1

(
−Xtη̃j +Λ0f0

t + εt
)(

−Xtη̃j +Λ0f0
t + εt

)′

 Λ̃m0 −Λ0H̃Ṽ

=
1

NT

m0+1∑

j=1

T 0
j −1∑

t=T 0
j−1

Xtη̃j η̃
′
jX

′
tΛ̃m0 − 1

NT

m0+1∑

j=1

T 0
j −1∑

t=T 0
j−1

Xtη̃jf
0′
t Λ0′Λ̃m0 − 1

NT

m0+1∑

j=1

T 0
j −1∑

t=T 0
j−1

Xtη̃jε
′
tΛ̃m0
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− 1

NT

m0+1∑

j=1

T 0
j −1∑

t=T 0
j−1

Λ0f0
t η̃

′
jX

′
tΛ̃m0 +

1

NT

T∑

t=1

Λ0f0
t ε

′
tΛ̃m0 − 1

NT

m0+1∑

j=1

T 0
j −1∑

t=T 0
j−1

εtη̃
′
jX

′
tΛ̃m0

+
1

NT

T∑

t=1

εtf
0′
t Λ0′Λ̃m0 +

1

NT

T∑

t=1

εtε
′
tΛ̃m0

≡
8∑

j=1

ũNT,j . (C.79)

Then following the proof of Lemma C.3 with Λ̇ and dt replaced by Λ̃m0 and η̃j , respectively,

and using Assumption 3(ii), we can readily prove Lemma C.4(i). Note that

1

N

(
Λ̃m0 −Λ0H̃

)′
Λ0H̃ =

1

N

8∑

j=1

Ṽ
+
ũ′NT,jΛ

0H̃ ≡ 1

N

8∑

j=1

ũ∗NT,j . (C.80)

Then following the proof of Lemma C.3(ii) and using Lemma C.4(i), we readily prove Lemma

C.4(ii). The results in (iii) and (iv) can be proved by combining Lemmas C.4(i) and (ii). Similar

to (C.37), we have the following decomposition:

P
Λ̃m0

− P
Λ

0H̃
= Λ̃m0

(
Λ̃

′

m0Λ̃m0

)+
Λ̃

′

m0 −Λ0H̃
(
H̃

′
Λ0′Λ0H̃

)+
H̃

′
Λ0′ ≡

7∑

j=1

ṽNT,j , (C.81)

where

ṽNT,1 =
(
Λ̃m0 −Λ0H̃

)(
H̃

′
Λ0′Λ0H̃

)+(
Λ̃m0 −Λ0H̃

)′
,

ṽNT,2 =
(
Λ̃m0 −Λ0H̃

)(
H̃

′
Λ0′Λ0H̃

)+
H̃

′
Λ0′,

ṽNT,3 =
(
Λ̃m0 −Λ0H̃

)[(
Λ̃

′

m0Λ̃m0

)+ −
(
H̃

′
Λ0′Λ0H̃

)+](
Λ̃m0 −Λ0H̃

)′
,

ṽNT,4 =
(
Λ̃m0 −Λ0H̃

)[(
Λ̃

′

m0Λ̃m0

)+ −
(
H̃

′
Λ0′Λ0H̃

)+]
H̃

′
Λ0′,

ṽNT,5 = Λ0H̃
(
H̃

′
Λ0′Λ0H̃

)+(
Λ̃m0 −Λ0H̃

)′
,

ṽNT,6 = Λ0H̃
[(
Λ̃

′

m0Λ̃m0

)+ −
(
H̃

′
Λ0′Λ0H̃

)+](
Λ̃m0 −Λ0H̃

)′
,

ṽNT,7 = Λ0H̃
[(
Λ̃

′

m0Λ̃m0

)+ −
(
H̃

′
Λ0′Λ0H̃

)+]
H̃

′
Λ0′.

By (C.81) and Lemmas C.4(i) and (iv), we can prove (v). The proofs of (vi) and (vii) parallel

to those of Lemmas C.3(vi) and (vii). We have thus completed the proof of Lemma C.4. �

Lemma C.5 Suppose that the conditions in Theorem 3.4 hold. Then we have

(i) η̃NT = 1
m0

∑m0+1
j=1 ‖α̃m0j − α0

j‖2 = OP

(
δ−2
p,NT

)
,
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(ii) 1
N

(
Λ̃m0−Λ0H̃

)′
εt = H̃

′ ( 1
T F

0′F 0
)+ ( 1

NT

∑T
s=1 f

0
s ε

′
sεt

)
+OP

(
δ−1
NT (m

0)−1/2‖α̃m0 −α0‖
)

+OP

(
δ−3
p,NT

)
for t = 1, ..., T ,

(iii) 1
Nτ j(T )

∥∥∥∥
∑T 0

j −1

t=T 0
j−1

X ′
tΛ

0H̃
(
H̃

′
Λ0′Λ0H̃

)+ (
Λ̃m0 −Λ0H̃

)′
εt −

∑T 0
j −1

t=T 0
j−1

X ′
tΛ

0
(
Λ0′Λ0

)+

(
1
T F

0′F 0
)+ ( 1

NT

∑T
s=1 f

0
s ε

′
sεt

)∥∥∥ = OP

(
δ−1
NT (m

0)−1/2
∥∥α̃m0 −α0

∥∥)+OP

(
δ−3
p,NT

)
for j = 1,...,m0+

1,

(iv) 1
NT

∑T
t=1

∥∥∥(Λ̃m0 −Λ0H̃)′εtf
0
t

∥∥∥ = OP

(
δ−2
p,NT

)
.

Proof of Lemma C.5. As the proof of the convergence rates for α̃m0 in (i) is similar to the

proof of Lemma B.1, we omit the details. Furthermore, the results in (iii) and (iv) can be easily

proved by using (ii). Hence we only focus on the proof of the result in (ii).

Note that for any t = 1, ..., T ,

1

N

(
Λ̃m0 −Λ0H̃

)′
εt =

1

N
Ṽ

+(
Λ̃m0Ṽ −Λ0H̃Ṽ

)′
εt =

1

N
Ṽ

+( 8∑

k=1

ũNT,k

)′
εt (C.82)

by using (C.79) in the proof of Lemma C.4. By Lemma C.5(i), Assumptions 1(ii), (iii) and 3(ii),

and the Jensen inequality, we have

1

N

∥∥∥Ṽ +
ũ′NT,1εt

∥∥∥ =
1

N2T

∥∥∥∥∥∥∥
Ṽ

+
m0+1∑

k=1

T 0
k−1∑

s=T 0
k−1

Λ̃
′

m0Xsη̃kη̃
′
kX

′
sεt

∥∥∥∥∥∥∥

= OP

(
N−2T−1

) ∥∥∥Λ̃m0

∥∥∥ max
1≤s≤T
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′
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m0+1∑

k=1

‖η̃k‖2
T 0
k−1∑

s=T 0
k−1

∥∥X ′
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(
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)
. (C.83)

By Lemmas C.4(i) and C.5(i) and Assumptions 1(iii), (iv) and 3(ii), we can show that

1

N

∥∥Ṽ +
ũ′NT,3εt

∥∥

=
1

N2T

∥∥∥∥∥∥∥
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′
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′
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∥∥∥∥∥∥∥
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∥∥
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NT )(pη̃NT )

1/2
)
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(
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)
. (C.84)
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By Assumptions 1(i), (iii) and 3(ii), and Lemma C.5(i), we have

1

N
Ṽ

+
ũ′NT,4εt =

1

N2T
Ṽ

+
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s ‖
∥∥

N∑

i=1

λ0
i εit
∥∥
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(
δ−1
NT (m

0)−1/2‖α̃m0 −α0‖
)
. (C.85)

Analogously, we can show that

1

N
Ṽ

+
ũ′NT,2εt = OP

(
δ−1
NT (m

0)−1/2‖α̃m0 −α0‖
)
. (C.86)

By Assumptions 1(iii) and (iv), we can prove that

1

N
Ṽ

+
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1
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0
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+

(
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′
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s Λ0′εt

)

=
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(
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0
sΛ
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1

N2T

∥∥
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0
s
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=
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(
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0
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(
δ−3
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)
. (C.87)

By Assumptions 1(ii), (iv) and Lemma C.5(i), we have

1

N
Ṽ

+
ũ′NT,6εt =

1

N2T
Ṽ

+
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Λ̃
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(
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m0Xs‖
∥∥∥∥∥

N∑

i=1

εitεis

∥∥∥∥∥
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(
δ−1
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)

(C.88)

By the definition of H̃ and noting that Ṽ
+
NT is diagonal, we have

1

N
Ṽ

+
ũ′NT,7εt =

(
1

N
Ṽ

+
Λ̃

′

m0Λ0

)[
1

NT

T∑
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s ε

′
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]
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′
(
1

T
F 0′F 0
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[

1
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f0
s ε

′
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]
.

