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Abstract The ability to reverse-engineer models of software behaviour is
valuable for a wide range of software maintenance, validation and verification
tasks. Current reverse-engineering techniques focus either on control-specific
behaviour (e.g., in the form of Finite State Machines), or data-specific be-
haviour (e.g., as pre / post-conditions or invariants). However, typical soft-
ware behaviour is usually a product of the two; models must combine both
aspects to fully represent the software’s operation. Extended Finite State Ma-
chines (EFSMs) provide such a model. Although attempts have been made
to infer EFSMs, these have been problematic. The models inferred by these
techniques can be non-deterministic, the inference algorithms can be inflexible,
and only applicable to traces with specific characteristics. This paper presents
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a novel EFSM inference technique that addresses the problems of inflexibility
and non-determinism. It also adapts an experimental technique from the field
of Machine Learning to evaluate EFSM inference techniques, and applies it to
three diverse software systems.

Keywords Reverse Engineering · EFSMs · Dynamic Analysis

1 Introduction

Reverse-engineered models that accurately capture the behaviour of a soft-
ware system are useful for a broad range of software maintenance, validation,
and verification tasks. Their use is becoming increasingly popular from a test-
ing perspective, where they have been used as oracles for regression testing
[17], to detect intrusions and anomalous behaviour [43], and to automatically
generate test cases [18, 42]. Beyond testing, inferred models can aid software
comprehension [12] and requirements engineering [14].

This range of applications has given rise to a multitude of model inference
techniques. Most techniques are dynamic; they take as input a set of execution
traces of the system in question and infer models that generalise upon them.
These have largely focussed either on the inference of sequential models in the
form of Finite State Machines (FSMs) [2, 12, 32, 50, 6, 31], or data pre- and
post-conditions, as espoused by tools such as Daikon [17].

Such models tend to only provide a partial view of software behaviour. In
practice, behaviour is often the result of interplay between the sequencing of
events or function calls (as modelled by FSMs) and the values of the associated
parameter or data-state variables (as modelled by invariants). This observation
has prompted attempts to infer more complete models that are able to combine
the two facets of behaviour.

One of the most common modelling techniques to blend control and data
is known as the Extended Finite State Machines (EFSMs) [10]. EFSMs can
be conceptualised as conventional Finite State-Machines that operate on an
underlying memory, where transitions are annotated by guards on the memory.
EFSMs have been used as a basis for testing [23], and dependence analysis [3].
They can be trivially converted to other notations such as Abstract State
Machines [7], and X-Machines [24], which have been used extensively for tasks
such as model-checking and the specification of agent-based systems.

Though useful, current approaches to reverse-engineer EFSMs suffer the
following key drawbacks:

– Non-determinism: In current approaches, inferred data constraints carry
out a descriptive rôle (summarising the data for individual transitions).
They are not inferred in such a way that specific configurations of data are
causally linked to subsequent control-events. As a consequence they fail to
capture the explicit logical relationship between data and control. A walk
through a machine can involve numerous points at which there are several
possible paths to take for a given data-state.
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– Inflexibility: Current inference approaches are limited to highly specific
combinations of control and data-inference algorithms. However, software
systems can be very diverse, which demands flexibility. Depending on the
domain, systems might differ substantially in the typical trace size and
diversity, the proportions of spurious events, noise, numerical variables,
boolean variables, or structured variables such as lists etc. These can re-
quire completely different learner configurations; no single, specific learning
algorithm will be effective on all types of system.

This paper presents a generalised technique MINT (short for Model In-
ference Technique), to infer EFSMs. It address the problem of inflexibility by
enabling the use of arbitrary data-classifiers to infer data guards. The guard-
inference is combined with conventional state-machine inference in such a way
that the final result is always deterministic. The specific contributions are as
follows:

– An EFSM inference technique that is (1) capable of inferring EFSMs that
are deterministic and (2) modular, allowing the use of a wide family of
data classifier algorithms to analyse the data-state.

– An openly available proof of concept implementation that incorporates the
WEKA classifier framework [22] and Daikon [17].

– A qualitative and quantitative evaluation, where the former compares our
models to the models that would be produced by baseline techniques, and
the latter assesses its accuracy and scalability with respect to several openly
available modules from the telecoms domain.

The paper is structured as follows. Section 2 gives some basic definitions
and introduces a motivating example, and Section 3 discusses the existing in-
ference techniques. In Section 4 we present our EFSM inference algorithm and
describe its implementation. We discuss the evaluation in two sections: Section
5 takes a qualitative look at the inferred models, and compares these to alter-
native models inferred by baseline techniques. Then Section 6 quantitatively
evaluates the approach by assessing the accuracy and scalability with respect
to three diverse case study systems. Section 7 gives an overview of related
work. Finally, in Section 8 we conclude and discuss potential future work.

2 Background

This section presents the core definitions that are to be used throughout the
rest of this paper, and introduces a small motivating case study to set out the
basic EFSM inference challenge.

2.1 Definitions

This subsection presents definitions of program execution traces, Finite State
Machines and Extended Finite State Machines.
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2.1.1 Traces

As is the case with most behavioural model inference techniques, the technique
presented in this paper takes as input a set of program traces. These are of
a generic format, consisting of sequences of event names or function labels
accompanied by variable values.

The trace-encoding process is identical in principle to that described by
Ammons et al. [2]. We presume that the interactions with the system can be
characterised in terms of particular event names and associated variable values.
Depending on the abstraction, an event name might be a function name, and
the variables might be the parameter values. As described by Ammons et al.,
structured data can be flattened to its primitive values. Formally, a trace can
be defined as follows:

Definition 1 (Events and Traces)
An event is a tuple (l , v), where l is the name of a function and v is a

mapping from parameter variables for l to concrete values. A trace t ∈ T is a
finite sequence of events, often written as 〈(l0, v0), . . . (ln , vn)〉.

Given a set of traces T , LT denotes the set of labels in the events in the
traces in T (known as the alphabet of T ). Similarly VT denotes the set of
variables referred to in T . The concatenation of two traces a and b is denoted
ab. A trace a is a prefix of a trace c if there exists a trace b such that ab = c.
The set of prefixes of a set of traces T is denoted Pr(T ). 2

Example 1 In our running example of a mine pump (introduced below),
(turn_on, (water = 73.442, methane = 596.779, pump = off)) consti-
tutes an event, and in such events we will often omit the parameter names,
abbreviating this to: (turn_on, 73.442, 596.779, off) whenever there is
no ambiguity. 2

Definition 2 (Positive and negative traces)
Given a system S , a traces tr is said to be a positive trace of the system if it
represents a feasible behaviour that S may exhibit, and said to be a negative
trace if that behaviour is not possible in S . 2

As is the case with any machine learning technique, the value and accuracy
of the end result tends to rely on a suitable encoding of the input data. When
collecting a trace of a software execution, there is often the choice of which
events or method calls to track, and of which data-variables to record (e.g.
input parameters, state-variables, return values, etc.). The specific mechanism
and encoding used to collect the traces is flexible and depends on the intended
purpose of the model. We have found that the following tracing heuristics tend
to be generally suitable:

– Make responses explicit : The simplest way to encode a trace would be to
create an event for each invocation of a function within the subject sys-
tem (e.g., open file, close file). However, often the subject system can
produce responses that have a significant bearing on subsequent behaviour
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(e.g., by throwing an exception if a file cannot be found). Accordingly, if
possible, the possible range of responses to a given input should also be
encoded as separate events in the trace to make the interaction with the
system as fine-grained as possible.

– Detailed event types: If possible, events that play a different rôle in the
system should be given different labels. For example, if certain inputs lead
to different types of exceptions, instead of simply using the label exception
it is better to distinguish between them (e.g., null-pointer-exception
and file-not-found-exception).

– Selectivity with data-variables: If possible, the inclusion of data variables
that do not have a bearing on future behaviour should be minimised. This
is to reduce the scope for errors by the data-classifiers that will be used to
infer guards.

2.1.2 Finite State Machines and Extended Finite State Machines

Definition 3 (Finite State Machine)
A Finite State Machine (FSM) can be defined as a tuple (S , s0,F ,L,T ). S is

a set of states, s0 ∈ S is the initial state, and F ⊆ S is the set of final states.
L is as defined as the set of labels. T is the set of transitions, where each
transition takes the form (a, l , b) where a, b ∈ S and l ∈ L. When referring to
FSMs, this paper assumes that they are deterministic. 2

In intuitive terms, Extended Finite State Machines [10] augment conven-
tional FSM with a memory. Transitions between states are not only associated
with a label, but are also associated with a guard that represents conditions
that must hold with respect to the variables in the memory:

Definition 4 (Extended Finite State Machine)
An Extended Finite State Machine (EFSM) is a tuple (S , s0,F ,L,M , ∆,T ),

where S , s0,F and L are defined as in a conventional FSM. M represents the
memory of the EFSM – a collection of variables. An assignment of variables
in the memory to concrete values is denoted m ∈ M . The update function ∆
is the function L ×M → M . The set of transitions T is an extension of the
conventional FSM version, where transitions take the form (a, l ,m, b), where
a, b ∈ S , l ∈ L, and m ∈ M . 2

It should be noted that the EFSMs as inferred here, and in the work by
Lorenzoli et al., are not complete because the update function (the actual rules
involved in transforming of variable values at each transition) is not inferred.
In our and Lorenzoli et al.’s case, the models are declarative; they capture the
sequences of events and variable values that are (or are not) possible, but do
not explicitly capture how the individual variables are updated.
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2.2 Motivating Example

To motivate this work, we consider a scenario where we need to reverse-
engineer the behaviour of a mine pump controller [29]. The pump controls
water levels in a mine, and is activated or deactivated depending on the levels
of water. However, it also monitors the levels of methane in the mine, and
must switch the pump off if the levels of methane become too high.

Let us consider the scenario where we are required to analyse the behaviour
of such a controller. The source code is unavailable but we are able to obtain
traces of its behaviour. In the trace below, each event is shown in a separate
line, along with the associated levels of water, methane and pump activity
(i.e., whether it is on or off). The entire set of traces contains 2931 events, of
which a snippet of one trace is shown below:
...
turn_on 73.44274560979447 596.7792240239261 false
low_water 28.898501010661718 584.0357656062484 true
switch_pump_off 28.898501010661718 584.0357656062484 true
turn_off 28.898501010661718 584.0357656062484 true
highwater 31.47476437422098 588.4568312662454 false
switch_pump_on 31.47476437422098 588.4568312662454 false
...

This trace consists of a sequence of events, each given on a new line, thus
each event has some structure: not just an event name (such as highwater) but
also data (such as pump = false abbreviated to false in the traces above).
So the question we are faced with is this: Given such a trace, what is the
(sequential) behaviour of the system? Model inference techniques try to infer
the correct model, often by extracting a FSM that is consistent with the traces
given. But this trace has more information than just the event name; there
is also data associated with each event. Can we infer a more accurate and
complete model of the system by using these data values? We know intuitively
that the activities are based on the data, but how? In other words, what is
the model that can accurately capture this behaviour for us?

