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RESEARCH ARTICLE Open Access

Phylogenetic analyses suggest that
diversification and body size evolution are
independent in insects
James L. Rainford1, Michael Hofreiter2 and Peter J. Mayhew1*

Abstract

Background: Skewed body size distributions and the high relative richness of small-bodied taxa are a fundamental
property of a wide range of animal clades. The evolutionary processes responsible for generating these distributions
are well described in vertebrate model systems but have yet to be explored in detail for other major terrestrial
clades. In this study, we explore the macro-evolutionary patterns of body size variation across families of Hexapoda
(insects and their close relatives), using recent advances in phylogenetic understanding, with an aim to investigate
the link between size and diversity within this ancient and highly diverse lineage.

Results: The maximum, minimum and mean-log body lengths of hexapod families are all approximately log-normally
distributed, consistent with previous studies at lower taxonomic levels, and contrasting with skewed distributions
typical of vertebrate groups. After taking phylogeny and within-tip variation into account, we find no evidence for a
negative relationship between diversification rate and body size, suggesting decoupling of the forces controlling these
two traits. Likelihood-based modeling of the log-mean body size identifies distinct processes operating within
Holometabola and Diptera compared with other hexapod groups, consistent with accelerating rates of size evolution
within these clades, while as a whole, hexapod body size evolution is found to be dominated by neutral processes
including significant phylogenetic conservatism.

Conclusions: Based on our findings we suggest that the use of models derived from well-studied but atypical clades,
such as vertebrates may lead to misleading conclusions when applied to other major terrestrial lineages. Our results
indicate that within hexapods, and within the limits of current systematic and phylogenetic knowledge, insect
diversification is generally unfettered by size-biased macro-evolutionary processes, and that these processes over large
timescales tend to converge on apparently neutral evolutionary processes. We also identify limitations on available
data within the clade and modeling approaches for the resolution of trees of higher taxa, the resolution of which may
collectively enhance our understanding of this key component of terrestrial ecosystems.
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Background
One of the most prevalent patterns observed in natural sys-

tems is the overrepresentation of small-bodied taxa [1]. The

observation of right skew in body size distributions, follow-

ing transformation to the log scale, has been made for a

variety of vertebrate clades [2–4] and provides the basis for

a variety of size-selective diversification mechanisms that

have been previously proposed as general models for the

macroevolution of animals (reviewed in [1, 4]). Despite

widespread interest in these patterns, comparatively little

effort has been spent in examining whether such relation-

ships are truly universal and there is limited evidence for

their presence across major non-vertebrate lineages [5–7].

In this study, we explore the relationship between species

richness and body size, and the universality of size biased

diversification, in one of the largest terrestrial invertebrate

clades, the six-legged arthropods or Hexapoda.

Interest in body size distributions relates to the im-

portance of size in impacting on an organism’s ecology

and thus potential evolution and diversification. Body
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size determines the scale of an organism’s interactions

within the fractal structure of natural environments

[8, 9], the relative strength of gravitational (i.e. body

weight) vs. viscous and inertial forces [10] and, via

surface area to volume ratios and the scaling of

exchange networks, controls the rates of metabolic

processes such as temperature response [11] and gas

diffusion [12]. As a consequence, body size impacts on

almost every major life history trait including: growth,

parental investment, range size, dispersal and degree

of host specificity (see [13–15], and references therein,

for reviews of Hexapoda).

Based on these observations a number of size-dependent

mechanisms linked to clade diversification have been pro-

posed (reviewed in [3, 4]). These include; hard limits on

minimum size, which restrict random character change

[16], energetic models emphasizing the relative efficiency of

small body sizes in the production of offspring [11, 17], and

fractal environmental models, exploring the capacity for

small-bodied taxa to more finely subdivide a given environ-

mental landscape [8]. The relationship of these processes to

macro-evolutionary diversification remains incompletely

understood including, for example, the relative contribu-

tions of size-biased cladogenesis (i.e. small taxa being more

prone to speciation) [2], directional bias in size evolution

within lineages; e.g. “Copes rule” [18], and size-biased

extinction [19], on the generation of observed size distribu-

tions. Testing the predictions of these models, e.g. the pres-

ence of a relationship between clade richness and body size,

as well as more generally exploring the processes that may

underlie size evolution, requires that we extend our per-

spectives to encompass other major lineages that may show

differences from our vertebrate model systems [20].

The extreme species richness of hexapod clades, which

collectively account for over half of all described species,

is one of the most well-known features of terrestrial

biomes [21]. Hexapoda are also morphologically diverse,

including body lengths ranging over four orders of magni-

tude, comparable with the range of well-studied mammal

and bird radiations [13]. The longest known hexapods are

females of the phasmid (stick-insect) Phobaeticus chani

with specimens up to 357 mm long in body length. By

contrast, the smallest recognized adult insect, the male of

the mymarid wasp Dicopomorpha echmepterygis has a

total body length of merely 139 μm (or 0.139 mm) [13]

(see [22] for further examples of extreme miniaturization

in hexapods). Evidence to suggest that processes in hexa-

pod size evolution may be distinct from larger vertebrate

groups includes taxonomic compilations (e.g. [23]),

regional faunal data (e.g. [24, 25]) and broad-scale contin-

ental surveys [26], all of which suggest that compared with

vertebrates hexapods exhibit relatively little right skew in

the distribution of log body size [13, 15]. Likewise, where

formal phylogenetic tests of association between clade

richness and body size have been conducted for hexapod

sub-clades, they have generally failed to recover evidence

for small size promoting richness within the group (e.g.

[27]), with one study even identifying the opposite pattern

with respect to Anisoptera (dragonflies) [28].

In addition to these apparent divergences from size-

structured models there are also potential interactions

between size evolution and other hexapod traits, several

of which have been previously explored as correlates of

species richness including complete metamorphosis,

and dietary substrate [21, 29, 30]. Metamorphosis has

the potential to structure size evolution via the promo-

tion of modularization of life history stages, and the

separation of selection pressures on larval and adult

stages [13, 31]. This process is taken to extremes in

Holometabola, where during metamorphosis there is a

fundamental reorganization of the body plan [32], and

as a result various authors have suggested divergent

processes of size evolution associated with this clade (it

should be noted, however, that the manifestation of

these effects in terms of models of trait evolution re-

mains poorly understood [13, 33]).