(C.89)
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By the definition of ũNT,8 and Assumption 3(iii),

1

N
Ṽ

+
ũ′NT,8εt =

1
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Ṽ

+
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(
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′
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1

N2T
Ṽ

+
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′
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1
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+
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(
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′
sεt +OP

(
δ−3
NT

)
. (C.90)

Combining the results in (C.82)–(C.90) yields

1

N

(
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′
(
1

T
F 0′F 0

)+ 1
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T∑
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′
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1
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Ṽ

+
T∑
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(
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εsf

0
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+
1
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Ṽ

+
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(
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εsε

′
sεt +OP

(
δ−3
p,NT

)

+OP

(
δ−1
NT (m

0)−1/2‖α̃m0 −α0‖
)
. (C.91)

By Assumptions 1(i) and (iv), the first term on the right hand side of (C.91) is OP

(
δ−2
NT

)
; by As-

sumptions 1(iii) and Lemmas C.4(vi) and C.5(i) we can show the second term is OP

(
δ−1
p,NT δ

−1
NT

)
;

by Assumptions 1(iii) and (iv) and Lemma C.4(vii) and , we can show the third and fourth terms

are OP

(
δ−1
p,NT δ

−1
NT

)
. It follows that

1

N

(
Λ̃m0 −Λ0H̃

)′
εt = OP

(
δ−1
p,NT δ

−1
NT

)
. (C.92)

By (C.92) and following the above arguments, we can further show that the second and third

terms on the right hand side of (C.91) is OP

(
δ−3
p,NT

)
. This completes the proof of Lemma

C.5(ii). �

Proof of Lemma B.3. For notional simplicity, we let Λ̃ = Λ̃m0 throughout this proof.

(i) Noting that

−(M
Λ̃
−M

Λ
0) = Λ̃

(
Λ̃

′
Λ̃
)+

Λ̃
′ −Λ0H̃

(
H̃

′
Λ0′Λ0H̃

)+
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′
Λ0′ =

7∑

k=1

ṽNT,k (C.93)

and by using the decomposition (C.81), we have

1

Nτ j(T )

T 0
j −1∑

t=T 0
j−1

X ′
t

(
M

Λ̃
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Nτ j(T )
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X ′
t

(
7∑

k=1

ṽNT,k

)
εt. (C.94)
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By (C.94), Lemmas C.4(i), (iv) and C.5(iii), we can prove that for any j = 1, ...,m0 + 1,

∥∥∥∥∥∥∥

1

Nτ j(T )

T 0
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j−1

X ′
t

(
M
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Λ
0

)
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∥∥∥∥∥∥∥

≤

∥∥∥∥∥∥∥

1
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∥∥∥∥∥∥∥
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∥∥∥∥∥∥∥

1
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(
δ−1
NT (m

0)−1/2‖α̃m0
−α0‖+ δ−3
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)
(C.95)

which completes the proof of Lemma B.3(i).

(ii) Noting that for any j = 1, ...,m0 + 1,

1

Nτ j(T )
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t=T 0
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)
Ṽ
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T F

0′F 0
)+

, by the decomposition (C.79), we have
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1

N
Λ0′Λ̃

)+( 1

T
F 0′F 0

)+
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t . (C.96)

We next analyze each term on the right hand side of the equation (C.96).
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For l = 1, by the definition of ũNT,1, Assumptions 1(i)(ii), and Lemma C.5(i), we have

1
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∥∥∥∥∥∥∥
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For l = 2, by the definition of ũNT,2, we have
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where χst = f0′
s
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where Φ∗
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For l = 3, by the definition of ũNT,3, Assumptions 1 and 3(ii), as well as (C.92), we have
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To study the next two terms, we can apply the arguments used in the proof of Lemma C.3(ii)

and show that 1
N ||X ′

t

(
Λ0 − Λ̃H̃

+)|| = OP (p
1/2δ−2
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NT ). This, in conjunction with Lemma
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and similarly for j = 1, · · · ,m0 + 1,
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For l = 4, by the definition of ũNT,4, (C.103), and Lemma C.5(i) and noting that M
Λ̃
Λ̃ = 0,
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For l = 5, by the definition of ũNT,5, Assumptions 1(i)(iii), (C.103), and Lemma C.5(iv), we

have
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. (C.105)

26



For l = 6, by the definition of ũNT,6 and Assumptions 1(i)-(iii), 2(ii) and 3(ii), we have

1

Nτ j(T )

∥∥∥∥∥∥∥

T 0
j −1∑

t=T 0
j−1

X ′
tM Λ̃

ũNT,6

(
1

N
Λ0′Λ̃

)+( 1

T
F 0′F 0

)+

f0
t

∥∥∥∥∥∥∥

=
1

Nτ j(T )

∥∥∥∥∥∥∥

T 0
j −1∑

t=T 0
j−1

X ′
tM Λ̃




1

NT

m0+1∑

k=1

T 0
k−1∑

s=T 0
k−1

εsη̃
′
kX

′
sΛ̃



(

1

N
Λ0′Λ̃

)+( 1

T
F 0′F 0

)+

f0
t

∥∥∥∥∥∥∥

≤ 1

Nτ j(T )

∥∥∥∥∥∥∥

T 0
j −1∑

t=T 0
j−1




1

NT

m0+1∑

k=1

T 0
k−1∑

s=T 0
k−1

X ′
tεsη̃

′
kX

′
sΛ̃



(

1

N
Λ0′Λ̃

)+( 1

T
F 0′F 0

)+

f0
t

∥∥∥∥∥∥∥

+
1

Nτ j(T )

∥∥∥∥∥∥∥

T 0
j −1∑

t=T 0
j−1

X ′
t




1

NT

m0+1∑

k=1

T 0
k−1∑

s=T 0
k−1

(
P

Λ̃
− P

Λ
0

)
εsη̃

′
kX

′
sΛ̃



(

1

N
Λ0′Λ̃

)+( 1

T
F 0′F 0

)+

f0
t

∥∥∥∥∥∥∥

+
1

Nτ j(T )

∥∥∥∥∥∥∥

T 0
j −1∑

t=T 0
j−1

X ′
tΛ

0(Λ0′Λ0)+




1

NT

m0+1∑

k=1

T 0
k−1∑

s=T 0
k−1

Λ0′εsη̃
′
kX

′
sΛ̃



(

1

N
Λ0′Λ̃

)+( 1

T
F 0′F 0

)+

f0
t

∥∥∥∥∥∥∥

= OP

(
p1/2δ−1

p,NT (m
0)−1/2‖α̃m0 −α0‖

)
. (C.106)

For l = 7, by the definitions of ũNT,7 and χst, we have

1

Nτ j(T )

T 0
j −1∑

t=T 0
j−1

X ′
tM Λ̃

ũNT,7

(
1

N
Λ0′Λ̃

)+( 1

T
F 0′F 0

)+

f0
t

=
1

Nτ j(T )

T 0
j −1∑

t=T 0
j−1

X ′
tM Λ̃

(
1

NT

T∑

s=1

εsf
0′
s Λ0′Λ̃

)(
1

N
Λ0′Λ̃

)+( 1

T
F 0′F 0

)+

f0
t

=
1

NTτ j(T )

T 0
j −1∑

t=T 0
j−1

T∑

s=1

χstX
′
tMΛ

0εs +
1

NTτ j(T )

T 0
j −1∑

t=T 0
j−1

T∑

s=1

χstX
′
t

(
M

Λ̃
−M

Λ
0

)
εs

=
1

Nτ j(T )

T 0
j −1∑

t=T 0
j−1

X ′
tMΛ

0ε∗t +
1

NTτ j(T )