As we will elaborate in Section 3, techniques already exist that are capable
of inferring models from these traces. However these suffer from significant
drawbacks (which will be elaborated in Section 3):

– FSM inference: Several techniques exist to infer FSMs from traces [2,
12, 32, 50, 6, 31, 42]. Although these can be quite accurate, they fail to
capture the crucial relationship between the events and the data-state. The
need to “discretise” the data into FSM labels is not only impractical, but
tends to yield models that disproportionately large.

– EFSM inference: Although an attempt has been made to infer EFSM
models [38], it similarly suffers. Although it does manage to associate data-
constraints to transitions (with the help of Daikon [17]), the inference can
become prohibitively expensive and the resulting models are generally non-
deterministic. Non-deterministic models pose significant problems from an
analysis point of view; a single sequence of events may or may not be
permitted by the same model. If used for test-generation, non-determinism
leads to an explosion in the number of test cases required [23].
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The challenge lies in striking a balance between producing a model that is
useful for reasoning about software behaviour (i.e., is deterministic and reason-
ably compact), but is also accurate. We will return to this when we perform
our evaluation, since an evaluation is not now just about how accurate the
model is, but about how useful, e.g., not too large that it becomes unreadable.

3 Basic Inference Techniques

The EFSM inference approach proposed in this paper works by combining two
complementary model types: (1) the FSM component that models the order
in which various events or functions can be executed and (2) the rules that
relate the data state of the system to the execution of these events. Each of
these model families have been the subject of a substantial amount of model
inference research in their own right, both within the fields of software engi-
neering and machine learning. The remainder of this section presents a high-
level overview of the key existing techniques, providing enough information
for the next section to show how they can be combined in a modular way. It
concludes with a short overview of the weaknesses of existing EFSM inference
techniques that have attempted to combine FSM and data rule inference.

3.1 Evidence-Driven State Merging

The challenge of inferring an FSM from a set of example traces has been an
established research challenge since Gold’s pioneering research on language
identification in the late 60s [20]. Numerous inference techniques were de-
veloped, spurred by several competitions that encouraged novel techniques
to infer models from training sets made available over the internet [31, 50].
Evidence-Driven State Merging (EDSM) is one of the most popular and ac-
curate inference techniques to emerge. It won the Abbadingo competition [31]
and was used as a baseline for the recent STAMINA competition [50]. We use
the basic steps of the EDSM algorithm as a basis for our EFSM inference al-
gorithm. Its basic functionality is described below. More in-depth descriptions
of the individual components of the algorithm are available in Lang’s origi-
nal paper [31], or one of the selection of software engineering references that
describe its use [14, 50].

Most FSM inference techniques (including the popular k -tails algorithm
[6]) fit into the family of “state-merging” techniques. These are variants of the
same underlying algorithm. Unlike many similar machine learning techniques,
we cannot presume the presence of negative traces or examples – in our scenario
we only have software traces to work from, which are by definition positive.
Accordingly, the algorithms presented here do not consider negative traces.
The basic state merging algorithm is shown in Algorithm 1. From here on, we
use sout to refer to the outgoing transitions from state s, and sin to refer to
the incoming transitions. Traces are as defined in Definition 1, but the data
variable values are ignored (given that FSMs do not incorporate data).
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Data: S , s0,F ,L,T , s1, s2, s3, s4,Traces
/* S , s0,F ,L,T are as per definition 3, s0, . . . s4 ∈ S, Traces is the set of input

traces */
Result: A deterministic FSM consistent with Traces

1 infer(Traces) begin
2 (S , s0,F ,L,T)←generatePTA(Traces);
3 foreach (s1, s2) ∈ choosePairs((S , s0,F ,L,T)) do
4 (S ,F ,T)← merge(S ,F ,T , s1, s2);
5 return (S , s0,F ,L,T)

/* Function to merge s1 to s2 and ensure that the result is deterministic. */
6 merge(S ,F ,T , s1, s2)begin
7 S ← S \ {s1};
8 F ← F \ {s1};
9 T ← changeSources(s1out , s2,T);

10 T ← changeDestinations(s1in , s2,T);
11 while (s3, s4)←findNonDeterminism(S ,T) do
12 (S ,F ,T)←merge(S ,F ,T , s3, s4);
13 return (S ,F ,T)

Algorithm 1: Basic state merging algorithm.

The algorithm begins by composing the traces into the most specific pos-
sible correct FSM — the Prefix Tree Acceptor (PTA) – and then proceeds to
merge states to produce progressively smaller and more generalised hypothesis
FSMs. The key steps are introduced below:

line 2: the set of traces Traces is arranged by the generatePTA function
into an initial FSM in the form of a Prefix Tree Acceptor (PTA) [14]. This can
be described intuitively as a tree-shaped state machine that exactly accepts
Traces, where traces with the same prefix share the same path from the initial
state in the PTA up to the point at which they diverge. Leaf states are added to
F as final (accepting) states. For an intuitive illustration, there is an example
PTA in Figure 1.

lines 3-5: The state merging challenge is to identify pairs of states in the
current hypothesis FSM that represent equivalent states in the subject system,
and to merge them. Starting off from the PTA, pairs of states are iteratively
selected and merged, until no further pairs of equivalent states can be found,
which indicates convergence at the final hypothesis FSM.

choosePairs: This function is responsible for returning a list of state-pairs
that are most likely to be equivalent from a given FSM. The general process
is described in Algorithm 2. The selectPairs function selects a set of state
pairs in the current machine that are deemed to be suitable merge-candidates
(using an approach known as the Blue-Fringe algorithm [31, 14]). These pairs
are then scored by the calculateScore function. This operates by counting
the number of transitions in the outgoing paths from the two states that share
the same labels (this is always finite because one of the states is always the
root of a tree [31]). Finally, the state pair with the highest score is deemed to
be most likely to be equivalent, and is returned.

merge: The merge function merges s1 into s2 by first removing s1 from S
and (if s1 ∈ F ) replacing s1 with itself in F . It continues by redirecting all
transitions s1in to s2, and changes the source states of all transitions s1out ,
making s2 their new source state. The resulting transition system is checked
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Data: S ,T , s1, s2, score,PairScores, t1, t2
1 choosePairs(S ,T) begin
2 PairScores ← ∅;
3 foreach (s1, s2) ∈ selectPairs(S) do
4 score ← calculateScore(s1, s2);
5 PairScores ← PairScores ∪ {(s1, s2, score)};
6 return sortDescending(PairScores)

7 calculateScore(s1, s2) begin
8 score ← 0;
9 while (t1, t2)← equivalentTransitions({s1, s2}) do

10 score ← score + 1;
11 score ← score+calculateScore(t1dest , t2dest);

12 return score

Algorithm 2: The EDSM candidate pair selection procedure

for non-determinism, and this is eliminated by recursively merging the targets
of non-deterministic transitions. A more detailed description of this process
can be found in Damas et al.’s description [14].

3.2 Data Classifier Inference

The technique presented in this paper extends existing FSM inference ap-
proaches to produce EFSMs. Besides learning rules about sequences of events,
the presence of a memory in EFSMs requires us to also learn rules about its
variable values, and how these relate to particular events in the system.

The process that is referred to here as “data classifier inference” [39] refers
to a broad range of techniques that seek to identify patterns or rules between
variables from a set of observations, and to map these to a particular outcome
or “class”. The possible classes could be {true, false} if the aim is to infer
whether a given set of variable values is possible or not, or more elaborate,
e.g., {rain, sun, overcast} if the aim is to predict the weather from a set of
factors. In our context we are interested in what the next event is, and thus
our class will be the set of events.

A huge variety of techniques have been developed in the machine learning
domain, spurred by problems in domains as diverse as natural language pro-
cessing, speech recognition, and bioinformatics. A part of the reason for this
diversity is that techniques can contain specific optimisations for their target
domain. Amongst the hundreds of different techniques, core techniques include
Quinlan’s C4.5 Decision Trees inference algorithm [40], ensemble-learning ap-
proaches such as AdaBoost [19], and Bayesian inference techniques such as the
simple naive Bayes approach [39].

Classifier inference techniques start with a sample of observations (referred
to here as a training set), which map a set of variable values to their respective
classes, where a class is some categorical outcome (here the set of events). The
goal is to produce some form of a decision procedure that is able to correctly
predict the class of a set of unseen variable values. More formally, a training
set and the classifier inference problem can be defined as follows:
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Definition 5 (Training set)
Given a variable domain V and a set of classes C , a training set TD of size

n can be defined as a set {(v0, c0), . . . , (vn , cn)}, where a vector of variable
assignments vi is mapped to its corresponding class ci . 2

Definition 6 (Data classifiers and the inference problem)
A data classifier DC : V → C is a function that maps variables to classes.
The inference problem can be characterised as inferring a classifier DC from a
trace T that generalises upon the observations in the trace to classify further
elements correctly when v 6∈ T . We denote the output from a classifier dc
given a value v as dc(v). 2

Our use of classifier inference is to turn traces into training sets by using
information contained about the data values in the events in the program
traces to determine which event will occur next. For example, we will use the
data values in the mine pump example to discover that if methane is less than
598.52559, then the next event will be switch_pump_on, whereas if methane

is greater than 598.52559, then the next event will be critical.

3.2.1 Choosing a Classifier

As data classifiers embody the rules that form guards on EFSM transitions,
their readability is of special significance. Classifiers such as C4.5 [40] produce
readable if-then-else rules that explicitly relate input to output. Others, such
as neural net models, are based upon other representations (e.g. weighted
probabilistic graphs), which are much harder to interpret. Although both can
be used as the basis for EFSM inference (as will be shown in our experiments),
the choice of model ultimately depends on the broader context in which the
EFSM is to be used.

If, for example, we wish to reverse-engineer a state machine to be inspected
by a human, it would be necessary to choose an explicit algorithm such as
C4.5 to produce readable transition guards. An alternative scenario might not
require human-readable models. Let us consider as an example an intrusion
detection system. Here, models of ‘typical’ software or network behaviour are
inferred from a given set of traces, and this model is then used to classify future
executions as suspicious (if they do not conform to the behaviour predicted
by the model). Here, no human intervention is required, so the model could
as well use data classifiers that are not human-readable, but could have other
benefits (e.g. efficiency, resilience to noise, accuracy).