The recent and growing consensus with regard to

hexapod higher taxonomic relationships from molecular

markers e.g. [30, 34, 35] provides us, for the first time,

with a framework for exploring large scale patterns of

trait evolution within the group. In this study, we com-

bine a published phylogeny of insect higher taxa [30]

with comprehensive descriptive information regarding

size variation within the clade to explore patterns of

body size evolution and its relationship with clade diver-

sification. Hypotheses we test include: a) if the apparent

lack of skew in body size distributions (on the log scale)

identified for regional faunas can be identified in a global

phylogenetic perspective on hexapod body size, b) if

consistent relationships between clade richness and body

size occur after accounting for phylogeny and size vari-

ation within terminal groups. In addition, we explore the

probable evolutionary process that may underpin size

evolution in hexapods, and whether different major

clades (e.g. Holometabola or major orders) are associ-

ated with divergent evolutionary processes, as has previ-

ously demonstrated in mammals [36], with an aim to

explore the possible roles of key innovations such as

complete metamorphosis [30].

Results
Frequency distribution of body sizes

Body length range data were gathered for 774 higher taxa

of insects (resolved primarily to the family level; Add-

itional file 1: Table S1). The frequency distributions of the

observed values of mean-of-logs (mean of the logged

values of the size range limits for each higher taxon), log

maximum and log minimum body length for terminal
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taxa are shown in Fig. 1. In all three cases the overall dis-

tributions are approximately normal (two-sided Agostino

test, log minimum: skew = 0.3333, z = 2.455, p-value =

0.0141, log maximum: skew = 0.0752, z = 0.567, p-value =

0.5706, mean-of-logs: skew = 0.210, z = 1.572, p = 0.116),

although the distribution of minimum sizes shows a small

secondary peak associated with an over-prevalence of taxa

reported as bounded at 1 mm (commonly used for con-

venience in descriptions of small taxa). When mean values

are weighted according to their species richness, the

resulting distribution shows a significant skew towards lar-

ger body sizes (skew = -0.0290, z = -7.91, p-value = <0.001)

running contrary to the expectations of the paradigm de-

scribed above.

Comparing major clades we can identify pronounced

differences in typical size distributions observed among

groups. As Holometabola, the most diverse clade (more

than 75 % of all extant hexapods) [32] account for the

majority of the terminals included in this study (508

out of 775), it is unsurprising that the size distribution

of Holometabola (insects with complete metamor-

phosis) mirrors that of hexapods as a whole, with simi-

lar average size to the global mean (Hexapoda; (log)

mean = 1.946 ln (mm), sd = 0.9491 ln (mm), Holometa-

bola; (log) mean = 1.8032 ln (mm), sd = 0.8078 ln

(mm)). By contrast both the clades Entognatha (non-in-

sect hexapods including springtails; mean =0.8879 ln

(mm), sd = 1.061 ln (mm) and Paraneoptera (true bugs

and their relatives; mean = 1.5506 ln (mm), sd = 0.7755

ln (mm) are predominantly composed of groups falling

at the small end of the size spectrum, the latter particu-

larly with respect to minimum sizes, while large insects

include disproportionate representation of Polyneoptera

(mean = 3.045 ln (mm), sd = 0.7455 ln (mm)) and

Palaeoptera (particularly large bodied Odonata (dragon-

flies)); mean = 3.060 ln (mm), sd = 0.8825 ln (mm)).

The value of the inferred standard deviation of the ter-

minal distributions shows a rather different phylogenetic

Fig. 1 Histograms of raw body length data and estimated mean-of-logs lengths (D; corrected for clade richness). Histograms of a Minimum log
body size (ln (mm), Skewness = 0.3333) b Maximum log body size (ln (mm), Skewness = 0.07517) c Calculated mean log body size; for terminal
groups used in this analysis (ln (mm), Skewness = 0.2102), d Mean size with each terminal group represented proportionally to its richness (ln
(mm), Skewness = -0.0285). Curves on upper panels reflect normal distributions with the same mean and standard deviation as the observed data.
Colors in lower panels show breakdown of size classes by major taxonomic group; Red - Holometabola, Green - Paraneoptera, Magenta - Polyneoptera,
Cyan - Palaeoptera, Black - Basal insects, Grey - Entognatha

Rainford et al. BMC Evolutionary Biology  (2016) 16:8 Page 3 of 17



pattern from that of the mean size values, although after

taking phylogeny into account the two are strongly corre-

lated (PGLS [37] assuming a Brownian covariance struc-

ture: Estimate = 0.4219, SE = 0.1830, t = 2.3049, p =

0.0214). Clades associated with particularly low values of

standard deviation (implying relatively little size variation

after accounting for species richness within terminal

groups) include Trichoptera, Neuropterida (lacewings and

relatives), Psocodea and Odonata while the largest values

occur in Coleoptera and advanced Lepidoptera (Fig. 2),

with the single largest value occurring in the morphologic-

ally diverse (4-39 mm) but species poor Lepidoptera

family Aididae (6 species).

Phylogenetic distribution of body size and ancestral

states

The above patterns are reinforced on the phylogenetic

ancestral reconstruction plots for the group (Fig. 2,

Additional file 1: Figure S1), in which the following

clades show strong deviations from the average size

dynamics: Odonata (with respect to larger than average

minimum body size), Psocodea (booklice and lice; small

maximum sizes), micro-hymenoptera (the smallest

members of Holometabola with particularly small mini-

mum size bounds) and various polyneopteran clades,

notably Phasmatodea and Orthoptera. Beyond these

limited examples, the majority of hexapod higher taxa

log-means lie close to global average size, and ancestral

reconstruction of internal nodes rapidly approaches this

value as an approximation of the global ancestral state.