T 0
j −1∑

t=T 0
j−1

T∑

s=1

χstX
′
t

(
M

Λ̃
−M

Λ
0

)
εs, (C.107)
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where ε∗t = 1
T

∑T
s=1 χstεs. On the other hand, following the proof of Lemma B.3(i) and (C.95)

in particular, we may show that
∥∥∥∥∥∥∥

1

NTτ j(T )

T 0
j −1∑

t=T 0
j−1

T∑

s=1

χstX
′
t

(
M

Λ̃
−M

Λ
0

)
εs +BNT,j(2, 2)

∥∥∥∥∥∥∥

= OP

(
δ−1
NT (m

0)−1/2‖α̃m0
−α0‖+ δ−3

p,NT

)
. (C.108)

Hence, it follows that
∥∥∥∥∥∥∥

1

Nτ j(T )

T 0
j −1∑

t=T 0
j−1

X ′
tM Λ̃

ũNT,7

( 1
N

Λ0′Λ̃
)+( 1

T
F 0′F 0

)+
f0
t − 1

Nτ j(T )

T 0
j −1∑

t=T 0
j−1

X ′
tMΛ

0ε∗t +BNT,j(2, 2)

∥∥∥∥∥∥∥

= OP

(
δ−1
NT (m

0)−1/2‖α̃m0
−α0‖+ δ−3

p,NT

)
. (C.109)

For l = 8, by the definition of ũNT,8, we have

1

Nτ j(T )

T 0
j −1∑

t=T 0
j−1

X ′
tM Λ̃

ũNT,8

(
1

N
Λ0′Λ̃

)+( 1

T
F 0′F 0

)+

f0
t

=
1

Nτ j(T )

T 0
j −1∑

t=T 0
j−1

X ′
tM Λ̃

(
1

NT

T∑

s=1

εsε
′
sΛ̃

)(
1

N
Λ0′Λ̃

)+( 1

T
F 0′F 0

)+

f0
t

=
1

N2Tτ j(T )

T 0
j −1∑

t=T 0
j−1

X ′
tM Λ̃

εε′Λ̃

(
1

N
Λ0′Λ̃

)+( 1

T
F 0′F 0

)+

f0
t ≡ BNT,j(1). (C.110)

By (C.96), (C.97), (C.100), (C.101), (C.104)–(C.106), (C.109) and (C.110), we can complete the

proof of Lemma B.3(ii).

We have thus completed the proof of Lemma B.3. �

Let

Λ̇R =
(
λ̇1,R, ..., λ̇N,R

)′
and Λ̆R =

1

NT

T∑

t=1

(Yt −Xtβ̇t,R)(Yt −Xtβ̇t,R)
′Λ̇R =

(
λ̆1,R, ..., λ̆N,R

)′
.

In order to prove Lemma B.4 in Appendix B, we first need to prove the following technical

lemma.

Lemma C.6 Suppose that Assumptions 1 and 2 in Appendix A hold and R > R0. Define the

R0 ×R matrix ḢR ≡
(
1
T F

0′F 0
) (

1
NΛ0′Λ̇R

)
with the Moore-Penrose generalized inverse Ḣ

+
R =
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[
Ḣ

+
R (1)

Ḣ
+
R (2)

]
, where Ḣ

+
R(1) and Ḣ

+
R(2) are R0 × R0 and (R−R0) × R0 matrices, respectively.

Let V̇ NT,R denote an R × R diagonal matrix consisting of the R largest eigenvalues of the

N × N matrix 1
NT

∑T
t=1(Yt − Xtβ̇t,R)(Yt − Xtβ̇t,R)

′ where the eigenvalues are in decreasing

order along the main diagonal line. Write Λ̇R =
[
Λ̇R(1), Λ̇R(2)

]
and ḢR =

[
ḢR(1), ḢR(2)

]
,

where Λ̇R(1), Λ̇R(2), ḢR(1), and ḢR(2) are N × R0, N × (R−R0) , R0 × R0, and R0 ×
(R−R0) matrices, respectively. Furthermore, write V̇ NT,R = diag

{
V̇ NT,R(1), V̇ NT,R(2)

}
,

where V̇ NT,R(1) denotes the upper-left R0 ×R0 submatrix of V̇ NT,R. Then we have

(i) 1
N

∥∥∥Λ̆R −Λ0ḢR

∥∥∥
2
= OP

(
δ−2
p,NT

)
,

(ii) 1
N

∥∥∥Λ̆′
RΛ̆R − Ḣ

′

RΛ
0′Λ0ḢR

∥∥∥ = OP

(
δ−1
p,NT

)
,

(iii) 1
N

∥∥∥Λ̇R (1)−Λ0ḢR(1)V̇
+
NT,R(1)

∥∥∥
2
= OP

(
δ−2
p,NT )

)
and

∥∥∥ḢR(2)
∥∥∥
2
= OP

(
δ−2
p,NT

)
,

(iv)
∥∥∥Ḣ+

R(1)
∥∥∥ = OP (1) and

∥∥∥Ḣ+
R(2)

∥∥∥ = OP

(
δ−1
p,NT

)
.

Proof of Lemma C.6. (i) When R > R0, we can follow the proof of Lemma C.2 and show

that

η̇R ≡ 1

T

T∑

t=1

‖β̇t,R − β0
t ‖2 = oP (1).

Next, using Yt −Xtβ̇t,R = Λ0f0
t + εt +Xt(β

0
t − β̇t,R) and ḋt,R = β̇t,R − β0

t , we have

Λ̆R −Λ0ḢR =
1

NT

T∑

t=1

(Yt −Xtβ̇t,R)(Yt −Xtβ̇t,R)
′Λ̇R −Λ0ḢR

=
1

NT

T∑

t=1

[
−Xtḋt,R +Λ0f0

t + εt

] [
−Xtḋt,R +Λ0f0

t + εt

]′
Λ̇R −Λ0ḢR

=
1

NT

T∑

t=1

Xtḋt,Rḋ
′
t,RX

′
tΛ̇R − 1

NT

T∑

t=1

Xtdt,Rf
0′
t Λ0′Λ̇R − 1

NT

T∑

t=1

Xtḋt,Rε
′
tΛ̇R

− 1

NT

T∑

t=1

Λ0f0
t ḋ

′
t,RX

′
tΛ̇R +

1

NT

T∑

t=1

Λ0f0
t ε

′
tΛ̇R − 1

NT

T∑

t=1

εtḋ
′
t,RX

′
tΛ̇R

+
1

NT

T∑

t=1

εtf
0′
t Λ0′Λ̇R +

1

NT

T∑

t=1

εtε
′
tΛ̇R

≡
8∑

j=1

u̇R,j . (C.111)

Following the proof of Lemma C.3(i), we can readily show that 1
N ||u̇R,j ||2 = OP

(
δ−2
NT + η̇R

)
.

Then we readily have 1
N ||Λ̆R −Λ0ḢR||2 = OP

(
δ−2
NT + η̇R

)
. With this, we can apply the argu-

29



ments used in the proof of Theorem 3.1 to show that η̇R = OP

(
δ−2
p,NT

)
. Then we may complete

the proof of (i).

(ii) Noting that

1

N
Λ̆′

RΛ̆R − 1

N
Ḣ

′

RΛ
0′Λ0ḢR

=
1

N
(Λ̆R −Λ0ḢR)

′(Λ̆R −Λ0ḢR) +
1

N
(Λ̆R −Λ0ḢR)

′Λ0ḢR +
1

N
Ḣ

′

RΛ
0′(Λ̆R −Λ0ḢR),

the convergence result (ii) follows from the triangle and Cauchy-Schwarz inequalities, Lemma

C.6(i), and the fact that ||Λ0ḢR||2 = OP (N) .

(iii) Let V̇ R and V̇ R (1) denote the probability limits of V̇ NT,R and V̇ NT,R (1) , respectively,

as (N,T ) → ∞. Recall that ḢR = 1
NT F

0′F 0Λ0′Λ̇R and 1
N Λ̇′

RΛ̇R = IR. As the application of

PCA method, we have the identity

1

NT

T∑

t=1

(Yt −Xtβ̇t,R)(Yt −Xtβ̇t,R)
′Λ̇R = Λ̇RV̇ NT,R.