Given the various trade-offs that can arise between different families of
Machine Learning approaches, the question of which one to choose is complex,
and has been the question of a substantial amount of research [52]. Several
comprehensive implementation frameworks have emerged to facilitate experi-
mentation, such as the Java WEKA API [22] used for our work, which includes
implementations of approximately 100 of the most of the established inference
techniques.
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3.3 Current EFSM Inference Approaches

The area of software model inference is vast, and has been active for the past
40 years [6]. Aside from the wealth of FSM inference and data-specification
inference techniques, there are several techniques that have sought to combine
the two. Notable examples include Dallmeier et al.’s ADABU technique [8] and
Lorenzoli et al.’s GK-tails algorithm [38]. Both have been generally evaluated
on Java programs, but can in principle be applied to arbitrary program traces.

ADABU obtains models by obtaining a detailed record of the data-state
at each point in the execution. It then adopts a simple, prescribed mapping to
obtain abstract data characterisations at each point. For example, numerical
values x are mapped to x > 0, x == 0, or x < 0, and objects are mapped to
null or instance of c for some c. These are then combined into an abstract
state machine according to the sequence in which these abstract states appear
in the traces. The result is not strictly-speaking an EFSM (transitions do not
have guards), but is mentioned here because it still combines data with control,
and formulates this as a state machine.

For GK-tails the basic idea is to build on top of the normal state-merging
approach described above (they choose the well established k -tails variant [6]).
Each state transition is labelled not only with a label, but also with the set of
variable values that correspond to the execution at that point. As transitions
are merged into each other during the state merging process, they map to
increasing numbers of data values.

The GK-tails algorithm uses Daikon [17] to infer rules that link the vari-
ables together for each transition. These rules are then used to determine
whether or not a pair of states is compatible (this would be part of the
choosePairs function in the context of our state-merging description). The
use of data-rules to prevent incompatible state merges is an important con-
tribution, and has inspired our approach (which will be presented in Section
4).

Although they have proven to be successful for certain tasks, both ap-
proaches are hampered by key limitations. The first problem is flexibility.
Both approaches are tied to very specific forms of data abstraction (map-
ping concrete data values into abstract rules): the ADABU data-abstraction
is hard-coded, and in the case of GK-tails it is tied to Daikon. It is however
well established from the field of machine learning that in practice different
algorithms excel (and under-perform) according to the specific characteristics
of a given data set. It is implausible that a data abstraction technique would
be well suited for arbitrary sets of software traces (as formalised in Wolpert’s
“No Free Lunch” theorem [53]). In the context of software, sequential can vary
substantially, depending on various characteristics of the system. Sequences of
events might be determined by subtle numerical changes to variables, others
might be dependent on variations in string or boolean variables, others might
involve a degree of stochasticity or noise. These require different learners to
yield the most accurate models.



12 Neil Walkinshaw et al.

The second problem is specific to GK-tails (since it infers EFSMs, whereas
ADABU does not). Data rules that summarise the guards on a transition are
inferred on a per-transition basis. This has two downsides. The first is the sheer
volume of trace data that is required; each transition (in the ultimate model)
needs to have been executed with a sufficiently broad range of data to yield
a model that is accurate in its own right – a highly unrealistic presumption
for most dynamic analysis tasks. The second limitation is non-determinism.
Since each transition data model is inferred independently, it is possible (and
probable) that the resulting model contains states where, at a given state,
the same data configuration can lead to several possible outgoing transitions.
These non-deterministic models are less likely to be accurate, and pose several
significant problems if they are to be used for automated analysis or test-
generation.

Models inferred by GK-tails still have an intrinsic value for several pur-
poses, and the inaccuracies discussed above can often be tolerated depending
on the purpose of the model. For example, such models can still be useful if
the model is intended as a descriptive overview of system behaviour. However,
for purposes where the model might be required for classifying correct or in-
correct behaviour, or to simulate a software system, models have to be more
precise and deterministic.

4 The EFSM Inference Algorithm

This section presents our EFSM inference algorithm. It adopts a similar tem-
plate to the approach proposed by Lorenzoli et al. [38]. It also builds upon
established state-merging techniques, and also works by attaching data values
to transitions. However that is where the similarity ends. Instead of relying on
a single data model inference approach, the algorithm proposed here is modu-
lar ; it enables the incorporation of arbitrary data classifier inference techniques
(there are over fifty in the WEKA library used by our reference implementa-
tion). Secondly, by using classifiers, the data rules and their subsequent control
events are explicitly tied together. Finally, instead of inferring rules on a per-
transition basis, a set of global data rules are inferred (e.g., some classifiers
infer them as if-then-else constructs), so they are able to take advantage of all
of the available data, instead of just those data points that are attached to
individual transitions.

The approach described here (along with alternatives such as GK-Tails)
have been implemented in Java as a tool called MINT (Model Inference Tool).
The tool has been made openly available1, under the GNU GPLv3 licence. All
of the examples and experimental materials featured in this paper can be
downloaded from the project website.

This section starts off with a description of the algorithm itself. This is
followed by a description of the state-merging algorithm that underpins the

1 https://bitbucket.org/nwalkinshaw/efsminferencetool

https://bitbucket.org/nwalkinshaw/efsminferencetool
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Initial traces:
mult, x=4, y=2, res=NaN
add, a=0, b=4, res=NaN
add, a=4, b=4, res=8
disp, val=8, res=8
==================
add, a=1,b=1, res=2
disp, val=2, res=2
==================
mult, x=1, y=1, res=NaN
add, a=0, b=1, res=1
disp, val=1, res=1
==================
mult, x=2, y=0, res=0
disp, val=0, res=0

Data traces:
mult, x=4, y=2, res=NaN, class=add
mult, x=1, y=1, res=NaN, class=add
mult, x=2, y=0, res=0, class=disp
===================
add, a=0, b=4, res=NaN, class=add
add, a=4, b=4, res=8, class=disp
add, a=1, b=1, res=2, class=disp
add, a=0, b=1, res=1, class=disp 
===================
disp, val=8, res=8, class=null
disp, val=2, res=2, class=null
disp, val=1, res=1, class=null
disp, val=0, res=0, class=null
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Merged
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8mult

add
disp

dispadd

add
disp

Remove
non-determinism

iterate

Fig. 1 Illustration of the key inference steps with respect to traces from an imaginary
calculator system. The classifiers used in this example happen to be decision trees, but
could assume any representation depending on the chosen data rule inference algorithm. For
space reasons the transitions are not labelled by their associated data guards.

inference of the transition system. Finally, a small example is included to
illustrate the key steps, and to provide an intuition of the final machine.

4.1 Inference Algorithm

The inference algorithm builds upon the state-merging baseline in Algorithm
1. In simple terms, there is an extra step beforehand, which is the inference of
a set of classifiers. Each classifier corresponds to a label in the trace (e.g., the
signature of a method in a Java trace). From a set of inputs to the method,
the classifier serves to predict the next event name in the trace (i.e., the name
of the next method to be called). In the rest of the inference algorithm, the
purpose of most functions remains the same, however this time their behaviour
is modulated by the classifiers. Also, there is a new function consistent, which
ensures that the model that is produced at each iteration is consistent with
all of the classifiers.

The algorithm is shown in Algorithm 3, and the key steps are illustrated
in Figure 1. For an intuitive understanding, it is easiest to start with Figure
1, and to then trace the equivalent steps in Algorithm 3. The following de-
scription will draw upon both. Starting with a set of initial traces (top left),
the algorithm starts by processing them to create one “training set” per label
(shown to the right in the diagram). This adds a “class’ variable to each data
point, showing for every data configuration what the label of the subsequent
event is. The training set can then be used to infer a set of classifiers (moving
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Data: EFSM ,C , k , c,DataTrace, s1, s2, t1, t2,Vars,Failed
/* Here A is shorthand for the collection (S , s0,F ,L, ∆,T) as per definition 4.

Components of A are denoted by subscript (e.g. AS). */
/* C is a mapping from transition labels to classifiers. The classifier for a given

label l is denoted Cl. */
/* s1, s2 ∈ S */
/* t1, t2 ∈ T, */
/* DataTrace is a trace as in definition 5. */
/* Vars is a one-to-many mapping from transitions in T to trace elements in Traces.

k is an (optional) integer ≥ 0 representing a minimum merge score.Failed is a set
of failed state pairs */

Result: An EFSM consistent with Traces

1 Infer(Traces, k) begin
2 Failed ← ∅;
3 DataTraces ← prepareDataTraces(Traces);
4 C ← inferClassifiers(DataTraces);
5 (A,Vars)←generatePTA(Traces,C);
6 foreach (s1, s2) ∈ choosePairs(A,C , k)\Failed do
7 (A′,Vars′)← merge(A, (s1, s2),Vars,C);

8 if consistent(A′,C ,Vars′) then
9 A← A′;

10 Vars ← Vars′;

11 else
12 Failed ← Failed ∪ (s1, s2)

13 return A

14 merge(A, s1, s2,Vars,C)begin
15 AS ← AS \ {s1};
16 AF ← AF \ {s1};
17 AT ← changeSources(AT , s1out , s2);
18 AT ← changeDestinations(AT , s1in , s2);
19 while (t1, t2)←equivalentTransitions(AT , s2,Vars,C) do
20 if (t1dest == t2dest ) then
21 Vars(t2)← Vars(t2) ∪ Vars(t1);
22 AT ← AT \ {t1};
23 else
24 (A,Vars)← merge(A, (t1dest , t2dest ),Vars,C);

25 return (A,Vars)

26 equivalentTransitions(A, s,Vars,C)begin
27 T ← ∅;
28 foreach σ ∈ AΣ do
29 c ← C (σ);

30 foreach t1, t2 ∈ {AT | s
σ−→ } do

31 foreach x ∈ Vars(t1), y ∈ Vars(t2) do
32 if c(x) == c(y) then
33 T ← T ∪ (t1, t2);

34 return T

Algorithm 3: EFSM Inference Algorithm

to the right in the diagram). The examples used here are decision trees (such
as those produced by the C4.5 algorithm [40]), but they could be any suit-
able representation of a decision procedure, such as neural nets or if-then-else
clauses [22].

At this point, the initial set of traces is re-analysed, but this time to produce
a Prefix Tree Acceptor (PTA) [50] (line 4 in the algorithm, bottom left in the
diagram). The PTA is a tree-shaped state machine that exactly represents the
set of given traces, where traces with the same prefix share the same path in
the tree up to the point where they differ (leading to separate branches in the
PTA).
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There are however two important differences from the PTAs used here and
those that are used in the conventional state merging algorithm. In this PTA,
transitions are labelled not only with the name of a function, but also with the
sets of data variable values that correspond to each transition (in the algorithm
this mapping is represented by Vars). This is elided in Figure 1, but in the

full rendering of the PTA, the transition 0
mult−−−→ 1 would map to {(x = 4, y =

2, res = NaN ), (x = 1, y = 1, res = NaN ), (x = 2, y = 0, res = 0)}. Secondly,
a pair of states (a, b) only share the same prefix in the PTA if the inferred
classifiers yield identical predictions for every data-configuration in the prefix
of a as they do for b. This means that the PTA represents the most specific
EFSM that exactly represents the given set of traces.