Evidence of phylogenetic signal was recovered in both

the full dataset and in all the major sub-clades (Table 1)

with very strong support, with the exception of Entognatha,

where evidence of structuring is present but support is

much lower (likely due to the small number of tips on this

subtree: 12). Blomberg’s K values indicate that Hexapoda as

a whole demonstrate somewhat lower values of K than

would be expected under a Brownian motion (BM) process,

consistent with related species resembling one another less

than under the expected BM distribution (see further

discussion below). Similar patterns are also identified in

Holometabola and Polyneoptera. By contrast, Paraneoptera

and Palaeoptera show strong tendencies towards higher-

than-expected values of K, indicating differences in the size

evolution process among major clades.

Body size and species richness

The standardized contrasts in body size and relative rate

difference (RRD; defined as, ln (N1/N2), where N1 = rich-

ness of descendant clade with larger body size, and N2 = the

richness of the other descendant clade [38–40]) across

major clades are plotted in Fig. 3. The estimated relation-

ships through the origin were calculated on the observed

mean-of-log sizes and confidence intervals were based on

the parametric bootstrap samples as drawn from the esti-

mated terminal distributions for both observed (colored)

and randomized (black) data (parameter values in Table 2).

Fig. 2 Phylogenetic plot of (log) size traits. a mean-of-logs body length; (b) estimated standard deviation. Ancestral reconstruction of internal
nodes based on a BM process (ancML) (Revel 2013). Lower bars denote the minimum and maximum values of observed traits (ln (mm)); coloration
on a red to blue scale. Terminal bars denote membership of major clades; colors as Fig. 1
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Overall, the data for Hexapoda support the presence of a

weak positive relationship between richness and body size

within the clade, although following the parametric boot-

strap this relationship is not significant once the uncertainty

of terminal states is taken into account. Similar patterns of

null relationships once tip variance is taken into consider-

ation occur in all of the major sub-clades examined, al-

though in the case of Palaeoptera the direction of the

relationship observed is negative. When these statistics

were recalculated based on PDI (Additional file 1: Table S2)

no significant relationships were observed between mean

size and richness, rendering further parametric bootstrap-

ping redundant.

Process of body size evolution

Considering the potential processes responsible for gener-

ating observed patterns of size evolution (see Methods),

our data suggest that, of our process based models; the

majority of hexapod clades favor simple Brownian motion,

with the exception of Holometabola, where the favored

process is an single stationary peak (SSP/OU) model with

convergence on a single global optimum or elevated

diversification at distant tips (Table 3, Additional file 1:

Table S3). However, when models without an explicit gen-

erating process are considered (i.e. lambda and white

noise (WN)), this picture changes, such that for Hexapoda

as a whole and Holometabola, there is evidence for con-

siderable non-phylogenetic signal in body size, resulting in

lambda values that significantly diverge from the expecta-

tions of BM (although in all cases the WN model with no

phylogenetic signal is strongly rejected, see also Table 1).

Similar patterns are obtained when the major holometa-

bolan orders are examined individually, with Hymenop-

tera (bees, wasps and ants), Coleoptera (beetles) and

Lepidoptera (moths and butterflies) all favoring BM pro-

cesses, while Diptera (flies) shows strong evidence for

non-phylogenetic signal (thus favoring the lambda model).

The implications of these differences for our understand-

ing of size evolution in hexapods, and particularly within

Holometabola and Diptera, will be explored below.

The findings of Bayesian Analysis of Macro-evolutionary

Mixtures (BAMM) further support the idea that the

process of size evolution behaves differently in holometabo-

lan and non-holometabolan groups (Fig. 4). A single shift

in the rate model associated with the origins of Holometa-

bola is recovered with a marginal probability of 0.988, i.e. it

is found in > 95 % of all sampled models from the post

burn-in chain. The single most sampled configuration

recovers only this shift (with a relative frequency of 0.5;

Additional file 1: Figure S2), suggesting that the impact of

other events on size evolution within the group is compara-

tively marginal. This regime shift in Holometabola is associ-

ated with a reversal in the rate of size evolution, such that

within this clade rates appear to accelerate through time,

contrasting with the weak deceleration observed across the

remaining hexapods (potentially consistent with the BM

process described above). The only other nodes found to

significantly contribute to heterogeneity in size evolution

within hexapods are associated with decelerations in size

evolution within Trichoptera, both when including (relative

frequency 0.17) and when excluding (relative frequency

0.18)) the basal family Hydroptilidae.

Discussion
The findings of this study corroborate previous taxonomic

surveys at continental scales (e.g. [24–26]) suggesting that

the distribution of body lengths in hexapod families does

not show a strong skew towards an over-abundance of

small sized taxa on the log scale. We also demonstrate that,

while size does show phylogenetic structuring with respect

to different hexapod groups, after accounting for these rela-

tionships and the variances observed within tip groups,

there is no global negative association between body length

and diversification across the studied taxa. Finally, our

survey of possible evolutionary models suggests that the

pattern and processes of size evolution in Holometabola,

and possibly Diptera, are distinct from those of other hexa-

pod groups. In both cases evidence for non-phylogenetic

signal suggests that these differences cannot be adequately

accounted for in single parameter extensions of Brownian

motion, although for other groups, body size evolution

looks approximately Brownian.

The recognition that body length distributions in

Hexapoda show relatively little bias on a log scale, and

that diversification rates within the group are approxi-

mately independent of size, supports the idea that con-

cepts derived from the study of vertebrate groups [1, 3]

may be inappropriate when discussing other taxonomic

groups [5, 6], and hexapods in particular [13, 15, 26].