Pre-multiplying both sides of the above equation by Λ̇′
R/N and using the normalization 1

N Λ̇′
RΛ̇R =

IR yields

1

N2T
Λ̇′

R

[
T∑

t=1

(Yt −Xtβ̇t,R)(Yt −Xtβ̇t,R)
′

]
Λ̇R = V̇ NT,R,

which together with Yt −Xtβ̇t,R = Xt(β
0
t − β̇t,R) +Λ0f0

t + εt, yields

1

N2T
Λ̇′

RΛ
0F 0′F 0Λ0′Λ̇R + dNT,R = V̇ NT,R,

where

dNT,R =
1

N2T
Λ̇′

R

T∑

t=1

[
Xt(β

0
t − β̇t,R)(β

0
t − β̇t,R)

′X ′
t + εtε

′
t +Xt(β

0
t − β̇t,R)f

0′
t Λ0′

+Λ0f0
t (β

0
t − β̇t,R)

′X ′
t +Xt(β

0
t − β̇t,R)ε

′
t + εt(β

0
t − β̇t,R)

′X ′
t

+Λ0f0
t ε

′
t + εtf

0′
t Λ0′

]
Λ̇R

≡
8∑

j=1

dR,j .
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Following the proof of Lemma C.3, it is easy to show that ‖dNT,R‖ = OP

(
δ−1
p,NT

)
by proving

that dR,j , j = 1, 2, ..., 8, are either OP (δ
−1
p,NT ) or of smaller order. For example,

‖dR,1‖ =
1

N2T

∥∥∥∥∥Λ̇
′
R

[
T∑

t=1

Xt(β
0
t − β̇t,R)(β

0
t − β̇t,R)

′X ′
t

]
Λ̇R

∥∥∥∥∥

≤ 1

N

∥∥∥Λ̇R

∥∥∥
2
µmax

(
X ′

tXt/N
) 1

T

T∑

t=1

∥∥∥β0
t − β̇t,R

∥∥∥
2
= OP

(
δ−2
p,NT

)
,

‖dR,2‖ =
1

N2T

∥∥∥∥∥Λ̇
′
R

[
T∑

t=1

εtε
′
t

]
Λ̇R

∥∥∥∥∥ ≤ 1

NT
‖ε‖2sp

1

N

∥∥∥Λ̇R

∥∥∥
2
= OP

(
δ−2
NT

)
,

and

‖dR,3‖ =
1

N2T

∥∥∥∥∥Λ̇
′
R

T∑

t=1

Xt(β
0
t − β̇t,R)f

0′
t Λ0′Λ̇R

∥∥∥∥∥

≤ 1

N

∥∥∥Λ̇R

∥∥∥
2 1

N1/2

∥∥Λ0
∥∥µ1/2

max

(
X ′

tXt/N
)
(

1

T

T∑

t=1

∥∥∥β0
t − β̇t,R

∥∥∥
2
)1/2

1

T 1/2

∥∥F0
∥∥

≤ OP

(
η̇
1/2
R

)
= OP

(
δ−1
p,NT

)
.

Then
1

N2T
Λ̇′

RΛ
0F 0′F 0Λ0′Λ̇R = V̇ NT,R − dNT,R

P→ V̇ R. (C.112)

Observe that 1
N2T

Λ̇′
RΛ

0F 0′F 0Λ0′Λ̇R has rank R0 at most in both finite and large samples.

Let ∆NT (l) = 1
NΛ0′Λ̇R (l) for l = 1, 2 and Σ̂F = 1

T F
0′F 0. Then

1

N2T
Λ̇′

RΛ
0F 0′F 0Λ0′Λ̇R =

[
∆′

NT (1) Σ̂F∆NT (1) ∆′
NT (1) Σ̂F∆NT (2)

∆′
NT (2) Σ̂F∆NT (1) ∆′

NT (2) Σ̂F∆NT (2)

]
.

Note that Σ̂F = ΣF + oP (1) by Assumption 1(i). Following the proof of Lemma A.3(ii) in Bai

(2003), we can show that plim(N,T )→∞∆′
NT (1) Σ̂F∆NT (1) = V̇ R(1) which has full rank R0.

This ensures that 1
N2T

Λ̇′
RΛ

0F 0′F 0Λ0′Λ̇R has rankR0 in large samples and∆′
NT (2) Σ̂F∆NT (2)

P→
0. Then∆′

NT (1) Σ̂F∆NT (2)
P→ 0 by the Cauchy-Schwarz inequality. By the asymptotic nonsin-

gularity of Σ̂F , this also implies that ∆NT (2) = oP (1) and ∆NT (1)
P→ ∆ (1) for some R0 ×R0

nonsingular matrix ∆ (1) . Consequently, we have

ḢR (1) =
1

NT
F 0′F 0Λ0′Λ̇R (1)

P→ ΣF∆ (1)

and

ḢR (2) =
1

NT
F 0′F 0Λ0′Λ̇R (2) = oP (1).
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Then ḢR (1) is asymptotically nonsingular and ḢR has rank R0.

By the definition Λ̆R = 1
NT

∑T
t=1(Yt −Xtβ̇t,R)(Yt −Xtβ̇t,R)

′Λ̇R and the identity 1
NT

∑T
t=1

(Yt −Xtβ̇t,R)(Yt −Xtβ̇t,R)
′Λ̇R = Λ̇RV̇ NT,R from the PCA, we have

1

N

∥∥∥Λ̆R −Λ0ḢR

∥∥∥
2

=
1

N

∥∥∥Λ̇RV̇ NT,R −Λ0ḢR

∥∥∥
2

=
1

N

∥∥∥Λ̇RV̇ NT,R (1)−Λ0ḢR (1)
∥∥∥
2
+

1

N

∥∥∥Λ̇RV̇ NT,R (2)−Λ0ḢR (2)
∥∥∥
2
.

Lemma C.6(i) implies that 1
N

∥∥∥Λ̇RV̇ NT,R (l)−Λ0ḢR (l)
∥∥∥
2
= OP

(
δ−2
p,NT

)
for l = 1, 2. Since

V̇ R (1) is nonsingular, it follows that

1

N

∥∥∥Λ̇R −Λ0ḢR (1) V̇
+
NT,R (1)

∥∥∥
2
= OP

(
δ−2
p,NT

)

and ∥∥∥V̇ +
NT,R (1)

∥∥∥ ≤
∥∥∥V̇ +

R (1)
∥∥∥+

∥∥∥V̇ +
NT,R (1)− V̇

+
R (1)

∥∥∥ = OP (1) .

In addition,

1

N

∥∥∥Λ0ḢR (2)
∥∥∥
2

≤ 2

N

∥∥∥Λ̇RV̇ NT,R (2)−Λ0ḢR (2)
∥∥∥
2
+

2

N

∥∥∥Λ̇RV̇ NT,R (2)
∥∥∥
2

= OP

(
δ−2
p,NT

)
+OP

(
δ−2
p,NT

)
= OP

(
δ−2
p,NT

)
,

because

1

N

∥∥∥Λ̇RV̇ NT,R (2)
∥∥∥
2
≤
[
µ2
max

(
V̇ NT,R(2)

)] ∥∥∥Λ̇R

∥∥∥
2
/N = R

[
µ2
max

(
V̇ NT,R(2)

)]

and

µmax

(
V̇ NT,R(2)

)
≤ µR0+1

(
Λ̇′

RΛ
0F 0′F 0Λ0′Λ̇R/(N

2T )
)
+ ‖dNT,R‖ = ‖dNT,R‖ = OP

(
δ−1
p,NT

)
,

where µR0+1(·) denotes the (R0+1)-th largest eigenvalue of the square matrix in the parentheses.

In view of the fact that

1

N

∥∥∥Λ0ḢR (2)
∥∥∥
2
=

1

N
Tr
(
ḢR (2) ḢR (2)′Λ0′Λ0

)
≥ µmin

(
Λ0′Λ0/N

) ∥∥∥ḢR (2)
∥∥∥
2
,

we have ∥∥∥ḢR (2)
∥∥∥
2
≤
[
µmin

(
Λ0′Λ0/N

)]−1 1

N

∥∥∥Λ0ḢR (2)
∥∥∥
2
= OP

(
δ−2
p,NT

)
.
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(iv) Since ḢR is right invertible asymptotically, by Proposition 6.1.5 in Bernstein (2005,

p.225), the R×R0 generalized inverse Ḣ
+
R of ḢR is given by

Ḣ
+
R = Ḣ

′

R

[
ḢRḢ

′

R

]−1
=


 Ḣ

′

R (1)
(
ḢRḢ

′

R

)−1

Ḣ
′

R (2)
(
ḢRḢ

′

R

)−1


 =

[
Ḣ

+
R (1)

Ḣ
+
R (2)

]
.