Together, the embellished PTA and the data classifiers (i.e., the next event
names) are used as a basis for iterative state-merging, following a similar
iterative loop to the original state-merging procedure in Algorithm 1. The key
differences are as follows.

The choosePairs function (line 5) takes several additional variables into
account. k is an optional parameter to represent the minimum score before a
pair of states can be deemed to be equivalent. A pair of transitions can only
be deemed to be equivalent if their attached data values lead to the same
predictions by the relevant classifier in C .

The merge function (line 6 – shown in full in lines 14-28) is similar to the the
generic version, but differs in the way it detects non-deterministic transitions,
and merges those transitions. Instead of merely detecting non-determinism
by matching transition labels, it uses the equivalentTransitions function
(detailed below) to also determine whether the data variables are treated as
equivalent by the accompanying classifier. When transitions are merged, their
corresponding sets of data values are merged as well.

The equivalentTransitions function identifies non-deterministic transi-
tions. For the merged state s, it iterates through every pair of outgoing tran-
sitions from s that share a matching label (ε). It then uses the classifier for
that label (c(ε)) to compare the variable values that are attached to the two
transitions. If, for every pair of variable values, the classifier gives the same
result, the transitions can be treated as equivalent.

This process of using classifiers to distinguish between transitions with
the same labels is illustrated in Figure 2. Let us suppose that the inference
algorithm is considering whether to merge the two states that are targets of the
two transitions. If we ignore the data values, this would seem to make sense.
However, according to the data classifier inferred for add, the two transitions
are different, because it predicts different outcomes for the data values attached
to them. For one transition, the classifier predicts that the next event will be a
further add, whereas for the other the classifier predicts a disp. Our approach
will only merge pairs of states if, for all subsequent merges of transitions, there
is no such conflict.

Once states and transitions have been merged, the merge function has
the additional responsibility of reallocating the data values from the source
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disp

add disp

b

a

≤1 >1

≤1 >1

add:

add
a=3, b=2, res=5

add
a=0, b=2, res=2

Fig. 2 Example of how the decision tree inferred for the add function can distinguish be-
tween transitions with the same labels, but data values that correspond to different classifier
outcomes.

transitions to the target ones. This is achieved by updating the map Vars
from transitions to data variables (line 21). The resulting merged model and
updated mappings from transitions to data are returned as (A′,Vars ′).

Finally, once the merge has been processed, the resulting model is checked
by the function consistent. This makes sure that, for each transition in the
merged machine A′, the attached data Vars’ are consistent with the classifiers
in ∆. For each transition t ∈ A′T , the corresponding data variable values are
obtained from Vars ′(t). This is provided to the corresponding classifier in ∆,
which returns a predicted subsequent label (i.e. the name of the method to be
executed subsequently). This is checked against the transition structure of A′.
If the target state of t does not have an outgoing transition with the predicted
label, consistent returns false.

If A′ is consistent with ∆ and Var’, the ‘current’ state machine A is updated
to A′, Var is updated to Var’, and the whole process iterates until no further
merges can be found. If consistent returns false, the current merge is ignored,
and the next merge is attempted. This whole process continues until no more
merges can be identified, when the process returns (A, ∆).

4.2 Tracing a path through an inferred EFSM

Having inferred an EFSM E , the question arises of how to determine whether a
given trace 〈(l0, v0), . . . (ln , vn)〉 can be mapped to a path of transitions in ET .
There are two ways to do this. If the classifier is of the type that it is possible
to derive explicit data constraints for each transition (e.g. as illustrated in
section 5), it is possible to trace paths by reconciling these constraints with
the variables in each trace element.

However, a more general approach (that also works for ‘black-box’ classi-
fiers such as Naive Bayes and Neural Nets) is to pick transitions through the
EFSM by using the classifiers and that trace elements that are attached to the
transitions during the merging process in Vars. Starting in the initial state,
any transition that is compatible with the first trace element is identified by
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the process adopted by equivalentTransitions and shown in Figure 2. If it
returns a transition the process is repeated with respect to the next element.
If no transition is returned then the trace is deemed to be incompatible with
the EFSM.

5 Qualitative Evaluation

In this section we seek to show what the inferred models look like, and how
they compare against models produced by the current state of the art. We
choose the Mine Pump system that was referred to in Section 2.2.

We begin by providing a brief overview of the models inferred by baseline
approaches: We start by inferring a conventional FSM, then use the GK-Tails
algorithm to infer an EFSM, and finally use our MINT approach to infer an
EFSM.

The experiments were carried out on an Apple MacBook Pro with a 2.6GHz
Intel Core i5 CPU and 16GB RAM (of which 1GB was assigned to the Java
Virtual Machine).

5.1 Inferring an FSM without Data

The model inferred by the standard EDSM algorithm (with k = 2)2 is shown in
Figure 3. The key strength of the data-less model is its conciseness. Ultimately,
the entire contents of all the traces with a total of 2931 events are compacted
into a state machine of 15 states and 18 transitions.

The downside, however, is that it provides only a partial description of
the behaviour of the system. The first two transitions are labelled highwater

and critical. Under what circumstances is one chosen instead of the other?
Further down the machine there is a state with a loop labelled critical, and
a non-looping outgoing transition labelled not critical. What determines
the choice between these transitions?

These questions become critical when the model is applied to tasks such as
model-checking or testing. If, for example, one wanted to devise a test-sequence
to cover a particular task in the model, one would be reduced to guessing the
requisite variable values.

5.2 Inferring an EFSM with GK-tails

Given the size of the infered model (39 states and 57 transitions, with several
large constraints), it cannot be presented here in its entirety. To give an idea
of its structure, a scaled-down version is available in the appendix, and a
zoomable PDF is available online. Figure 4 shows the initial portion of the
model, to give an idea of the nature of the transition guards that are inferred.

2 Here, k refers to the parameter that determines when we merge states, not to k -folds.
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highwatercritical

initial

switch_pump_on

highwater

not_critical

turn_on

critical low_water

switch_pump_off switch_pump_off

turn_off

critical

not_critical

switch_pump_on

turn_on

highwater

turn_offswitch_pump_on

turn_on

Fig. 3 Conventional FSM as inferred by EDSM Blue-Fringe algorithm with k=2
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Fig. 4 Iinitial portion of EFSM inferred by GK-Tails

As can be seen in Figure 4, the guards tend to be highly specific. Transitions
can be annotated with labels such as:

label = highwater:

water one of {30.557584374686556, 30.93086465240995, 31.392848009838183}

methane one of {492.4786001832756, 500.6956433415156, 552.3675499964407}

pump == "false"

methane > water

This is to be expected, as GK-Tails infers data constraints on a per-
transition basis. It makes no generalisations about rules that apply accross
all transitions. For transitions where there is not a large amount of trace data,
this leads to necessarily specific rules. From the perspective of the model as
whole, this leads to a high degree of under-generalisation; if the model has to
classify new data that was not a part of the original training set, it is unlikely
that the highly specific data constraints will recognise it.

Although the Daikon constraints can be problematic from an accuracy
perspective, they remain very useful from a descriptive point of view. The
constraints provide a concise summary of exactly what the trace data looks like
at a particular transition. This is a valuable idea, and prompted us to include a
post-processing option in our MINT tool, which provides optional additional
descriptive constraints for transitions once the model has been inferred (as
illustrated later on in this section).

5.3 Inferring the MinePump model with MINT

We recall the example of the mine pump controller, as briefly discussed in Sec-
tion 2.2. We have a collection of traces with a total of 2931 events (illustrated
on page 6), and we wish to better understand the underlying behaviour by
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inferring an EFSM. The full set of traces that were used for this example is
available from the accompanying webpage3.

The following output is obtained by running our tool, using its default
settings. The entire run of 30 traces with 2931 events took 4476 ms.

This uses the WEKA J48 decision tree learner (the C4.5 algorithm [40]) to
infer the underlying data relations. This produces the following decision trees:

critical
==========
pump = true: switch_pump_off
pump = false
| methane <= 607.2162
| | methane <= 602.640094: not_critical
| | methane > 602.640094
| | | water <= 31.699162: not_critical
| | | water > 31.699162: critical
| methane > 607.2162
| | water <= 74.875037: highwater
| | water > 74.875037: critical

not_critical
==========
: switch_pump_on

highwater
==========
methane <= 598.525559: switch_pump_on
methane > 598.525559: critical

turn_off
==========
methane <= 597.355089: highwater
methane > 597.355089: not_critical

turn_on
==========
methane <= 590.815697: low_water
methane > 590.815697
| water <= 35.75304: low_water
| water > 35.75304: critical

Decision trees be read as a set of if-then-else rules, where the conditions
are on the values of the variables, and the outcomes represent the next event.
For example, looking at the highwater tree, if methane <= 598.525559 the
model predicts that the next event is switch pump on, otherwise the next
event is critical. For the not critical tree, there are no conditions on the
variables, the next event is always switch pump on.

These data models already provide some basic constraints on the sequential
behaviour of the system. They show which combinations of variable values lead
from one function to another. However, they fail to provide a macroscopic
view of the order in which the events can occur. This is provided by the state
transition diagram.

The final inferred model is provided in its entirety in Figure 5. Where
possible we will refer directly to the inferred model as a whole. Where our
discussion involves areas of the model that are particularly hard to read, we
will reproduce a separate, magnified sub-area.

3 http://www.cs.le.ac.uk/people/nwalkinshaw/efsm/

http://www.cs.le.ac.uk/people/nwalkinshaw/efsm/
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Fig. 5 Inferred EFSM of the Mine Pump (as laid out by GraphViz)
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Init

highwater
((methane > 598.525559))

 critical
((pump = false&&methane <= 607.2162&&

methane > 602.640094&&water > 31.699162)||
(pump = false&&methane > 607.2162&&water > 74.875037))

A

critical
((pump = false&&

methane <= 602.640094)||
(pump = false&&

methane <= 607.2162&&
methane > 602.640094&&

water <= 31.699162))

B

not_critical C

critical
((pump = false&&

methane > 607.2162&&
water <= 74.875037))

critical
((pump = false&&

methane <= 602.640094)||
(pump = false&&

methane <= 607.2162&&
methane > 602.640094&&

water <= 31.699162))

not_critical

critical
((pump = false&&
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methane > 602.640094&&

water <= 31.699162))

highwater
((methane > 598.525559))

Fig. 6 Initial portion of the larger EFSM from Figure 5

The first thing to observe about the model is that it is actually quite
compact. We can see that 30 traces with 2931 events have been reduced to
just 29 transitions, connecting 16 states. The value of the transition system is
that it makes explicit any loops, or nested loops, that would be exceedingly
difficult to discern from just looking at the traces alone.