Possible explanations for these differences focus on the

potential for small absolute body size to alter the link

between body-size and clade diversification. For ex-

ample, small-bodied organisms experience distinct flow

conditions where viscous forces, such as surface tension

Table 1 Tests of phylogenetic signal within major clades
incorporating within-terminal standard error

Taxa Blomberg’s
K

Sigma2 rate
parameter

Model log
likelihood

P
randomization
test

Hexapoda 0.8870 0.002368 −778.95 <0.001

Holometabola 0.6864 0.002694 −515.43 <0.001

Paraneoptera 1.3166 0.001436 −117.07 <0.001

Polyneoptera 0.8144 0.002122 −66.26 <0.001

Palaeoptera 1.7806 0.001467 −40.192 <0.001

Entognatha 1.1244 0.002574 −15.711 0.0247
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Fig. 3 (See legend on next page.)
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and air resistance, have the potential to overwhelm the

effect of the gravitational forces (i.e. body weight) that

are responsible for structuring body size changes at

larger spatial scales [10, 41]. Likewise, fractal environ-

mental models, which postulate the existence of a higher

number of niches at small body sizes [8, 9], may become

inapplicable below a certain scale, particularly with

respect to “parasitic” taxa, which live on the surface of

larger host organisms (typical of the majority of hexa-

pods), and are therefore subject to local homogeneity in

the composition of their environment across a range of

spatial scales [23, 42, 43]. In addition with respect to

hexapods, despite a general trend towards larger-bodied

organisms showing greater reproductive output, there is

evidence from well-studied systems to suggest that this

pattern is not universal across the group [17, 44, 45].

Thus, several of the mechanisms typically invoked to

account for size-biased diversification in vertebrates may

not be applicable to Hexapoda, reflecting a potential danger

of extrapolation from well-studied, but atypical clades to

describe global evolutionary processes [6]. There is a need

to further investigate processes of size evolution across a

broader range of invertebrate groups for comparative pur-

poses (e.g. [46]), which, when taken together, may provide

us with new insights into underlying mechanisms control-

ling the size structuring of natural environments [47].

Despite the presence of non-phylogenetic signal in

some specific groups, there is considerable evidence

that the majority of hexapod clades are strongly phylo-

genetic structured with respect to body size, and

hence size evolution within Hexapoda is broadly de-

scribed by a BM process on the log scale. However,

many specific clades appear, within the limits of avail-

able data, to be constrained to a particular subset of

possible sizes. The mechanisms underlying such con-

straint are likely to be variable across different lineages.

For example, the absence of small body sizes within

Odonata may be attributed to limitations on the minimum

size required for the group’s unique flight mechanism

[48]. In other cases, the causes of constraint are much less

apparent, e.g. the absence of large bodied members of the

order Psocodea (booklice; even after accounting for the

parasitic and small-bodied Pthiraptera), which may reflect

constraints of a cryptic and concealed lifestyle in a group

that has received comparatively little detailed study. The

effect of such constraints at the super-ordinal scale ap-

pears to be marginal, as all of the major lineages demon-

strated a wide variation in size as well as homogeneity of

process within clades (and across clades, with the

exception of Holometabola and Diptera). The overriding

impression therefore is that, within the limitations im-

posed by restricted phylogenetic resolution, size evolution

within hexapods is dominated by comparatively localized

factors operating at the sub-ordinal or super-familial level.

The reconstruction of estimated standard deviation in

body size within Hexapoda generated here bears a strong

qualitative resemblance to previously recovered patterns

of diversification rate shifts across the clade [30]. This is

particularly striking in that clades previously recovered as

downshifted with respect to diversification rate, e.g. Pso-

codea, Neuroptera and Trichoptera, are here recovered as

having comparatively low standard deviation in body size,

suggesting a link between the diversification process and

radiation into novel morphospace [49]. Similar ideas have

been previously proposed with respect to bird families,

[49], but formalized testing via multiple regression has

been shown to be statistically problematic, due to an in-

ability to distinguish time-dependent and speciation-

(See figure on previous page.)
Fig. 3 Plots of Standardized contrasts for richness (RDD) and body length (ln (mm)). Solid lines denote the relationship inferred from the mean
values in Macrocaic. Dashed colored lines are the 95 % CI based on 50,000 parametric bootstraps taking into account the variance present
among terminal groups. Dotted black lines denote the equivalent null intervals calculated on tip randomizations. Statistical information for
relationships in Table 3

Table 2 Macrocaic analysis of contrasts in RRD and vs. mean-of-logs size for major hexapod clades (Fig. 3)

Taxa N Estimate (Adj) R2 SE t p Obs. QR NULL QR

2.5 % 97.5 % 2.5 % 97.5 %

Hexapoda 773 4.538 0.004203 2.219 2.045 0.0412a 1.886 5.383 −2.127 2.106

Holometabola 507 4.415 0.003232 2.715 1.626 0.105 1.246 5.580 −2.944 2.969

Non-Holometabola 265 5.416 0.003874 3.801 1.425 0.155 1.927 7.304 −3.159 3.178

Paraneoptera 126 11.759 0.02523 5.696 2.064 0.0411a 5.495 14.35 −7.172 7.079

Polyneoptera 64 9.135 0.009866 7.139 1.28 0.205 1.256 14.02 −9.385 9.407

Palaeoptera 57 −8.866 −0.00021 8.919 −0.994 0.325 −12.63 −2.987 −6.800 6.986

Ectognatha 11 12.43 −0.04417 17.00 0.731 0.481 5.118 17.94 −24.74 23.82

Data shown are the results of parametric bootstrap, with 50,000 replicates, Shown are the observed quartile ranges (Obs. QR) and those of the Null tip-randomized data

(NULL QR). a indicates a significant relationship prior to parametric bootstrap (but not after)

Rainford et al. BMC Evolutionary Biology  (2016) 16:8 Page 7 of 17



Table 3 Parameter estimates and relative likelihoods for models of mean-of-logs body size incorporating within-terminal standard
error