Then by Lemma C.6(iii)

∥∥∥Ḣ+
R (1)

∥∥∥ ≤
∥∥∥ḢR (1)

∥∥∥
∥∥∥∥
(
ḢRḢ

′

R

)−1
∥∥∥∥ = OP (1) , and

∥∥∥Ḣ+
R (2)

∥∥∥ ≤
∥∥∥ḢR (2)

∥∥∥
∥∥∥∥
(
ḢRḢ

′

R

)−1
∥∥∥∥ = OP

(
δ−1
p,NT

)
.

We have thus completed the proof of Lemma C.6. �

Proof of Lemma B.4. (i) The proof is similar to that of Lemma C.2. Notice that

Q̂NT (β,ΛR) =
1

NT

T∑

t=1

(Yt −Xtβt)
′MΛR

(Yt −Xtβt).

Using Yt −Xtβ̇t,R = Xt(β
0
t − β̇t,R) +Λ0f0

t + εt, we have

0 ≥ Q̂NT (β̇R, Λ̇R)− Q̂NT (β
0, Λ̇R)

=
1

NT

T∑

t=1

[
(Yt −Xtβ̇t,R)

′M
Λ̇R

(Yt −Xtβ̇t,R)− (Yt −Xtβ
0
t )

′M
Λ̇R

(Yt −Xtβ
0
t )
]

=
1

NT

T∑

t=1

[
(β̇t,R − β0

t )
′X ′

tM Λ̇R
Xt(β̇t,R − β0

t )− 2(β̇t,R − β0
t )

′X ′
tM Λ̇R

Λ0f0
t

]

− 2

NT

T∑

t=1

(β̇t,R − β0
t )

′X ′
tM Λ̇R

εt.

By Lemma C.1(i) (with R0 and Λ being replaced by R and ΛR), we can prove that

1

NT

T∑

t=1

(β̇t,R − β0
t )

′X ′
tM Λ̇R

εt = OP

(
p1/2δ−1

p,NT

)
.

Let ḋβ,R = β̇R − β0 and ḋΛ,R = 1
N1/2 vec(M Λ̇R

Λ0). Define

ȦR =
1

N
diag(X ′

1M Λ̇R
X1, ..., X

′
TM Λ̇R

XT ) and ĊR =
1

N1/2
[f0

1 ⊗M
Λ̇R

X1, ..., f
0
T ⊗M

Λ̇R
XT ].
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Then

1

NT

T∑

t=1

[
(β̇t,R − β0

t )
′X ′

tM Λ̇R
Xt(β̇t,R − β0

t )− 2(β̇t,R − β0
t )

′X ′
tM Λ̇R

Λ0f0
t

]

=
1

T
ḋ
′

β,RȦRḋβ,R − 2

T
ḋ
′

Λ,RĊRḋβ,R.

It follows that
1

T
ḋ
′

β,RȦRḋβ,R − 2

T
ḋ
′

Λ,RĊRḋβ,R +OP

(
p1/2δ−1

p,NT

)
≤ 0.

This, in junction with the fact that

∣∣∣ḋ′

Λ,RĊRḋβ,R

∣∣∣ ≤
[
ḋ
′

Λ,RḋΛ,R

]1/2 [
ḋ
′

β,RĊ
′

RĊRḋβ,R

]1/2

≤
∥∥∥ḋΛ,R

∥∥∥
∥∥∥ḋβ,R

∥∥∥
[
µ1/2
max(Ċ

′

RĊR)
]
,

implies that

1

T
ḋ
′

β,RȦRḋβ,R − 2

T 1/2

∥∥∥ḋΛ,R

∥∥∥
∥∥∥ḋβ,R

∥∥∥
[
µ1/2
max

(
Ċ

′

RĊR/T
)]

+OP (p
1/2δ−1

p,NT ) ≤ 0.

Using a decomposition similar to (B.8) in Appendix B, we can readily show that µmax(Ċ
′

RĊR/T )

= oP (1). By Assumption 1(ii), µmin(ȦR) > cx w.p.a.1. and ||ḋΛ,R|| = OP (1) . It follows that

1

T
‖ḋβ,R‖2 =

1

T

T∑

t=1

‖β̇t,R − β0
t ‖2 = oP (1).

Note that

V (R, β̇R) = min
β,ΛR

Q̂NT (β,ΛR)

subject toΛ′
RΛR/N = IR. Let sr (β) = µr

[∑T
t=1 (Yt −Xtβt) (Yt −Xtβt)

′ /T
]
. For any R < R0,

we make the following decomposition:

V (R,β) =
1

N

N∑

r=R0+1

sr(β) +
1

N

R0∑

r=R+1

sr(β) ≡ S1 (β) + S2R (β) .

Noting that S1(β̇R) ≥ S1(β̇R0
) = V (R0, β̇R0

), we have

V (R, β̇R)− V (R0, β̇R0
) =

[
S1(β̇R)− S1(β̇R0

)
]
+ S2R(β̇R) ≥ S2R(β̇R).
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Let s0r = µr

(
1
T

∑T
t=1

[
Λ0f0

t f
0′
t Λ0′ + εtε

′
t +Xt(β

0
t − β̇t,R)(β

0
t − β̇t,R)

′X ′
t

])
. Notice that

1

N

∣∣∣sr(β̇R)− s0r

∣∣∣

≤ 1

NT

∥∥∥
T∑

t=1

{
(Λ0f0

t ε
′
t + εtf

0′
t Λ0′) + [Λ0f0

t (β
0
t − β̇t,R)

′X ′
t +Xt(β

0
t − β̇t,R)f

0′
t Λ0′]

+[εt(β
0
t − β̇t,R)

′X ′
t +Xt(β

0
t − β̇t,R)ε

′
t]
}∥∥∥

sp

≤ 2

NT

∥∥∥∥∥

T∑

t=1

Λ0f0
t ε

′
t

∥∥∥∥∥
sp

+
2

NT

∥∥∥∥∥

T∑

t=1

Λ0f0
t (β

0
t − β̇t,R)

′X ′
t

∥∥∥∥∥
sp

+
2

NT

∥∥∥∥∥

T∑

t=1

εt(β
0
t − β̇t,R)

′X ′
t

∥∥∥∥∥
sp

.

Under Assumptions 1-2 and using the fact that 1
T ‖ḋβ,R‖2 = oP (1), we can readily show that

the second and third terms in the last expression are oP (1). The first term is OP ((NT )−1/2) by

Assumption 1(iii). It follows that

S2R(β̇R) ≥ 1

N

R0∑

r=R+1

s0r + oP (1)

≥ 1

NT

R0∑

r=R+1

µr

(
Λ0F0′F0Λ0′

)
+ oP (1)

≥ (R0 −R)µmin(F
0′F0/T )µmin(Λ

0′Λ0/N) + oP (1)

= (R0 −R)µmin(ΣF )µmin(ΣΛ) + oP (1) ,

where the second inequality follows from Weyl’s inequality. In sum, we have

plim inf
(N,T )→∞

V (R, β̇R)− V (R0, β̇R0
) ≥ cR, cR = (R0 −R)µmin(ΣF )µmin(ΣΛ)/2,

completing the proof of Lemma B.4(i).

(ii) Recall that V (R, β̇R) = minβ,ΛR
Q̂NT (β,ΛR) subject to Λ′

RΛR/N = IR. Noting that

V (R, β̇R) = Q̂NT (β̇R, Λ̇R), by the triangle inequality, we have

∣∣∣V (R, β̇R)− V (R0, β̇R0
)
∣∣∣

≤
∣∣∣Q̂NT (β̇R, Λ̇−R)− Q̂NT (β

0,Λ0)
∣∣∣+
∣∣∣Q̂NT (β̇R0

, Λ̇R0
)− Q̂NT (β

0,Λ0)
∣∣∣

≤ 2 max
R0≤R≤Rmax

∣∣∣Q̂NT (β̇R, Λ̇R)− Q̂NT (β
0,Λ0)

∣∣∣ .