One fact that becomes apparent from the model is that there are certain
“well-defined” states. For example, all of the transitions labelled high-water,
where methane≤ 598.525559 lead to the bottom-most state in the machine
(marked A). From here, it is only possible for a switch pump on event to
occur. All of the low-water transitions lead to the state marked B , at which
point the pump can only be switched off.

The machine contains several examples that illustrate how the data con-
straints for different outgoing transitions of a given states are deterministic.
Although the labels are the same, they are distinguished by their associated
data constraints. This is captured by an extract from the machine, homing in
on the transitions around the initial state, shown in Figure 5.3.

From the Init state, there are three outgoing transitions that are labelled
critical (one loops to the Init state, and the others go to A and C ). At first
glance, it is hard to distinguish between their guards; a lot of the conditions
overlap (and could probably be simplified with the help of a constraint solver).
The conditions outgoing from Init are simplified and summarised as follows:

1. Stay in the same state if (602.64009 < methane ≤ 607.2162 and water >
31.699162) or (methane > 607.2162 and water > 74.875037).

2. Go to state A if (methane ≤ 602.64009) or (602.64009 < methane ≤
607.2162 and water ≤ 31.699162).
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3. Go to state C if (methane > 607.2162 and water ≤ 74.875037).

This shows that the constraints are mutually exclusive. There is no config-
uration of methane and water that would lead to a nondeterministic choice.

5.3.1 Activating the Daikon Option

When analysing the output from GK-Tails in Section 5.2, we observed that
the use of Daikon to label transitions could be useful for the purposes of
providing transition-specific information about the attached data. Although
certain classifiers can be used to extract explicit constraints for the EFSM
transitions (such as the J48 constrainst used in the above example), others
(e.g. Naive Bayes) cannot. In such cases, Daikon provides the means to at
least provide some elementary rules describing the data on each transition.

Given the extensible architecture of MINT, this was relatively straightfor-
ward to implement. All that was required was a decorator class (we called it
DaikonMachineDecorator) that takes the inferred model, and post-processes
it by using Daikon to augment the labels. The resulting model is too complex
to include in a readable format here, but is available online as a zoomable
PDF.

We take an arbitrary transition from our conventional MINT model, la-
belled with the critical event. The core data constraints are as follows (&&
denotes a logical AND and || denotes a logical OR, derived from the J48
models as described above):

(pump = false && methane <= 607.2162 && methane > 602.64009 && water > 31.69916)

||(pump = false && methane > 607.2162 && water > 74.875037)

Once augmented by Daikon, the result is:

(pump = false && methane <= 607.2162 && methane > 602.64009 && water > 31.69916)

||(pump = false && methane > 607.2162 && water > 74.875037)

[Daikon:]

(pump == false) &&

(water one of { 29.52568745646882, 44.83925073627964, 47.19036859812776 })&&

(water < methane) &&

(methane one of { 600.4670870705706, 603.2950429347378, 607.6059627141653 })

These additional constraints provide an alternative perspective on the data.
As such, it is helpful to keep the two separate. The top Weka-generated con-
straints are the general rules that fed into the inference of the transition struc-
ture. The lower Daikon invariants can give more specific descriptions of the
individual groupings of trace-observations that pertain to a particular transi-
tion. Amongst these constraints, there are relationships between variables that
may be entirely absent from the constraints inferred by WEKA, such as the
fact that (at least for this transition) the water level is always less than the
methane level.

This post-processed EFSM with Daikon constraints must be interpreted
with care. The Daikon constraints do not convey the general guards that should
be applied to the conditions (as with GK-Tails, they do not generalise beyond
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a single transition). However, they do provide at least a preliminary answer
to the question ”Why were these [WEKA] rules inferred for this transition?”,
by providing a more detailed view of the transition-specific data.

6 Experimental Evaluation

In this section we provide a experimental evaluation of the approach. The
research questions are as follows:

RQ1: Which configurations lead to accurate models?
RQ2: How does MINT scale?

(a) How large are the inferred models in terms of states and transitions?
(b) How long does model inference take?
(c) What is the relation between the number of traces and the time taken

to infer a model?

We first provide an overview of the experimental methodology, followed by
the results, and a brief discussion of the threats to validity.

6.1 Methodology

We ran the MINT algorithm on traces from three software systems (an SMTP
implementation written in Java, a resource locker and a frequency server, both
written in Erlang). For each system we generated a set of “negative” traces
as well, which would correspond to invalid executions of the system. We then
used k -folds cross validation (explained below) to derive accuracy scores for
each of the systems.

6.1.1 Systems

For this evaluation we chose five, relatively diverse systems. They were pri-
marily chosen because they are all sequential systems that rely on an internal
data-state (i.e. are suitable for modelling with EFSMs), and have been used
in previous research on either state-based modelling or testing. The details
are given below. The alphabet refers to the number of event-labels that occur
within the traces.

– Mobile Frequency Server: A server module written in Erlang, which
allocates frequencies to mobile phones that attempt to contact each other.
This is a relatively small system that has served as a case study for the
development of concurrent and distributed testing techniques, and is ex-
tensively described by Cesarini and Thompson [9].
Alphabet: 8
Nr. Traces: 100
Average trace length: 20
Average variables per event: 3
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– Resource Locker: The resource locker implements a distributed resource-
locking algorithm in Ericsson’s AXD 301 ATM switch [5].
Alphabet: 8
Nr. Traces: 100
Average trace length: 20
Average variables per event: 1.3

– java.security.Signature A Java SDK class that provides the functional-
ity of a digital signature algorithm. The traces were collected by several
executions of the Columba email client4.
Alphabet: 14
Nr. Traces: 71
Average trace length: 14.52
Average variables per event: 16.7

– java.net.Socket A Java SDK class that represents the end point of com-
munication between two machines. Traces were collected by several exe-
cutions of the Columba email client, as well as the Voldemort distributed
database5.
Alphabet: 56
Nr. Traces: 100
Average trace length: 44.18
Average variables per event: 32.17

– java.util.StringTokenizer A Java SDK utility class for tokenizing a string.
The traces (produced by Krka et al. [30]) were collected via several execu-
tions of JEdit6.
Alphabet: 14
Nr. Traces: 100
Average trace length: 33.36
Average variables per event: 14.5

The mixture of Java and Erlang systems is deliberate. As a black-box
approach, it makes sense not to restrict the evaluation to a specific platform.
The Erlang modules present a relatively restricted interface. The Java classes
on the other hand present relatively comprehensive APIs, where each trace
event is associated with an extensive set of data values.

6.1.2 Trace Collection

To collect traces for the two Erlang modules we built a random test-generation
framework. This invoked random functions, accompanied by random input
parameters, for 20 iterations. Tests that resulted in a failure for some reason
(i.e. by not adhering to the preconditions of the module) were discarded. For
RQ1 we collected 100 traces per Erlang system. However, for RQ2 we collected
larger numbers to probe scalability.

4 http://sourceforge.net/projects/columba/
5 http://www.project-voldemort.com/voldemort/
6 http://www.jedit.org/

http://sourceforge.net/projects/columba/
http://www.project-voldemort.com/voldemort/
http://www.jedit.org/
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The traces for the three Java components were kindly provided by Krka et
al.. These had been used previously for their experiments on FSM inference
[30]. The traces were provided in the Daikon format. To use them we developed
a small Daikon trace reader for our tool.

6.1.3 Synthesis of Negative Traces

To fully assess the accuracy of the inferred models (as will be elaborated
below), it is necessary to collect ‘negative’ traces; traces that are not valid or
correct examples of software behaviour. The challenge is to produce negative
traces that are not too obviously invalid. In our case, we want traces that are
invalid, but might be perceived as valid by a conventional learner that does
not account for data state.

To generate these traces we experimented with two approaches. One ap-
proach which we adopted in our initial experiments [51] involved introducing
small code changes (mutations) to the program code to change its behaviour.
The approach we have subsequently adopted for the experiments in this pa-
per involved the provision of a manually selected set of trace mutations, and
applying them to the sets of traces to yield negative traces. These approaches
are discussed in more detail below.

Generating negative traces by automated program mutation Program mutation
[26] is a technique was developed as a basis for assessing the adequacy of
test sets. Mutation testing seeds the source code of a program with small
changes (mutations), such as changing a > to a <, or changing the value of
constants. The rationale is that the test set can thus be evaluated in terms of
the proportion of mutations that it is able to expose, by providing an input that
leads to a different output than would have been produced in the non-mutated
program. In our context, a program execution that diverges in behaviour from
the behaviour observed on the non-mutated program can be deemed to be a
‘negative’ trace.

In our context we are not simply dealing with inputs and outputs. We are
dealing with sequential traces of events. Accordingly, for the purposes of our
work, we can deem a mutation to have succeeded if it changes the sequential
ordering of events in an execution.

We used this approach to generate negative traces for a preliminary study
of our work [51], using the MAJOR mutation framework [27] for Java classes,
and a custom mutation tool based on Wrangler [33] for the Erlang programs.

However, a subsequent analysis of the negative traces highlighted some
weaknesses with this approach. Firstly, a mutation could well change the exe-
cution trace of a program, but not change the order of events; variable values
might be changed, but not in such a way that the sequential orderings of events
were affected. On the other hand, mutations could be triggered that changed
the sequencing of events in such an obvious way that they failed to properly
probe the ability of MINT to infer some of the more subtle data-related event
sequences. Finally, there was the problem that this hampered our reuse of the
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traces from Krka et al.’s studies [30] (the three Java systems listed above).
Although the traces were available, the exact inputs used to extract them
(necessary to collect the mutated traces) were not.

Generating negative traces with hand-picked mutations In the light of the
weaknesses mentioned above, we opted to develop an alternative, more reliable
approach to negative trace generation. Instead of relying on quasi-random mu-
tations of the program code, we generated customised mutations that could
be (automatically) applied directly to the given set of positive traces, which
would yield traces that were guaranteed to be negative.

For each system, we identify a set of rules that characterise sequences of
events that cannot happen. For example, having inspected the implementation
of a Stack data structure, we might produce a property stating that if a stack
is empty and a pop is called, the next event cannot be another pop or a
push (because we know it has to be an exception). Having identified a set of
such rules, we process the set of positive traces to find the points at which
the preconditions of these rules are met. The prefix of these points is used to
formulate a new trace, and the invalid suffix is added to produce a trace that
is guaranteed to be invalid.

This approach can give rise to some threats to validity however. These have
been discussed in full in Section 6.3.

6.1.4 k-Folds Cross Validation

EFSM inference techniques are intrinsically difficult to evaluate. Current ap-
proaches are “model-based”, in the sense that they rely upon some reference
model that can be used as a basis for computing accuracy [34, 35, 13, 45].
This requirement for hand-crafted models can however be restrictive in terms
of the size and complexity of the model against which a technique can be eval-
uated. Whereas (deterministic) FSMs always have a unique canonical minimal
state-machine, this is not necessarily the case for EFSMs, where variations in
data-guard conditions can lead to a multitude of structurally different (albeit
functionally equivalent) models.