Clade Model Sigma
squared

z0 a/ delta/alpha/
lambda

LnLik k AICc Delta AiCc from
optimal model

Akaike
weights

Hexapoda BM 0.002403 1.749 −779.4 2 1562.7 21.031 0.00003

EB 0.002404 1.748 −1e-06* −779.4 3 1564.7 23.051 0.00001

delta 0.002196 1.766 1.129 −779.1 3 1564.3 22.627 0.00001

SSP 0.002666 1.764 0.000591 −778.0 3 1562.1 20.434 0.00004

lambda 0.001957 1.759 0.92093 −767.8 3 1541.7 0 0.9991

WN 0.8985 1.946 −1057.3 2 2118.7 576.99 0.0000

Holometabola BM 0.002726 1.846 −515.4 2 1034.8 17.571 0.0002

EB 0.002727 1.846 −1e-06* −515.4 3 1036.9 19.600 0.0001

delta 0.001787 1.802 1.881 −511.2 3 1028.5 11.265 0.0035

SSP 0.003613 1.830 0.001923 −510.7 3 1027.4 10.170 0.0061

lambda 0.002138 1.845 0.89028 −505.6 3 1017.3 0 0.9901

WN 0.6498 1.803 −611.9 2 1227.8 210.52 0.0000

Paraneoptera BM 0.001469 1.132 −117.0 2 238.2 0 0.3939

EB 0.001518 1.130 −0.000111 −117.0 3 240.3 2.094 0.1382

delta 0.001559 1.119 0.9031 −117.0 3 240.1 1.9781 0.1465

SSP 0.001469 1.132 0.00 −117.0 3 240.3 2.0983 0.1379

lambda 0.001368 1.139 0.9343 −116.7 3 239.7 1.5276 0.1835

WN 0.5961 1.531 −147.4 2 299.0 60.78 0.0000

Polyneoptera BM 0.002121 2.759 −66.26 2 136.7 0.1955 0.2922

EB 0.002121 2.759 −1e-06* −66.26 3 138.9 2.3961 0.0972

delta 0.001389 2.822 2.186 −65.06 3 136.5 0 0.3221

SSP 0.003247 2.812 0.002286 −65.60 3 137.6 1.081 0.1876

lambda 0.002005 2.765 0.9636 −66.22 3 138.8 2.334 0.1003

WN 0.5465 3.045 −72.66 2 149.5 12.99 0.0005

Palaeoptera BM 0.001485 2.918 −40.18 2 84.58 0 0.3195

EB 0.002088 2.917 −0.001169 −40.06 3 86.57 1.991 0.1181

delta 0.002322 2.938 0.5462 −39.51 3 85.46 0.8857 0.2052

SSP 0.001485 2.918 0.00 −40.18 3 86.80 2.226 0.1050

lambda 0.00119 2.928 0.8993 −39.30 3 85.05 0.4729 0.2522

WN 0.7646 3.060 −74.55 2 153.3 68.73 0.0000

Entognatha BM 0.002414 1.074 −15.71 2 36.75 0 0.5003

EB 0.01257 1.048 −0.006225 −15.16 3 39.31 2.561 0.1390

delta 0.002921 1.070 0.6378 −15.58 3 40.16 3.407 0.0911

SSP 0.002414 1.074 0.00 −15.71 3 40.42 3.667 0.0800

lambda 0.002414 1.074 1 −15.71 3 40.42 3.667 0.0800

WN 1.0335 0.888 −17.23 2 39.79 3.035 0.1097

Models and relevant parameters are denoted as follows: BM: Brownian motion (Sigma squared: ML estimate of rate of the underlying size evolution, z0: ML estimate of

value for the root state); EB: Early burst model (a: exponential rate scale for relationship through time); Delta: Pagel’s delta rate change through time model (delta: tree

scaling parameter); SSP: Single stable peak Ornstein-Uhlenbeck model with centralizing tendency towards an optimum (alpha: strength of central attraction); lambda;

Pagel’s lambda measuring deviation of inter-tip covariance matrix from expectations of BM (lambda: multiplication factor applied to the off-diagonal covariance matrix

elements maximizing similarity to BM); WN: white noise non-phylogenetic model with all data drawn from a common distribution. Also given are log likelihood values

of the observed data (LnLik), number of parameters (k) and AICc values, deviation from optimal model (Delta AiCc), and Akaike weights. Models in bold are the favoured

models, either by virtue of lowest AICc scores or are those with fewest parameters within 2 AICc units of the lowest AICc scores. *denotes parameters estimated at the

bounds placed on the optimization procedure i.e. their actual values may be smaller than given
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dependent generation of variance [50, 51]. This, in com-

bination with the data abstraction required to treat higher

taxonomic groups here (see below; [52]), and the fact that

our approaches to estimate standard deviation are con-

founded with clade richness (see methods; [53]), meant

that we did not feel secure in pursuing this line of investi-

gation within the current study. However, in the presence

of better data, particularly for within clade body size dis-

tributions, this is an intriguing concept and one that

merits further investigation.

When considering the processes that may underlie the

evolution of hexapod body size, our analyses identify

Holometabola and in particular Diptera, as having under-

gone divergent evolutionary processes when compared

with the remaining Hexapoda (the latter being dominated

by an overall Brownian drift across the phylogeny). None

of the explicit process models explored here were recov-

ered as adequate descriptors of what this divergent process

may be, although the BAMM analysis of rate heterogeneity

suggests a rate acceleration through time may be involved.

The (favored; Table 3) lambda model is not in itself a

process description, hence this parameter is most com-

monly described as a test of phylogenetic signal (e.g. [54]).

Despite this limitation, we can conceptually distinguish

three possible sources of non-phylogenetic signal that may

individually or collectively explain the deviation from BM

within these clades: random noise in the dataset (e.g. from

inadequate descriptive data), phylogenetic error in taxon

assignments, and the presence of complex evolutionary

processes that are inadequately accommodated within the

single parameter extensions of BM examined above.

Focusing on Diptera as the extreme case of divergence

from BM (Additional file 1: Table S3), it can be noted that,

in comparison with e.g. Lepidoptera, where the majority

of large bodied members are restricted to two derived

clades (Macroheterocera; “macro-moths”, and Rhopalo-

cera; butterflies [55]), large bodied flies occur in basal, (e.g.