It suffices to show that Q̂NT (β̇R, Λ̇R) − Q̂NT (β0,Λ0) = OP

(
δ−2
p,NT

)
for each R ∈ [R0, Rmax].

Let Ḣ
+
R denote the Moore-Penrose generalized inverse of ḢR such that ḢRḢ

+
R = IR0

; see, for
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example, the proof of Lemma C.6(iv). Noting that Yt −Xtβ
0
t = Λ0f0

t + εt and M
Λ

0Λ0 = 0, we

may show that

Q̂NT (β
0,Λ0) =

1

NT

T∑

t=1

(Yt −Xtβ
0
t )

′M
Λ

0(Yt −Xtβ
0
t ) =

1

NT

T∑

t=1

ε′tMΛ
0εt.

Let ε̆t = εt − (Λ̆R −Λ0ḢR)Ḣ
+
Rf

0
t . Noting that

Yt −Xtβ̇t,R = (Xtβ
0
t +Λ0f0

t + εt)−Xtβ̇t,R

= Xt(β
0
t − β̇t,R) + Λ̆RḢ

+
Rf

0
t + εt + (Λ0ḢR − Λ̆R)Ḣ

+
Rf

0
t

= Xt(β
0
t − β̇t,R) + Λ̆RḢ

+
Rf

0
t + ε̆t

and M
Λ̇R

Λ̆R = M
Λ̇R

(
Λ̇RV̇ NT,R

)
= 0, we have

Q̂NT (β̇R, Λ̇R) =
1

NT

T∑

t=1

(Yt −Xtβ̇t,R)
′M

Λ̇R
(Yt −Xtβ̇t,R)

=
1

NT

T∑

t=1

[
Xt(β

0
t − β̇t,R) + ε̆t

]′
M

Λ̇R

[
Xt(β

0
t − β̇t,R) + ε̆t

]

=
1

NT

T∑

t=1

ε̆′tM Λ̇R
ε̆t +

1

NT

T∑

t=1

(β̇t,R − β0
t )

′X ′
tM Λ̇R

Xt(β̇t,R − β0
t )

− 2

NT

T∑

t=1

ε̆′tM Λ̇R
Xt(β̇t,R − β0

t )

≡ I1 + I2 − 2I3.

We next prove Lemma B.4(ii) by only showing that

I1 − Q̂NT (β
0,Λ0) = OP

(
δ−2
p,NT

)
,

and

I2 = OP

(
δ−2
p,NT

)
, I3 = OP

(
δ−2
p,NT

)
.

First, using ε̆t = εt − (Λ̆R −Λ0ḢR)Ḣ
+
Rf

0
t , we make the following decomposition:

I1 =
1

NT

T∑

t=1

[εt − (Λ̆R −Λ0ḢR)Ḣ
+
Rf

0
t ]

′M
Λ̇R

[εt − (Λ̆R −Λ0ḢR)Ḣ
+
Rf

0
t ]

=
1

NT

T∑

r=1

ε′tM Λ̇R
εt −

2

NT

T∑

r=1

f0′
t Ḣ

+′

R (Λ̆R −Λ0ḢR)
′M

Λ̇R
εt

+
1

NT

T∑

r=1

f0′
t Ḣ

+′

R (Λ̆R −Λ0ḢR)
′M

Λ̇R
(Λ̆R −Λ0ḢR)Ḣ

+
Rf

0
t

≡ I1,1 − 2I1,2 + I1,3.
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Using the arguments as in the proof of Lemmas C.1(iii)(iv), we can show that

I1,1 − Q̂NT (β
0,Λ0) =

1

NT

T∑

t=1

ε′t(PΛ
0 − P

Λ̇
R)εt = OP

(
δ−2
NT

)
= OP

(
δ−2
p,NT

)
.

For I1,2, we have

I1,2 =
1

NT

T∑

t=1

f0′
t Ḣ

+′

R

(
Λ̆R −Λ0ḢR

)′
εt −

1

NT

T∑

t=1

f0′
t Ḣ

+′

R (Λ̆R −Λ0ḢR)
′P

Λ̇R
εt

≡ I1,2a − I1,2b.

Using the decomposition in (C.111) and Lemma C.6(i), we can readily show that I1,12a =

OP

(
δ−2
p,NT

)
. By the Cauchy-Schwarz inequality, the fact that P

Λ̇R
is a projection matrix, and

Lemma C.1(iii),

|I1,2b| ≤
[

1

NT

T∑

t=1

∥∥∥(Λ̆R −Λ0ḢR)Ḣ
+
Rf

0
t

∥∥∥
2
]1/2 [

1

NT

T∑

t=1

ε′tP Λ̇R
εt

]1/2

= OP

(
δ−1
p,NT

)
·OP

(
δ−1
NT

)
= OP

(
δ−2
p,NT

)
,

where the following result which can be proved by Lemma C.6 has also been used:

1

NT

T∑

t=1

∥∥∥(Λ̆R −Λ0ḢR)Ḣ
+
Rf

0
t

∥∥∥
2

≤ 1

N

∥∥∥Λ̆R −Λ0ḢR

∥∥∥
2 ∥∥∥Ḣ+

R

∥∥∥
2 1

T

T∑

t=1

∥∥f0
t

∥∥2

= OP

(
δ−2
p,NT

)
. (C.113)

Thus we have I1,2 = OP

(
δ−2
p,NT

)
. Similarly, using the fact that M

Λ̇R
is a projection matrix and

by (C.113),

I1,3 ≤
1

NT

T∑

r=1

∥∥∥(Λ̆R −Λ0ḢR)Ḣ
+
Rf

0
t

∥∥∥
2
= OP

(
δ−2
p,NT

)
.

As a consequence, we may complete the proof of I1 − Q̂NT (β
0,Λ0) = OP (δ

−2
p,NT ) for each

R ∈ [R0, Rmax].

Next, by Assumption 1(ii) and the fact that M
Λ̇R

is a projection matrix and that η̇R =
1
T

∑T
t=1 ||β̇t,R −β0

t ||2 = OP

(
δ−2
p,NT

)
, we have

I2 ≤
1

NT

T∑

t=1

∥∥∥(β̇t,R − β0
t )

′X ′
tM Λ̇R

Xt(β̇t,R − β0
t )
∥∥∥ ≤ max

1≤t≤T
µmax

(
X ′

tXt/N
)
η̇R = OP

(
δ−2
p,NT

)
.
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To study I3, we apply ε̆t = εt − (Λ̆R −Λ0ḢR)Ḣ
+
Rf

0
t and M

Λ̇R
= IN −P

Λ̇R
and make the

following decomposition:

I3 =
1

NT

T∑

t=1

ε̆′tM Λ̇R
Xt(β̇t,R − β0

t )

=
1

NT

T∑

t=1

ε′tXt(β̇t,R − β0
t )−

1

NT

T∑

t=1

ε′tP Λ̇R
Xt(β̇t,R − β0

t )

− 1

NT

T∑

t=1

f0′
t Ḣ

+′

R (Λ̆R −Λ0ḢR)
′M

Λ̇R
Xt(β̇t,R − β0

t )

≡ I3,1 − I3,2 − I3,3.

By the Cauchy-Schwarz inequality, Assumptions 1(ii)-(iii), the fact that

η̇R =
1

T

T∑

t=1

∥∥∥β̇t,R − β0
t

∥∥∥
2
= OP

(
δ−2
p,NT

)
,

1

NT

T∑

t=1

ε′tP Λ̇R
εt = OP

(
δ−2
NT

)
, µmax(M Λ̇R

) = 1,

and Lemma C.6(i), we have

|I3,1| ≤
[

1

N2T

T∑

t=1

ε′tXtX
′
tεt

]1/2
η̇
1/2
R = OP (p

1/2N−1/2)OP (δ
−1
p,NT ) = OP

(
δ−2
p,NT

)
,

|I3,2| ≤
[

1

NT

T∑

t=1

ε′tP Λ̇R
εt

]1/2 [
1

NT

T∑

t=1

(β̇t,R − β0
t )

′X ′
tXt(β̇t,R − β0

t )

]1/2

≤ OP

(
δ−1
NT

)
µmax

(
X ′

tXt/N
)1/2

η̇
1/2
R = OP

(
δ−2
p,NT

)
,

and

|I3,3| ≤
[

1

NT

T∑

t=1

f0′
t Ḣ

+′

R (Λ̆R −Λ0ḢR)
′M

Λ̇R
(Λ̆R −Λ0ḢR)Ḣ

+
Rf

0
t

]1/2

×
[

1

NT

T∑

t=1

(β̇t,R − β0
t )

′X ′
tXt(β̇t,R − β0

t )

]1/2

≤ 1

N1/2

∥∥∥Λ̆R −Λ0ḢR

∥∥∥
∥∥∥Ḣ+

R

∥∥∥
[
1

T

T∑

t=1

∥∥f0
t

∥∥2
]1/2

µ1/2
max

(
X ′

tXt/N
)
η̇
1/2
R

= OP (δ
−1
p,NT )OP (1)OP (δ

−1
p,NT ) = OP

(
δ−2
p,NT

)
.