In machine learning it is typically the case that there are no gold-standard
reference models. One of the most popular evaluation techniques that can be
used in such a situation (which we adopt for this study) is a technique known
as k-folds cross validation [28]. Here, the simplifying assumption is made that
the given set of examples (test cases in our case) collectively exercise the full
range of behaviour from which we are inferring a model. The set is randomly
partitioned into k non-overlapping sets. Over k iterations, all bar one of the sets
are used to infer a model, and the remaining set is used to evaluate the model
according to some metric (discussed below). For each iteration a different set
is used for the evaluation. The final accuracy score is taken as the average of
the k accuracy scores.

Of course, given the probability that test sets are not “rich enough”, the
accuracy score cannot be interpreted as an absolute score of the accuracy of
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the model with respect to the system in question. As with all dynamic analysis
techniques, an incomplete test set will yield an incomplete model [13]. However,
it can be used in our experimental setting to compare the relative performance
of different model inference configurations (this has previously been carried out
by Lo et al. [37]). If we go further and accept that the test set represents a
reasonable sample of typical program behaviour, then the resulting scores can
be interpreted as being at least indicative of the actual accuracy score.

6.1.5 Measuring Accuracy

The use of k -folds Cross Validation involves the key step by which a set of
traces (that was not used to infer the model) is used to assess its accuracy.
Essentially, each trace is compared to the model, to determine whether the
two are ‘in agreement’ (i.e. that the model correctly accepts positive traces
and correctly rejects negative traces).

There are several measures by which to assess the extent of agreement
between a set of traces and a model. Basically, the set of traces classified
by the model (to determine whether it accepts them as positive or rejects
them as negative), and from this we end up with four numbers: The number
of True Positives (TP), True Negatives (TN), False Positives (FP) and False
Negatives (FN). From these numbers it is possible to calculate various ‘Binary
Classification Measures’ [41].

In line with previous research on state machine inference [14, 48, 50, 45],
we choose Sensitivity (also known as the True-Positive Rate) and Specificity
(or True-Negative Rate). In terms of TP, TN, FP, and FN, these are computed
as follows:

Sensitivity =
TP

TP + FP

Specificity =
TN

TN + FP

Sensitivity is also known as ‘Recall’. We chose Specificity instead of Pre-
cision (which is usually paired with Recall) because Precision does not take
True Negatives into account. In our case, we consider the ability of a model
to correctly reject negative traces to be just as important as the ability to
correctly accept positive ones.

Finally, the two measures (Sensitivity and Specificity) can be summarised
as the ‘Binary Classification Rate’ or BCR, which is computed as the average
of the two:

BCR =
Sensitivity + Specificity

2
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6.1.6 Assessing Scalability

To assess scalability, we used the set of traces from our Resource Locker system,
for which we were able to collect a large number of test executions. We executed
MINT for increasing numbers of traces (increasing by 25 at each iteration),
and tracked the number of milliseconds required to infer the final result. For
each trace set we ran MINT with different data classifier algorithms, to identify
any performance penalties that might be attached to particular algorithms.

6.1.7 Controlled Variables

MINT is parameterised by the choice of data classifier algorithm and the mini-
mum score from which to merge a pair of states (k). To account for the impact
of these factors on accuracy, we ran separate experiments for values of k from
0 to 4, and for each k we inferred models using four of the most popular clas-
sifier algorithms in WEKA [22] (using the default WEKA settings for each
algorithm). The algorithms were selected to fit a broad range of numerical or
discrete systems, and are: C4.5 [40] (listed as J48), Naive-Bayes [39], AdaBoost
[19], JRIP (also known as RIPPER).

For each system this resulted in 20 configurations. Since we were using five-
folds for the cross validation (five models were inferred per configuration), this
meant that 100 models were inferred per system (so 500 models in total).

Each model inference was given a time limit of 10 minutes. If the timeout
was hit, the resulting accuracy scores were recorded as an NA. If all of the
attempts to infer a model for a k -folds cross validation timed out, the result
was also recorded as an NA (to differentiate from an inaccurate model with a
score of zero).

6.2 Results

RQ1: Which configurations lead to accurate models?

The full results can be found in Appendix B. There were 10 configurations for
which the model inference timed out, all of which are for the Socket class (the
reasons for the timeout will be discussed below).

The accuracy for all the configurations is shown in Figure 7. Specificity is
plotted along the x axis, and Sensitivity is plotted on y . In summary – co-
ordinates that appear in the top-right hand area are successful. Co-ordinates
that appear in the top-left area tend to have been under-generalised (not
enough states were merged). The converse applies to co-ordinates that appear
in the bottom-right area; they have been over-generalised (too many states
have been merged). The most successful configurations, along with their cor-
responding BCR values, are summarised in Table 1.
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ticular subject system, and each column represents a data-classifier algorithm.
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Table 1 Configurations for each system, where both sensitivity and specificity were ≥ 0.6.
Ordered first by system, and then by BCR.

System Algorithm k Sensitivity Specificity BCR Time (ms)
Resource Locker JRIP 1 0.70 1.00 0.85 28642.00
Frequency Server J48 1 0.66 0.99 0.82 9444.00
Frequency Server AdaBoost 1 0.61 0.99 0.80 12879.00
Signature AdaBoost 2 0.98 0.84 0.91 1551.00
Signature NaiveBayes 4 0.90 0.84 0.87 1519.00
Signature JRIP 4 0.98 0.64 0.81 1530.00
Signature AdaBoost 3 0.98 0.60 0.79 1514.00
Signature JRIP 3 0.98 0.60 0.79 1532.00
Signature NaiveBayes 2 0.90 0.68 0.79 1581.00
Signature J48 1 0.94 0.60 0.77 1684.00
Signature JRIP 1 0.94 0.60 0.77 1527.00
Signature J48 2 0.94 0.60 0.77 1690.00
Signature J48 3 0.94 0.60 0.77 1764.00
Signature J48 4 0.94 0.60 0.77 1700.00
Signature NaiveBayes 1 0.86 0.60 0.73 1525.00
StringTokenizer AdaBoost 4 0.95 1.00 0.97 15409.00
StringTokenizer AdaBoost 3 0.95 0.86 0.91 18700.00
StringTokenizer JRIP 3 0.95 0.80 0.88 21625.00
StringTokenizer NaiveBayes 2 0.90 0.83 0.86 32104.00
StringTokenizer J48 2 0.95 0.74 0.84 7283.00
StringTokenizer J48 3 0.95 0.74 0.84 12973.00
StringTokenizer J48 4 0.95 0.71 0.83 14339.00
StringTokenizer NaiveBayes 1 0.95 0.69 0.82 20559.00
StringTokenizer J48 1 0.95 0.65 0.80 6987.00
StringTokenizer JRIP 2 0.95 0.65 0.80 8487.00
StringTokenizer AdaBoost 1 0.95 0.61 0.78 8196.00
Socket AdaBoost 0 0.68 0.98 0.83 267084.00
Socket J48 0 0.71 0.88 0.80 259888.00
Socket JRIP 0 0.76 0.74 0.75 199268.00

Choice of classifier The rôle of the classifier in determining the accuracy of
the final model varies from system to system. For Resource Locker, Frequency
Server and Socket, the plots look relatively similar across the rows; the choice
of data classifier has little impact on accuracy. However, Signature and String-
Tokenizer the situation is different. In both systems all configurations achieve
a high degree of Sensitivity. However, for a given value k , one classifier can
result in a very low Specificity, whereas others can result in a high all-round
accuracy score.

As shown in the full table of results in Appendix B, there was no single
data classifier algorithm that outperformed the others for all systems. Each
data classifier performed well for certain systems. The best overall performer
was the AdaBoost algorithm, the only algorithm to belong to one of the top
three configurations for each of the systems (the top configuration for three of
the systems).

Choice of k As with the classifier, the value of k required to obtain the best
results varies from system to system. For the two Erlang systems, k = 1
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was the best choice. However for the other systems this varied, and was also
dependent upon the choice of data classifier.

This is especially clear in Figure 7, with respect to the StringTokenizer
class. For the AdaBoost configuration, a choice of k = 4 produced almost
perfect results (BCR=0.97), whereas for the same system and value of k , the
NaiveBayes classifier resulted in a BCR of just 0.62.

Looking across the full set of results (in Appendix B), there are some
systems for which a lower value of k was better (1 or 2), and some for which a
higher value (3 or 4) produced the best results. The Erlang systems7 produced
the best results for low values of k , whereas Signature and StringTokenizer
produced the best values for higher values.

One probable explanation for this lies in the manner in which the systems in
question were executed. The Erlang systems were executed by a random tester;
their functions were attempted in arbitrary patterns. The Java systems on the
other hand were traced in-situ, where client programs exercised their methods
in relatively specific sequences. With the Erlang systems, the consequence
would have been that it would be harder to distinguish a pair of states by
their suffixes, whereas with the Java systems the suffixes for specific states
would be more distinct. For systems in the latter category, a higher value of
k ought to lead to better merges.

Conclusions Ultimately, the choice of configuration is critical to the accuracy
of the final result. However, there is no single ideal choice of data classifier, or
a single ideal choice of k . This depends, to a large extent, on the characteristics
of the target system, and the manner in which it is invoked. This ultimately
supports our requirement for flexibility outlined in Section 3.3. The ability to
select from a variety of data classifier inference algorithms is crucial because
there is no such thing as an algorithm that will return appropriate models for
arbitrary systems (as characterised by Wolpert’s ‘no free lunch’ theorem [53]).

RQ2 (a):How large are the inferred models in terms of states and transitions?

To investigate the sizes of the inferred models, we consider the results of the
experiment used to answer RQ1. The sizes of the models in terms of states
and transitions are shown in Figure 8. Given the substantial differences in sizes
between systems, the scales are varied per-system and per-classifier algorithm.

As might be expected, the sizes of the models, both in terms of states
and transitions, vary substantially from one system to the next. Signature
tends to produce the smallest models (in the region of 1-40 states and 20-
40 transitions). Socket is on the other end of the scale (140-2000 states and
1300-1600 transitions).

However, across all of the systems, increasing the value of k tends lead to
notable increases in size. For all systems k = 0 yields the smallest systems,

7 Socket timed out for higher values of k , and is therefore not included in this particular
aspect of the discussion.
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and k = 4 produces the largest ones. This is especially pronounced in the two
Erlang systems. For Resource Locker, when k = 0 the models have approxi-
mately 50 states and 400 transitions. When k = 4, the models for Naive Bayes
have approximately 920 states and 990 transitions.

Conclusions The size of an inferred model can vary drastically, depending on
the characteristics of the underlying system. Another key factor is the value
of k . As shown in the answer to RQ1, a high value of k can for some systems
(though certainly not all) lead to more accurate results. However, the flip-side
is that the models tend to be much larger.