Tipulidae; crane flies), intermediate (e.g. Asilidae and

Mydidae; robber and Mydas flies), and highly derived,

phylogenetic positions (e.g. Oestridae; bot flies). Likewise,

miniaturization also occurs in a range of unrelated fam-

ilies, e.g. Braulidae (bee lice; approximated mean length =

1.30 mm), Corethrellidae (mean =1.22 mm) and Phoridae

(mean =1.75 mm), which collectively may further skew

size distributions across the order [56]. Thus, there is the

potential for divergent processes of size evolution within

the clade that are not fully captured by the simplistic evo-

lutionary models implemented here. However, noise in the

dataset e.g. from the use of regional taxonomic descrip-

tions (North and Central America [57–59]) as proxies for

global size distributions, and phylogenetic uncertainty in

relationships, e.g. within Schizophora [30, 60, 61], mean

that we should be cautious of over-interpreting these pat-

terns and await better comparative information, preferably

incorporating developmental and larval data [13]. It

should also be noted that Diptera, and to a lesser extent

all Holometabola are, in terms of proportion of probable

species described, less well-known than comparable

groups (e.g. Coleoptera, Odonata) [62], and thus may be

more strongly impacted by collection and modeling biases

outlined below.

The apparent association of Holometabola with acceler-

ating rates of size evolution through time (even if we can-

not define the specific underlying model) is interesting

given that complete metamorphosis has previously been

identified as a key innovation in hexapod diversification

Fig. 4 Outputs of Bayesian Analysis of Macroevolutionary Mixtures (BAMM) analysis of log mean body size data. Mean rate of evolution for
branches across all post-burnin samples (ln (mm) per million years), denoted by branch coloration (red being high)
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[30]. Plausible mechanisms for a different process of size

evolution within the clade include: modularization of life

history stages decoupling adult body-size from larval ecol-

ogy and so permitting greater adaptive flexibility [13, 31],

and historical factors relating to the differential extinction

of large bodied non-holometabolan groups [19, 63]. There

have been various suggestions, based on the small size

of early fossil representatives [33], that patterns within

Holometabola may follow the widely acknowledged

principal known as Cope’s rule, which postulates that

increased niche specialization tends to lead to increased

body sizes within a clade over evolutionary time [18]

(although in hexapods extreme miniaturization is just

as much associated with specialization [14, 22]). How-

ever, the lack of a joint systematic framework for extant

and fossil taxa has restricted formal testing of this

assertion in recent fossil compilations (e.g. [64]).

Unlike well-studied vertebrate clades, there is cur-

rently no universal reference source for comparative data

within Hexapoda, nor of the demographic or ecological

information that may aid in interpreting models of size

evolution [36, 65]. As a result, the information used here

is derived from a mix of global and regional scale data-

sets collected at the level of individual clades (Additional

file 1: Table S1). This imposes additional assumptions

beyond the selection of phylogenetic framework (see dis-

cussion of the tree used in [30]) and the use of described

species as proxies for total clade richness [66]. There are

two major sources of error that may impinge on this

analysis and whose extents are problematic to test in the

absence of more finely resolved taxonomic data. The

first relates to the representative nature of the compiled

size limits as accurately reflecting the true size range of

studied terminal groups. Due to a lack of data for tropical

faunas, the information used here includes an over-reliance

on North American, Australian and European taxa, which,

due to the presence of a well-known latitudinal cline in in-

sect body size [13], has the potential to bias the raw data

on which our findings are based. While acknowledging that

such a bias is difficult to explicitly test, we note that previ-

ous work has found evidence that regional data for taxo-

nomic groups is predictive of global patterns with respect

to hexapod body size [26] and that by combining multiple

regional sets we at least attempt to consolidate our size

ranges across the known taxonomic range.

A second subtle source of bias originates from the con-

version of raw size range data into lognormal distributions

that are the source of the parameters used in our modeling

procedure. An implicit assumption of using lognormal dis-

tributions is that on the logged scale the data is symmetrical

around the mean (allowing us to use the observed mean-

of-logs as our estimate of average size). However, faunal

body size compilations suggest that, with increasing species

richness, size distributions becomes increasingly right

skewed on the log scale [15], although individual sub-taxa

often vary in skew independently of the overall fauna [67].

For the global family distributions considered here, avail-

able data on size-distributional skew is insufficiently re-

solved to contribute to the models considered here, and as

a result we have elected to retain the explicit linkage be-

tween raw observations and parametric descriptors pro-

vided by the assumption of log-normality.

Another difficult-to-test but implicit assumption in our

work is that the probability of species description within

terminal taxa is not itself biased by body size [68–70] or, to

put this another way, that the estimates of described species

richness for terminal groups are unbiased approximations

of their true extant diversity [66]. The problem of acquiring

estimates of “true” species richness based on incomplete re-

cords of described species is one of the most profound

challenges facing work on any diverse clade (see discussions

in [66, 71] and references therein). Of the work conducted

here, the observed pattern, i.e. a weak and statistically non-

significant positive correlation is potentially consistent with

systematic under description of small bodied species; how-

ever, this effect would have to be large in-order to mask

any “real” negative relationship present within the group.

As with many issues relating to unknowns in the richness

of large clades, efforts to integrate global taxonomic data-

bases together with associated rates of species description,

synonymy resolution and meta-data such as body size, will

go a long way towards characterizing what it is that we still

do not know regarding hexapod diversity [21].

In addition to description bias, there are also issues re-

lating to the appropriate partitioning of within tip vari-

ance, which here we have treated as arising entirely from

taxonomic under-sampling. Thus, the effect that novel

species description would have on the estimate of the

mean body size of a given clade depends on the number

of described species in this clade (hence why the esti-

mate of variance is clade-richness dependent [53]),

whereas in reality, such estimates also encompass other

sources of error such as length variation among individ-

ual specimens [72] and sexual dimorphism [73], which

may contribute to variation observed across lineages.

Dealing with within tip variance in trait measurements is

perhaps the greatest outstanding challenge in modeling

of trait evolution at deep phylogenetic levels [74]. The

methods used here, based on [75, 76], were originally de-

veloped with the aim to incorporate measurement error

in tip values, with the result that they contain assump-

tions regarding the distribution of such variance that

may not be appropriate for all of the contributing

sources of variance present within this dataset. Alterna-

tive approaches exist, e.g. “MECCA” [77]; however, these

involve simulating multiple species-complete trees (com-

putationally unfeasible on the scale of Hexapoda) and

also make strong assumptions regarding variance
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structure within tip taxa. Further work on partitioning

variance within phylogenetic models [74], as well as im-

proved understanding in how such variance is structured

in groups where there is good phylogenetic information,

represents an area of great potential in understanding

how trait evolution may be modeled across very large

taxonomic groups.