Hence I3 = OP

(
δ−2
p,NT

)
. In sum, we have shown that Q̂NT (β̇R, Λ̇R)−Q̂NT (β0,Λ0) = OP

(
δ−2
p,NT

)

for each R ∈ [R0, Rmax], completing the proof of Lemma B.4(ii). �
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Proof of Lemma B.5. Let

DNT (αm,Λ; Tm) =
1

NT

m+1∑

j=1

Tj−1∑

t=Tj−1

[
(Yt −Xtαj)

′
MΛ (Yt −Xtαj)− ε′tεt

]

and σ̄2
NT = 1

NT

∑T
t=1 ε

′
tεt. Note that

(
α̃m(Tm), Λ̃(Tm)

)
= arg min

(αm,Λ)
DNT (αm,Λ; Tm) ,

and

σ̃2(Tm)− σ̃2(T 0
m0) =

[
σ̃2(Tm)− σ̄2

NT

]
−
[
σ̃2(T 0

m0)− σ̄2
NT

]

with σ̃2(Tm)− σ̄2
NT = DNT (α̃m(Tm), Λ̃(Tm); Tm). We prove the lemma by showing that (i)

m0

T∆2
NT

[
σ̃2(T 0

m0)− σ̄2
NT

]
= oP (1) ; (C.114)

and (ii)
m0

T∆2
NT

(σ̃2(Tm)− σ̄2
NT ) ≥ c+ oP (1) w.p.a.1 for some c > 0. (C.115)

We first show (C.114) in (i). We make the following decomposition:

σ̃2
T 0

m0

=
1

NT

m0+1∑

j=1

T 0
j −1∑

t=T 0
j−1

[Yt −Xtα̃j ]
′
M

Λ̃
[Yt −Xtα̃j ]

=
1

NT

m0+1∑

j=1

T 0
j −1∑

t=T 0
j−1

[
Xt(α

0
j − α̃j) +Λ0f0

t + εt
]′
M

Λ̃

[
Xt(α

0
j − α̃j) +Λ0f0

t + εt
]

=
1

NT

m0+1∑

j=1

T 0
j −1∑

t=T 0
j−1

[
ε′tM Λ̃

εt + f0′
t Λ0′M

Λ̃
Λ0f0

t + (α0
j − α̃j)

′X ′
tM Λ̃

Xt(α
0
j − α̃j)

+ 2ε′tM Λ̃
Xt(α

0
j − α̃j) + 2ε′tM Λ̃

Λ0f0
t + 2f0′

t Λ0′M
Λ̃
Xt(α

0
j − α̃j)

]

≡ d1NT + d2NT + d3NT + 2d4NT + 2d5NT + 2d6NT ,

where we suppress the dependence of α̃j = α̃j(T 0
m0) and Λ̃ = Λ̃(T 0

m0) on T 0
m0 for notational

simplicity. By Lemma C.1(iii),

d1NT =
1

NT

T∑

t=1

ε′tM Λ̃
εt =

1

NT

T∑

t=1

ε′tεt +OP

(
δ−2
NT

)
= σ̄2

NT +OP

(
δ−2
NT

)
.
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Using the preliminary results in Lemmas C.4 and C.5(i) and Theorem 3.4, we may show that

dlNT = OP (δ
−2
p,NT ) for l = 3, 4, 6. UsingMΛ0Λ0 = 0 and (C.79), and decomposingM

Λ̃
−MΛ0 =

−(P
Λ̃
− PΛ0) as in (C.81), we can readily show that

d2NT =
1

NT

T∑

t=1

f0′
t Λ0′

(
M

Λ̃
−MΛ0

)
Λ0f0

t = OP

(
δ−2
p,NT

)
, and

d5NT =
1

NT

T∑

t=1

ε′t
(
M

Λ̃
−MΛ0

)
Λ0f0

t = OP

(
δ−2
p,NT

)
.

It follows that

σ̃2(T 0
m0)− σ̄2

NT = OP

(
δ−2
p,NT

)
, (C.116)

which, together with Assumption 2(ii), leads to (C.114).

We now show (C.115) in (ii). We consider three cases: (a) m0 = 1, (b) m0 = 2, and (c)

3 < m0 ≤ mmax. For case (a) of m0 = 1, if n < m0, we have m = 0 and Tm = T0 = ∅. The true

model contains one structural break:

Yt =

{
Xtα

0
1 +Λ0f0

t + εt if 1 ≤ t ≤ T 0
1 − 1,

Xtα
0
2 +Λ0f0

t + εt if T 0
1 ≤ t ≤ T ;

while the working model that ignores the structural break in the regression coefficient is

Yt = Xtα+Λ0f0
t + et, 1 ≤ t ≤ T,

where et is the error term. Note that σ̃2(T0) = 1
NT

∑T
t=1 (Yt −Xtα̃)

′
M

Λ̃
(Yt −Xtα̃) , where

(α̃, Λ̃) = argmin
α,Λ

1

NT

T∑

t=1

(Yt −Xtα)
′
MΛ (Yt −Xtα)

subject to Λ′Λ/N = IR0
, and we suppress the dependence of α̃ and Λ̃ on T0. Using Yt −Xtα =

Xt(β
0
t − α) +Λ0f0

t + εt and Lemmas C.1(i)(ii), we can readily show that

1

NT

T∑

t=1

(Yt −Xtα)
′
MΛ (Yt −Xtα)

=
1

NT

T∑

t=1

[
Xt(β

0
t − α) +Λ0f0

t + εt
]′
MΛ

[
Xt(β

0
t − α) +Λ0f0

t + εt
]

=
1

NT

T∑

t=1

[
Xt(β

0
t − α) +Λ0f0

t

]′
MΛ

[
Xt(β

0
t − α) +Λ0f0

t

]
+

1

NT

T∑

t=1

ε′tεt +OP (p
1/2δ−1

p,NT )
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uniformly in α and Λ such that Λ′Λ/N = IR0
and ‖α‖ ≤ Cp1/2. It follows that

σ̃2(T0) =
1

NT

T∑

t=1

Ỹ ′
tM Λ̃

Ỹt + σ̄2
NT +OP (p

1/2δ−1
p,NT )

≥ min
Λ: Λ′Λ/N=IR0

1

NT

T∑

t=1

Ỹ ′
tMΛỸt + σ̄2

NT +OP (p
1/2δ−1

p,NT )

=
1

NT

N∑

r=R0+1

µr

[
T∑

t=1

ỸtỸ
′
t

]
+ σ̄2

NT +OP (p
1/2δ−1

p,NT )

≥ 1

NT

N∑

r=R0+1

µr

[
T∑

t=1

Xt(β
0
t − α̃)(β0

t − α̃)′X ′
t

]
+ σ̄2

NT +OP (p
1/2δ−1

p,NT )

=
1

NT
min

Λ: Λ′Λ/N=IR0

[
T∑

t=1

(β0
t − α̃)′X ′

tMΛXt(β
0
t − α̃)

]
+ σ̄2

NT +OP (p
1/2δ−1

p,NT )

≥ cx ·
1

T

T∑

t=1

∥∥β0
t − α̃

∥∥2 + σ̄2
NT +OP (p

1/2δ−1
p,NT ),

where Ỹt = Xt(β
0
t − α̃) +Λ0f0

t , the second and third inequalities follow from Weyl’s inequality

and Assumption 1(ii), respectively. Consequently, we have by Assumptions 5(i)-(ii)

m0

T∆2
NT

[
σ̃2(T0)− σ̄2

NT

]
≥ cxcβ + oP (1) ,

where cβ is defined in Assumption 5(i). We have completed the proof of (C.115) for case (a).