RQ2 (b): How long does model inference take?

To investigate the amount of time required to infer the models, we again
consider the experiment used to answer RQ1, and look at the time taken for
each configuration. The times are plotted in Figure 9.

This shows again that, for each system and configuration, the times can
vary substantially. For Frequency Server inference could take from approxi-
mately 1000-5000 miliseconds (under a minute). However, for Socket, times
could range from 178301 miliseconds (3 minutes) to over 10 minutes (when it
timed out).

As far as the choice of classifier algorithm is concerned, the performance is
similar for AdaBoost, J48, and JRIP. However, there is a substantial increase in
time required for NaiveBayes. From a follow-up analysis, we have determined
that this difference is not in fact caused by the initial inference of the Naive
Bayes classifier (which happens only once at the beginning). Instead, it comes
down to the fact that the resulting model takes longer to query than the other
types of model. Given that the inferred models are used extensively during
inference, such a difference can have a disproportionate effect on the inference
time of the EFSM.

For most of the configurations, an increase in the value of k can also lead
to longer inference times. This can be explained by the size of the resulting
models. If the models are small, it tends to take less time to find a pair of
matching states. However, when k is large, the model contains more states
and transitions, and it takes longer to find suitable merge candidates.

The Socket case study merits a degree of elaboration here. For higher values
of k , the inference times would increase substantially regardless of classifier.
However, for NaiveBayes, all inference efforts timed out. Socket traces are
especially “rich” when compared to the other systems; they have an alphabet of
56 different events (four times as many as the Signature and StringTokenizer),
and an average of 32 variable values per event (twice as many as Signature).
The high number of events, coupled with a high k score, explains the large
models (meaning that it takes longer to find and execute merges). On top of
this, large numbers of variables can lead to very high overheads when fed to
models produced by learners such as Naive Bayes.
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Conclusions The amount of time taken to infer a model can vary substantially
from one system to the next. Again, the choice of classifier inference algorithm
and k are instrumental.

RQ2 (c): What is the relation between the number of traces and the time taken
to infer a model?

Figure 10 shows, for the two Erlang systems, the relationship between the
number of traces and the amount of time taken to infer a model. The timing is
plotted for sets of traces that vary in size, starting at 25 traces, and increasing
to 500 by increments of 25.

Whereas an increase in traces has very little impact on the time taken
for Frequency Server, it has a substantial impact for Resource Locker. This is
especially the case as k increases, and particularly for configurations with the
Naive Bayes learner.

The effect of k has been discussed previously, and is straightforward to
explain. A higher k tends to produce larger models. These have more states
(and thus more candidates for potential merges), and consequently take longer
to process by the state merging algorithm. However, this does not explain the
difference in timing between the two systems, where k is the same.

The reason lies in the inferred classifiers. The data models inferred for the
Locker system prevent more states from being merged than in the Frequency
Server. This leads in itself to larger state machines, which in turn take longer
to process. For k = 0 the average number of states for the Frequency Server
is 37.75, whereas the average for Resource Locker is 53. This difference grows
as k increases, leading to ever widening differences in time taken.
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Conclusions Of course, the amount of time required to infer a model increases
as the number of traces increases. The degree of this increase depends on two
main factors. Additional traces do not necessarily lead to a substantial increase
in the number of states and transitions in the prefix tree, because they might
repeat patterns of events that are already there. They do however always add
additional data variables. These add to the data that has to be analysed by
the data classifiers. This is why the choice of data classifier can have such
a marked effect on performance. Configurations that include classifiers that
produce models that are time-consuming to process (such as Naive Bayes)
tend to fare especially badly as the volume of data increases.

6.3 Threats to Validity

This is a preliminary experimental evaluation. The selection of systems is
small. This is a clear threat to external validity, in the sense that the ac-
curacy and scalability results cannot be interpreted to be representative of
performance with respect to all software systems.

The threat has been somewhat mitigated by selecting systems and sets of
traces that are reasonably diverse in nature. They differ extensively in terms
of their alphabet size, the numbers of data parameters, and the trace lengths.
Nonetheless, the experiments deliberately avoid drawing any general conclu-
sions about performance and accuracy, but instead focus on the underlying
factors that affect performance and accuracy.

A further threat to external validity lies in the configuration of the WEKA
classifiers. Each classifier has its own (often extensive) set of configuration
options. We simply chose the default configuration options in WEKA for each
classifier. The benefit of this is that it avoids the internal threat to validity of
biasing results in our favour. However, it does open up the external threat that
this specific configuration is unsuitable and misrepresents the performance of
MINT with respect to that particular classifier.

There exist two threats to construct validity. The negative traces have been
synthesised by manually identifying specific states that should not precede
specific events. There is the risk that these were in fact mistaken (that the
resulting traces are valid after all). To mitigate this, we inspected the source
code for all of the systems to ensure that the preconditions were correct.

There is also the risk that these mutations are too specific. This has to be
traded off against the fact that, if we were to allow arbitrary negative traces,
that many would be so trivially obvious that they would not properly assess
the learner. To mitigate this threat, we ensured that, for any negative property,
the number of corresponding negative traces would be as diverse as possible.
This was achieved by only specifying the essential variable values for a given
property (maximising the number of times it could be identified in the set of
positive traces), and providing as many impossible suffixes as possible.



38 Neil Walkinshaw et al.

6.4 Discussion

The two evaluation sections have shown that MINT is capable of inferring mod-
els that can approximately summarise and accurately predict the behaviour
given by a set of traces. The word ‘approximately’ has to be emphasised here.
As is the case with any tractable Machine Learning technique, there is an
inevitable degree of error [44]. In this section we briefly discuss the possible
sources for this inaccuracy.

Trace abstraction The approach is based on the premise that it is possible to
extract a trace from a system, where each trace event is accompanied by a
fixed number of variables, where each variable is of a fixed type. Whereas this
is reasonably straightforward for Java systems and the Erlang systems used in
our case studies, there are classes of system for which obtaining such a trace
can be difficult. As an example, for the PoolBoy system used in our initial
evaluation [51], the variables are recorded as Strings, but actually correspond
to nested lists or fixed tuples of process identifiers. To enable the inference of
models from such systems, it is invariably necessary to re-code the traces to a
more suitable abstraction (as discussed in Section 2.1.1).

Data classifiers Given that the approach is a fusion of two complementary
Machine Learning techniques (data classifier inference and state merging),
these are the two most obvious sources of inaccuracy. As discussed in Section
3.2.1, an inappropriate data classifier might predict the wrong follow-on events
for a given data configuration, which can lead to state merges being incorrectly
accepted or rejected.

The ability to infer accurate data classifiers does not only rely on the
selection of suitable inference algorithms, but also depends on the availability
of the necessary data. If a decision depends on the value of a specific variable,
then it must be made available for inference. This however has to be balanced
with the additional problem that, given too many variables, it becomes much
harder to identify those relationships between variables and subsequent events
that are relevant (known as the feature identification problem).

State merging algorithm Aside from the choice of classifier, the choice of state
merging algorithm is a further possible source of inaccuracy. The challenge
of merging pairs of states to iteratively yield a state machine is discussed at
length in Section 3.1. Although the EDSM algorithm we have chosen tends
to select suitable pairs of states, it remains vulnerable to merging pairs of
states that should in fact be kept separate [50], and ruling out better merges
in doing so. This can lead to models that represent sequences of events that
are infeasible in reality.

What is the ideal scenario? The above limitations beg the following question:
What would be the characteristics of a system for which the EFSM inference
would excel? From a data point of view (in light of the problems discussed
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above), a system (or trace thereof) would contain only variables that have a
direct bearing on the subsequent behaviour, and the number of these variables
would ideally be low for each event. From a state-merging point of view, the
number of elements that could possibly succeed a given event should ideally be
low (to prevent false merges), however all of these possible sequencings should
be represented in the set of traces.

7 Related Work

As discussed in Section 2, the challenge of inferring state machines from traces
has existed for over 40 years. In the context of software-engineering, the bulk
of this work has focussed on conventional Finite State Machines [2, 12, 32, 50,
6, 31]. Within the Machine Learning field of Grammar Inference, there have
been extensive efforts to infer much broader families of ‘automata’ (albeit
characterised as languages or grammars) [16].

The challenge, however, of inferring EFSMs from traces that are anno-
tated with data has only been addressed in earnest over the past decade. Our
work builds upon the early work by Lorenzoli et al. [38] (as presented in the
background section). This approach, along with Dallmeier et al.’s ADABU
approach are detailed in Section 3.3. However, there have been several other
efforts, which are discussed in more detail in the rest of this section.

Active inference of (data-)state based models State merging algorithms make
the assumption that there is no external source of information besides the set
of traces. However, in several Software Engineering settings, this presumption
might be restrictive. There could be other sources of information that could
be queried, to enable the gradual refinement and improvement of a model.

There are two current approaches to infer state machines with data. Howar
et al.’s approach is an extension of Angluin’s L∗ algorithm [4], and is built into
the LearnLib tool [25]. Aarts et al.’s approach [1] is built upon the notion of
Counter Example Guided Abstraction Refinement [11].

The reliance upon an oracle limits the size and complexity of the models
that can (at least accurately) be inferred by these approaches. If (as is often
assumed) the goal is to infer a model that is exactly correct, this can require
an extensive amount of additional input from the oracle (in the form of queries
and counter-examples), even for models that are very small by comparison to
the models used in this work.

Of course, the upside is that these techniques can offer very strong guar-
antees about the accuracy of the models that have been inferred. Whereas
our approach can offer approximate (albeit we would argue reasonable) argu-
ments about accuracy, these approaches can leverage the existence of an oracle
to make much stronger guarantees.

In our ongoing work we are interested to explore the extension of our ap-
proach to an active variant. This will seek to build upon our previous work
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(based on conventional FSMs) [46], investigating the use of active state merg-
ing algorithms (the QSM algorithm [14]) for tasks such as software testing
[48].

Combining LSC inference with invariants Lo and Maoz [35] developed an
approach that infers Live Sequence Charts (LSCs) [15], which are augmented
with invariants. The approach operates by first mining the Live Sequence
Charts (by observing those interactions that occur frequently). Once an LSC
has been inferred, it is augmented by extracting those parts of the traces that
correspond to the relevant elements in the LSC, and using Daikon to provide
the invariants.

There are several parallels with our approach. Both approaches are marry-
ing sequential models (albeit different ones) with data. In both cases, elements
of the state-based model are linked to the original trace elements. The key dif-
ference lies in the way the data models are used. In this paper, the data models
are not decorating the sequential model in a post-hoc step; they are used to
shape the sequential model as it is being inferred.