Conclusions
Within the limits of the available data and the neonto-

logical approach, our analyses suggest that the evolu-

tionary forces structuring macro-evolutionary patterns

of body size within Hexapoda are not simply and

directly related to those responsible for structuring the

diversity of the group. The overall pattern of body size

evolution within the group, based on its extant represen-

tatives appears to be broadly driven by essentially neutral

forces (at a log scale) with the exception of the poorly

defined processes operating within Holometabola and

Diptera. This conclusion differs from that of fossil based

surveys of the group, which have emphasized constraints

in shaping size evolution in hexapods, such as oxygen

limitation (e.g. [12, 64]) and the evolution of vertebrate

predators (notably birds) [78]. These differences reflect

differences in the underlying data, including a focus on

the evolution of mean body size within clades as op-

posed to the limits of its maximum value [64], the in-

ability of analyses based on extant data to take account

of no-longer existing diversity [79] and impacts of phylo-

genetic non-independence, which are often neglected in

fossil analyses of hexapods [32].

The consequences of these findings for the standard

size paradigm (e.g. [1]), with its emphasis on vertebrates,

in which size and richness show a strong degree of

coupling [2, 3], are significant in that they attack the

universality of these findings to other terrestrial clades

[6]. As with any macro-evolutionary study involving in-

completely described taxonomic groups, we must pay

special attention to the role of missing data and

interpolation in defining the observed pattern. Hence

here we have attempted at a basic level to incorporate

within-tip variance into our discussion of body size and

diversification. Great challenges remain in trying to tease

apart ecological and evolutionary processes in groups

operating on temporal and spatial scales profoundly dif-

ferent from our own. The analysis presented here thus

should be taken as a step on the road towards a broader

understanding of the processes of size evolution and its

consequences for an invertebrate perspective of the nat-

ural world.

Methods
An ideal analysis of body size evolution would compre-

hensively explore patterns and processes at the species

level. However, because of the enormous richness of

Hexapoda, phylogenetic and trait data are currently too

sparse to support a comprehensive species-level analysis.

Therefore, for practical reasons we restrict our discus-

sion to the family level, based on recently proposed

phylogenetic relationships [30].

All size data for this study is based on family-level es-

timates of minimum and maximum body length col-

lected from global, regional and taxonomic datasets

([57–59, 80–202], Additional file 1: Table S1). The use

of length as a proxy for size is common in Hexapoda

due to difficulties in estimating mass from dried mu-

seum specimens [13, 15]. Taxon-specific length to mass

conversion factors (e.g. [203]) were explored for use in

this study and produced qualitatively similar results;

however, due to the large amount of uncertainty associ-

ated with these values, the presented analyses are re-

stricted to raw length data. Body length was taken as

from the anterior margin of the head to the termination

of the abdomen, discounting wing cases, abdominal

limbs, antennae or cerci where such resolution was

available. For taxa such as Lepidoptera (moths) where

data-sources record body-size via an alternative metric

(e.g. wingspan), average measurements of accompany-

ing illustrations (between one and eight per terminal;

selected to encompass the observed diversity) were

used to convert these values to body length (examples

listed in Additional file 1: Table S1). For Trichoptera

(caddis flies), which are typically not illustrated so as to

make both the wingspan and body length visible, con-

version for the whole order was based on specimens of

the various families illustrated in [81].

Estimates of clade richness follow [30]. Resolution of

taxonomic conflict is described in Additional file 1:

Table S1. In order to avoid issues associated with esti-

mating standard deviation for mono-specific clades (see

below) all richness estimates were increased by two for

the purposes of modeling relationships. This process is

recognized as ad-hoc but regarded as preferable to the

loss of phylogenetic information resulting from the ex-

clusion of such lineages. In total, the dataset consisted of

774 terminal taxa spanning all major hexapod lineages

(Additional file 1: Table S1).

For modeling purposes, we assumed that, within ter-

minal groups, species conform to a lognormal size-

distribution, the parameters of which are estimated from

the observed minimum, maximum and richness data.

This is a strong assumption, but one conforming to

available data regarding hexapod size distributions at the

family level [204, 205], and can therefore be regarded as

the obvious default in the absence of data to the con-

trary. The mean of the approximated distributions

(henceforth treated on a log scale) was taken as the

mean of the log values of the minimum and maximum
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size estimates (henceforth mean-of-logs). The standard

deviation of approximated distributions was estimated

using meta-analysis statistics that assume a sample-size

dependent relationship between the estimated sd and

the observed range [53]. Thus, for very small clades (<15

taxa) sd was calculated using Equation [16] of [53], for

moderately diverse groups (16–70 taxa) sd was esti-

mated as range over four, and for large clades (>70 taxa)

sd was estimated as range over six [53]. These proce-

dures assume that the mean values for species rich

groups are known with greater accuracy (i.e. have

smaller associated variance) than species poor groups

with the same size-range, reflecting the fact that the

former are less likely to be perturbed by further species

description (see Discussion). Given that our estimates of

standard deviation are thus dependent on corrected

clade richness it is appropriate that we maintain this as-

sumption into the derived estimates of standard error

(SE) around the clade specific mean-of-logs values.

Hence our SE estimates for modeling evolutionary pro-

cesses [75] were calculated, under the assumption that

sample size was equivalent to corrected clade richness.

Descriptive plots of the observed frequency distribution

of size were generated for hexapods as a whole and for the

major super-ordinal sub-clades [30, 34, 35]. The normality

of the overall mean distributions, both at the level of

terminal taxa, and with taxa weighted by their observed

species richness (Fig. 1), was assessed using an Agostino

test [206] (implemented in R [207]; package moments

[208]). The phylogenetic distribution of minimum,

maximum and mean body length, as well as the esti-

mates of terminal standard deviation (Fig. 2, Additional

file 1: Figure S1) were plotted using a Brownian motion

(BM) ancestral reconstruction [209] implemented in

the package phytools [210].