In cases (b)-(c), it suffices to consider the case where m = m0 − 1 (If m < m0 − 1, one can

always augment the set Tm by m0 − 1 −m true break points which are not inside Tm to make

DNT (α̃m(Tm), Λ̃ (Tm) ; Tm) smaller). For the case (b) with m = 1, we consider three subcases:

(b.1) 2 ≤ T1 ≤ T 0
1 , (b.2) T

0
1 < T1 ≤ T 0

2 , and (b.3) T 0
2 < T1 ≤ T. In the subcase (b.1), [1, T1 − 1]

does not contain a break point while [T1, T ] contains two true break points T 0
1 and T 0

2 . Observe

that

DNT (α̃1(T1), Λ̃(T1); T1) =
1

NT

T1−1∑

t=1

{
[Yt −Xtα̃1(T1)]′M Λ̃(T1)

[Yt −Xtα̃1(T1)]− ε′tεt

}

+
1

NT

T∑

t=T1

{
[Yt −Xtα̃2(T1)]′M Λ̃(T1)

[Yt −Xtα̃2(T1)]− ε′tεt

}

≡ DNT,1 +DNT,2.
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Noting that the interval [1, T1 − 1] does not contain a break point, using the arguments as used

in the study of case (a), we can readily show that

DNT,1 ≥
cx
T

T1−1∑

t=1

∥∥α0
1 − α̃1(T1)

∥∥2 +OP (p
1/2δ−1

p,NT ).

Similarly, we can show that

DNT,2 ≥
cx
T

T∑

t=T1

∥∥β0
t − α̃2(T1)

∥∥2 +OP (p
1/2δ−1

p,NT ).

Then by Assumptions 5(i)(ii)

m0

T∆2
NT

DNT (α̃1(T1), Λ̃(T1); T1)

≥ m0

T∆2
NT




cx
T

T1−1∑

t=1

∥∥α0
1 − α̃1(T1)

∥∥2 + cx
T

T∑

t=T1

∥∥β0
t − α̃2(T1)

∥∥2 +OP (p
1/2δ−1

p,NT )





≥ cx min
α1,α2

m0

T∆2
NT

2∑

j=1

Tj−1∑

t=Tj−1

∥∥β0
t − αj

∥∥2 + oP (1)

≥ cxcβ + oP (1) .

In the subcase (b.2), both [2, T1 − 1] and [T1, T ] contain a break. As in subcase (b.1), we

can show that

m0

T∆2
NT

DNT (α̃1(T1), Λ̃(T1); T1)

≥ m0

T∆2
NT




cx
T

T1−1∑

t=1

∥∥β0
t − α̃1(T1)

∥∥2 + cx
T

T∑

t=T1

∥∥β0
t − α̃2(T1)

∥∥2 +OP (pN
−1/2 + p1/2T−1/2)





≥ cx min
α1,α2

m0

T∆2
NT

2∑

j=1

Tj−1∑

t=Tj−1

∥∥β0
t − αj

∥∥2 ≥ cxcβ + oP (1) .

The proof for the subcase (b.3) is analogous to that for the subcase (b.1). Hence, the conclusion

(C.115) follows in the subcase (b). Case (c) can be studied analogously. This completes the

proof of the lemma. �
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Proof of Lemma B.6. For Tm ∈ T̄m with m0 < m ≤ mmax, we recall that

σ̃2(Tm) = QNT (α̃m(Tm), Λ̃ (Tm) ; Tm)

= min
αm,Λ

1

NT

m+1∑

j=1

Tj−1∑

t=Tj−1

(Yt −Xtαj)
′
MΛ (Yt −Xtαj)

= min
αm

1

NT

m+1∑

j=1

Tj−1∑

t=Tj−1

(Yt −Xtαj)
′
M

Λ̃(Tm) (Yt −Xtαj) ,

and σ̄2
NT = 1

NT

∑T
t=1 ε

′
tεt. In view of the fact that

σ̃2(T 0
m0) ≥ σ̃2(Tm) and σ̃2(T 0

m0) = σ̄2
NT +OP (δ

−2
p,NT )

by (C.116), we have

0 ≤ σ̃2(T 0
m0)− σ̃2(Tm) = σ̄2

NT − σ̃2(Tm) +OP (δ
−2
p,NT ) =

m+1∑

j=1

JNT,j +OP (δ
−2
p,NT ), (C.117)

where JNT,j ≡ − infα Sj (α) , Sj (α) =
1

NT

∑Tj−1
t=Tj−1

[
(Yt −Xtα)

′
M

Λ̃(Tm) (Yt −Xtα)− ε′tεt

]
and

[Tj−1, Tj − 1] does not contain any break point for j = 1, ...,m + 1. Let α0
j,m = β0

Tj−1
and

α̃j,m = α̃j(Tm) = argminα Sj (α) =
(∑Tj−1

t=Tj−1
X ′

tM Λ̃(Tm)Xt

)−1∑Tj−1
t=Tj−1

X ′
t M Λ̃(Tm)Yt for j =

1, ...,m + 1. As in the proofs of Lemma C.4(i) and Theorems 3.1 and 3.4, we can show that
1
N ||Λ̃ (Tm) − Λ0||2 = OP (δ

−2
p,NT ) and ||α̃j,m − α0

j,m|| = OP (δ
−1
p,NT ). Then using Yt − Xtα̃j,m =

εt +Λ0f0
t +Xt(α

0
j,m − α̃j,m), we have

Sj (α̃j,m) =
1

NT

Tj−1∑

t=Tj−1

[
(Yt −Xtα̃j,m)′M

Λ̃(Tm) (Yt −Xtα̃j,m)− ε′tεt

]

=
1

NT

Tj−1∑

t=Tj−1

{[
εt +Λ0f0

t +Xt(α
0
j,m − α̃j,m)

]′
M

Λ̃(Tm)

[
εt +Λ0f0

t +Xt(α
0
j,m − α̃j,m)

]
− ε′tεt

}

=
−1

NT

Tj−1∑

t=Tj−1

ε′tP Λ̃(Tm)εt +
1

NT

Tj−1∑

t=Tj−1

f0′
t Λ0′M

Λ̃(Tm)Λ
0f0

t

+
1

NT

Tj−1∑

t=Tj−1

(
α0
j,m − α̃j,m

)′
X ′

tM Λ̃(Tm)Xt

(
α0
j,m − α̃j,m

)
+

2

NT

Tj−1∑

t=Tj−1

ε′tM Λ̃(Tm)Λ
0f0

t

+
2

NT

Tj−1∑

t=Tj−1

ε′tM Λ̃(Tm)Xt

(
α0
j,m − α̃j,m

)
+

2

NT

Tj−1∑

t=Tj−1

f0′
t Λ0′M

Λ̃(Tm)Xt

(
α0
j,m − α̃j,m

)

≡ Sj,1 + Sj,2 + Sj,3 + 2Sj,4 + 2Sj,5 + 2Sj,6.
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By Lemma C.1(iii),
m+1∑

j=1

Sj,1 =
−1

NT

T∑

t=1

ε′tP Λ̃(Tm)εt = OP

(
δ−2
NT

)
.

In addition, we can show that

m+1∑

j=1

Sj,2 =
1

NT

T∑

t=1

f0′
t Λ0′(M

Λ̃(Tm) −MΛ0)Λ0f0
t = OP

(
δ−2
p,NT

)
,

m+1∑

j=1

Sj,3 ≤ 1

T

m+1∑

j=1

∥∥α0
j,m − α̃j,m

∥∥2
Tj−1∑

t=Tj−1

µmax

(
X ′

tXt/N
)
= OP

(
δ−2
p,NT

)
,

and similarly
∑m+1

j=1 Sj,l = OP

(
δ−2
p,NT

)
for l = 4, 5, 6. Then by (C.117), σ̃2(Tm) − σ̄2

NT =

OP

(
δ−2
p,NT

)
for all m ∈

{
m0 + 1, ...,mmax

}
and Tm = {T1, ..., Tm}, which completes the proof

of Lemma B.6. �
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