Combining state machine inference with data constraints Recently, Krka et
al. [30] have built on the work by Lorenzoli et al. to build state machines
that are augmented with data constraints. Both approaches examine the data
constraints that are linked to the outgoing transitions from pairs of states to
determine compatibility. However, Krka et al.’s SEKT algorithm makes use
of an additional set of Daikon predicates that represent the ‘global’ program
state. Thus, a pair of states can only be merged if (a) the data values on the
transitions are compatible and (b) the data values correspond to the same
global state.

Krka et al.’s idea of inferring a set of ‘global’ rules that pertain to the full
set of program traces is very similar to what happens in our approach. We infer
all of the data models at once, in advance of program inference. However, the
nature and purpose of the models inferred in this approach is flexible in our
approach (we can incorporate any data classifier inference technique). Also,
the purpose of the models is different too; they are not intended to summarise
the underlying data state of the system, but denote the rules that link the
data state to the events that can follow.

Evaluation of sequential models by k-folds cross validation This work has
adopted a technique known as k−folds cross validation to evaluate the ac-
curacy of the inferred models. This approach has been carried out before by
Lo et al. [36], in their work on detecting sequential failure patterns. They de-
veloped an approach to detect sequences of events that indicate a program
failure at runtime.

Although the main relation to this work lies in their use of k−folds cross
validation, we are especially interested in applying our EFSM inference ap-
proach to the problem of online failure detection in our future work.
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8 Conclusions and Future Work

This paper has introduced a new algorithm for the inference of EFSMs. It
enables the combination of established state-merging techniques with arbitrary
data classifier inference algorithms, to infer models that more fully capture the
behaviour of a software system. The approach does not rely on source code
analysis, and has accordingly been demonstrated with respect to three systems
written in entirely different programming languages and paradigms.

One of the contributions of the paper is a novel evaluation methodology
that does not rely on the prior existence of hand-crafted models. This com-
bines the k -folds cross validation method with program mutation (which is
used to identify “negative” examples). Our preliminary results from the ex-
periments indicate that the algorithm is capable of returning accurate models
if it uses suitable data classifiers. This latter point is especially important,
and supports one of the key motivations for this work; there is no single com-
bination of learners that will perform uniformly well for arbitrary software
systems. The algorithm presented here offers the flexibility to incorporate dif-
ferent data classifier algorithms, depending on the characteristics of the data.
In the immediate future we will carry out a more extensive, systematic eval-
uation on a larger number of diverse systems, to gain more reliable insights
into the performance and accuracy of the approach.

Alongside the work on further evaluation, we intend to use the models to
build upon our early research on combining model inference with test gen-
eration. So far, this has concentrated solely on simple finite state machines
[48, 49, 42] and data classifiers [18]. It is envisaged that the ability to incorpo-
rate these richer models will lead the the ability to produce more more rigorous
test sets.

We are also investigating the application of EFSM inference to areas be-
yond software engineering. One particular area of interest is the problem of
interactive theorem proving. Here, the challenge is to achieve a mathematical
proof by providing an interactive theorem prover with the requisite proof-steps.
We have so far used MINT to show how the sequences of steps required to
achieve a proof can be inferred as EFSMs [21], and are currently investigating
the application of these models to automated proof generation.

Finally, there remains the fact that the EFSMs inferred here (and by other
techniques) are missing an important component. Although they produce state
machines with guards, they are missing the actual data functions that trans-
form the data state at each transition. Although this has been the subject of
previous work by the authors [47], the technique proposed at the time relied
on source code analysis. Our future work will investigate alternative dynamic
analysis techniques that do not require source code (and are not restricted to
specific languages), by exploring the use of techniques such as Genetic Pro-
gramming.
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A Mine Pump Model Inferred by GK-Tails
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B Full results

trace algorithm k sensitivity specificity bcr ms
Resource Locker JRIP 1 0.70 1.00 0.85 28642.00
Resource Locker J48 1 0.50 0.99 0.74 36476.00
Resource Locker AdaBoost 1 0.50 0.98 0.74 36180.00
Resource Locker NaiveBayes 1 0.46 0.96 0.71 151069.00
Resource Locker NaiveBayes 0 0.98 0.34 0.66 46492.00
Resource Locker J48 0 0.93 0.35 0.64 30217.00
Resource Locker JRIP 2 0.29 0.99 0.64 71856.00
Resource Locker AdaBoost 0 0.93 0.33 0.63 28736.00
Resource Locker JRIP 0 0.90 0.33 0.61 15661.00
Resource Locker AdaBoost 2 0.22 0.99 0.60 61785.00
Resource Locker J48 2 0.22 0.98 0.60 54366.00
Resource Locker JRIP 3 0.19 1.00 0.59 76672.00
Resource Locker NaiveBayes 2 0.18 0.98 0.58 106361.00
Resource Locker J48 3 0.13 0.98 0.56 77860.00
Resource Locker AdaBoost 3 0.13 0.98 0.56 80325.00
Resource Locker NaiveBayes 3 0.06 1.00 0.53 149695.00
Resource Locker JRIP 4 0.06 1.00 0.53 96625.00
Resource Locker J48 4 0.03 1.00 0.52 113671.00
Resource Locker AdaBoost 4 0.03 1.00 0.52 113167.00
Resource Locker NaiveBayes 4 0.00 1.00 0.50 120488.00
Frequency Server J48 1 0.66 0.99 0.82 9444.00
Frequency Server AdaBoost 1 0.61 0.99 0.80 12879.00
Frequency Server NaiveBayes 1 0.59 0.95 0.77 30589.00
Frequency Server JRIP 1 0.55 0.98 0.77 8063.00
Frequency Server AdaBoost 0 0.97 0.54 0.76 12439.00
Frequency Server JRIP 0 1.00 0.50 0.75 7140.00
Frequency Server NaiveBayes 2 0.51 0.88 0.69 44087.00
Frequency Server AdaBoost 2 0.37 0.98 0.68 18068.00
Frequency Server J48 0 0.97 0.36 0.67 9457.00
Frequency Server NaiveBayes 0 0.98 0.35 0.67 28865.00
Frequency Server J48 2 0.35 0.94 0.65 11490.00
Frequency Server JRIP 2 0.29 1.00 0.65 15447.00
Frequency Server NaiveBayes 3 0.34 0.93 0.64 39233.00
Frequency Server AdaBoost 4 0.22 1.00 0.61 19682.00
Frequency Server AdaBoost 3 0.25 0.96 0.60 16063.00
Frequency Server J48 3 0.22 0.98 0.60 10868.00
Frequency Server JRIP 3 0.19 0.99 0.59 14448.00
Frequency Server J48 4 0.17 0.99 0.58 14573.00
Frequency Server JRIP 4 0.13 1.00 0.56 21380.00
Frequency Server NaiveBayes 4 0.20 0.89 0.55 51148.00
Signature AdaBoost 2 0.98 0.84 0.91 1551.00
Signature NaiveBayes 4 0.90 0.84 0.87 1519.00
Signature JRIP 4 0.98 0.64 0.81 1530.00
Signature AdaBoost 3 0.98 0.60 0.79 1514.00
Signature JRIP 3 0.98 0.60 0.79 1532.00
Signature NaiveBayes 2 0.90 0.68 0.79 1581.00
Signature J48 1 0.94 0.60 0.77 1684.00
Signature JRIP 1 0.94 0.60 0.77 1527.00
Signature J48 2 0.94 0.60 0.77 1690.00
Signature J48 3 0.94 0.60 0.77 1764.00
Signature J48 4 0.94 0.60 0.77 1700.00
Signature NaiveBayes 1 0.86 0.60 0.73 1525.00
Signature NaiveBayes 3 0.90 0.56 0.73 1520.00
Signature JRIP 2 0.98 0.40 0.69 1555.00
Signature AdaBoost 1 0.98 0.36 0.67 1518.00
Signature AdaBoost 4 0.98 0.36 0.67 1518.00
Signature J48 0 1.00 0.00 0.50 1748.00
Signature AdaBoost 0 1.00 0.00 0.50 1515.00
Signature JRIP 0 1.00 0.00 0.50 1465.00
Signature NaiveBayes 0 1.00 0.00 0.50 1619.00
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trace algorithm k sensitivity specificity bcr ms
StringTokenizer AdaBoost 4 0.95 1.00 0.97 15409.00
StringTokenizer AdaBoost 3 0.95 0.86 0.91 18700.00
StringTokenizer JRIP 3 0.95 0.80 0.88 21625.00
StringTokenizer NaiveBayes 2 0.90 0.83 0.86 32104.00
StringTokenizer J48 2 0.95 0.74 0.84 7283.00
StringTokenizer J48 3 0.95 0.74 0.84 12973.00
StringTokenizer J48 4 0.95 0.71 0.83 14339.00
StringTokenizer NaiveBayes 1 0.95 0.69 0.82 20559.00
StringTokenizer J48 1 0.95 0.65 0.80 6987.00
StringTokenizer JRIP 2 0.95 0.65 0.80 8487.00
StringTokenizer AdaBoost 1 0.95 0.61 0.78 8196.00
StringTokenizer JRIP 1 0.95 0.55 0.75 7694.00
StringTokenizer AdaBoost 2 0.95 0.52 0.73 9870.00
StringTokenizer NaiveBayes 3 0.95 0.42 0.68 63393.00
StringTokenizer JRIP 4 0.95 0.38 0.67 13519.00
StringTokenizer NaiveBayes 4 0.90 0.35 0.62 59698.00
StringTokenizer JRIP 0 1.00 0.02 0.51 852.00
StringTokenizer J48 0 1.00 0.00 0.50 1006.00
StringTokenizer AdaBoost 0 1.00 0.00 0.50 1215.00
StringTokenizer NaiveBayes 0 1.00 0.00 0.50 3050.00
Socket AdaBoost 0 0.68 0.98 0.83 267084.00
Socket J48 0 0.71 0.88 0.80 259888.00
Socket JRIP 0 0.76 0.74 0.75 199268.00
Socket JRIP 2 0.53 0.97 0.75 331734.00
Socket AdaBoost 1 0.45 1.00 0.72 409624.00
Socket J48 3 0.45 1.00 0.72 544547.00
Socket J48 1 0.45 0.95 0.70 178301.00
Socket J48 2 0.45 0.95 0.70 249693.00
Socket AdaBoost 2 0.45 0.95 0.70 310713.00
Socket JRIP 1 0.45 0.85 0.65 300986.00
Socket NaiveBayes 0 NA NA NA NA
Socket NaiveBayes 1 NA NA NA NA
Socket NaiveBayes 2 NA NA NA NA
Socket AdaBoost 3 NA NA NA NA
Socket JRIP 3 NA NA NA NA
Socket NaiveBayes 3 NA NA NA NA
Socket J48 4 NA NA NA NA
Socket AdaBoost 4 NA NA NA NA
Socket JRIP 4 NA NA NA NA
Socket NaiveBayes 4 NA NA NA NA
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