The degree of phylogenetic signal present in the data

with respect to mean-of-logs size was assessed using

Blomberg’s K statistic [211], and by comparing the

observed variance among the phylogenetically inde-

pendent contrasts (PICs) with 1000 randomized data

replications, applying the correction of [75] to account

for within-group variance (implemented in the package

phytools) (Table 1). Blomberg’s K can be visualised as

measuring the degree to which an observed dataset

converges on the expectations of BM (producing an

expected value of 1) [211]. Data with no phylogenetic

signal will produce a K value of 0 and values less or

greater than 1 should be interpreted as lower or higher

than expected similarity among terminal taxa, which

can be a manifestation of more complex trait evolution-

ary processes (see below).

To explore the relationship between diversification

and body size, we used an adaptation of the PIC derived

“macrocaic” method implemented in the package caper

[212], which is optimized to explore associations of traits

values and species richness at the level of higher taxa

[38–40]. Richness contrasts at each node were standard-

ized using two metrics: relative rate difference (RRD;

Table 2, Fig. 3) and proportion dominance index (PDI;

(N1/(N1 +N2)-0.5), Additional file 1: Table S2). Size was

modeled as the mean-of-logs estimate and the relation-

ship between the two sets of independent contrasts

assessed using regression through the origin [39]. To in-

corporate within-tip variance in size we used a paramet-

ric bootstrap, where across 50,000 pseudo-replicated

datasets the values of terminal groups were taken as ran-

dom draws from the estimated terminal distributions

(see above) and the 95 % bounds on the relationship be-

tween contrasts were estimated. This distribution was

compared with that of an identical number of replicated

null data samples where terminal size-values were ran-

domized across the tree. Significance was judged on

whether the 95 % confidence intervals on the boot-

strapped data excluded those of the randomized null

data.

To explore the processes responsible for generating the

observed size distribution we used a model testing frame-

work: fitContinuous, in the package geiger [213, 214]. Can-

didate models fitted were: a simple BM process; the early

burst model (EB/ACDC), [20, 211] where rates of evolu-

tion through time exponentially increase or decrease; the

delta model [54], which scales the phylogeny so as to bias

the distribution of rates of trait evolution towards either

the root or tips; and the SSP model (single stationary peak;

modeled as an Ornstein-Uhlenbeck process) [215], which

assumes that trait evolution convergences on a single

global optimum value (Table 3, Additional file 1: Table

S3). All of these models are capable of expressing BM as a

special case, resulting from near-zero estimates of the rele-

vant scaling parameters.

In addition, we also fitted two models without an ex-

plicit generating process, in order to measure the role

of noise and non-phylogenetic signal in the structure

of our dataset. The lambda model [54] calculates a

global statistic measuring the extent of deviation in

the inter-tip covariance matrix from the assumptions

of BM (which corresponds to a lambda value of 1).

The white noise model (WN) corresponds to a lambda

value of 0, and reflects the result that would be ob-

tained in the absence of any phylogenetic structure

(star tree) with tip states being drawn from a single

underlying normal distribution (Table 3, Additional

file 1: Table S3). All fitted models incorporated esti-

mates of standard error around the mean-of-logs,

using the methodology of [75] (see above for how

these are calculated). Model selection was performed

on the basis of AICc values and Akaike weights, see

discussion in [20].
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Finally, we conducted an exploration of the homogen-

eity of the process of size evolution within hexapods

using the shift-based reversible jump Markov Chain

Monte Carlo framework BAMM [216]. As implemented

here, the analysis fits EB/ACDC models of size evolution

to nodes within the tree signifying regime changes

among descendent clades based on an underlying Pois-

son proposal mechanism. This allows the identification

of potential breakpoints in the underlying process of size

evolution without the imposition of an explicit prior

model. Note that this procedure in its current form is

unable to accommodate error in the tip value estimates,

thus only the mean-of-log size values for terminal clades

were modeled.

Starting values for BAMM were calculated as a

homogenous BM process in fitContinuous (betaInit =

0.002424, betaShiftInit = 0), and prior distributions calcu-

lated using the package BAMMtools (poissonRatePrior =

1, betaInitPrior = 412.47 betaShiftPrior = 0.002408). We

set informative priors on the rate of regime change favor-

ing a homogenous diversification process in order to

maximize the credibility of any shifts recovered. Chains

were run for 500 million generations with sampling con-

ducted every 5 million generations. Burn-in was estimated

based on the stabilization of the inferred likelihood mea-

surements at 10 % of the total sample. Adequate sampling

of the stable distribution was assessed on the convergence

of two independent runs from divergent starting parame-

ters, based on complete overlap of the credible shift set of

models accounting for 70 % of the overall described likeli-

hood. The results presented here are taken only from the

first chain, based on the estimated homogenous BM

parameters.

Availability of supporting data
The dataset supporting the results of this article is avail-

able in Additional file 1: Table S1.

Additional file

Additional file 1: Figure S1. Phylogenetic plot of (log) size traits. A)
log maximum body length; B) log minimum body length. Ancestral
reconstruction of internal nodes based on a BM process (ancML) (Revel
[209]). Lower bars denote the minimum and maximum values of
observed traits (ln (mm)); coloration on a red to blue scale. Terminal bars
denote membership of major clades; colors as in Fig. 1. Figure S2.

Maximum credible model set from Bayesian Analysis of
Macroevolutionary Mixtures (BAMM) corresponding to 95 % of the overall
model likelihood. Models are listed in order of frequency (f) of obtaining
model in the post burnin set corresponding to their inferred probability
(listed from top, left to right). Coloration and tree orientation are as in
Fig. 4. Table S1. Compiled body length data for included terminal
groups with references. Species richness estimates taken from (Rainford
et al., [30]); SI. Where multiple references are given they refer respectively
to the minimum /maximum values. Taxonomic alterations from (Rainford
et al., [30]) are listed in notes. Table S2. Outputs of Macrocaic analysis of
relationship between PIC of diversification rate (measured as PDI) and

mean log size for major clades. Table S3. Parameter estimates and
relative likelihoods of alternative models of mean body size for major
orders of Holometabola (including terminal standard error). Models and
parameters denoted as in Table 3. (DOCX 2358 kb)
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