
This is a repository copy of Towards an interoperable energy efficient Cloud computing 
architecture-practice & experience.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/92900/

Version: Accepted Version

Proceedings Paper:
Armstrong, D, Kavanagh, R and Djemame, K (2015) Towards an interoperable energy 
efficient Cloud computing architecture-practice & experience. In: 2015 IEEE International 
Conference on Communication Workshop, ICCW 2015. 2015 IEEE International 
Conference on Communication Workshop (ICCW),, 08-12 Jun 2015, London, United 
Kingdom. Institute of Electrical and Electronics Engineers , 1807 - 1812. ISBN 
9781467363051 

https://doi.org/10.1109/ICCW.2015.7247443

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Towards An Interoperable Energy Efficient Cloud

Computing Architecture - Practice & Experience

Django Armstrong, Richard Kavanagh & Karim Djemame∗,
∗School of Computing, University of Leeds, UK

D.J.Armstrong,R.E.Kavanagh,K.Djemame@leeds.ac.uk

Abstract—The energy consumption of Cloud computing con-
tinues to be an area of significant concern as data center
growth continues to increase. This paper reports on an energy
efficient interoperable Cloud architecture realized as a Cloud
toolbox that focuses on reducing the energy consumption of
Cloud applications holistically across all deployments models. The
architecture supports energy efficiency at service construction,
deployment, and operation and interoperability through the use of
the Open Virtualization Format (OVF) standard. We discuss our
practical experience during implementation and present an initial
performance evaluation of the architecture. The results show
that the implementing Cloud provider interoperability is feasible
and incurs minimal overhead during application deployment in
comparison to the time taken to instantiate Virtual Machines.

I. INTRODUCTION

Energy efficiency is at the heart of the EUs Europe 2020
Strategy for smart, sustainable and inclusive growth as part of
a transition to a resource efficient economy. Current trends in
industry show continuous growth in the adoption and market
value of Cloud computing with many companies changing their
business models and products to adapt to a service orientated
outlook (e.g. Microsoft’s planned Windows 10 give-away,
Office 365). With this growth, predictions have been made on
an unsustainable quadrupling in the energy consumption and
carbon emissions of data centres used to operate Cloud services
by 2020 [23] with comparable emissions to the aeronautical
industry. Thus considering and improving the energy efficiency
of cloud computing is important. This paper is concerned with
this topical issue and specifically focuses on the design, con-
struction, deployment, and operation of cloud services through
the implementation of a reference energy-aware architecture
that supports provider interoperability through the use of OVF
[20]. OVF if an open standard for defining, packaging and
distributing virtual appliances that can run virtualized on a
cloud.

The paper’s main contributions are: 1) An energy efficiency
aware cloud architecture, which is discussed in the context
of the cloud service life cycle: construction, deployment, and
operation; and 2) An implementation of the OVF standard
enabling energy-awareness and interoperability through a stan-
dardised cloud application descriptor. The remainder of the
paper is structured as follows: Section II reviews the literature
on energy-aware Cloud computing. Section III describes the
proposed architecture to support energy-awareness. Section IV
explains how the standard OVF is used to specify resources
for an initial deployment on an energy-aware cloud. Section
V presents the experimental design, and Section VI discusses
the evaluation results of the architecture. In conclusion, Section
VII provides a summary of the research.

II. RELATED WORK

Research effort has targeted energy efficiency support at
various stages of the cloud service lifecycle. In the service de-
velopment stage, requirements elicitation includes techniques
for capturing, modelling and reasoning on energy requirements
as well as product line oriented techniques to model and
reason about system configuration [6], [7]. In terms of software
design in relation to energy consumption, some research efforts
relate energy awareness and optimization at the application
and system level [24], focus on profiling the applications
energy consumption at runtime to iteratively narrow down
on energy hot spots [10], or considers Cloud architecture
patterns to achieve greener business processes [1]. Energy
efficiency has also been the subject of investigation in Software
development, e.g. by studying the energy consumption of the
application prior to deployment [8]. In the service deployment
stage, research effort has focused on Service Level Agreement
(SLA) deployment strategies especially with regard to SLAs
that are energy-aware, e.g. by implementing specific policies
to save energy [12], [11], as well as service deployment
technologies which play a critical role in the management
of the cloud infrastructure and thus have an effect on its
overall energy consumption [3]. In the service operation stage,
energy efficiency has been extensively studied and has focused
for example on approaches towards energy management for
distributed management of Virtual Machines (VMs) in cloud
infrastructures, where the goal is to improve the utilization
of computing resources and reduce energy consumption under
workload independent quality of service constraints [2]. Other
research effort has focused on scheduling techniques, data
management, virtualisation, networks, and operating systems.
For a full state of the art on the subject of energy efficiency
in clouds see [4]. The use of OVF [20] as part of a service
descriptor to define the requirements of an applications is not
new and has been implemented within the OPTIMIS Toolkit
[21], where an OVF fragment resides in a non-standard XML
based service manifest schema. One issue with this approach is
the impact on interoperability with Cloud Providers that need
to support this schema to enable application deployment. This
compared to the solution that is presented in this paper where
a pure OVF document is used, extended and implemented
according to the capabilities of the OVF Specification version
1.1.1 (last updated 22/08/2013) makes our solution 100%
compliant with Cloud providers and technologies that already
support OVF.

III. ENERGY EFFICIENT CLOUD ARCHITECTURE

To reduce the energy consumption of a cloud system, a
reference architecture is needed to first enable energy aware-



Fig. 1: ASCETiC Architecture - SaaS Layer

ness of all phases of an application’s life-cycle and secondly
provide actuators to reduce and optimizes energy efficiency.
To this end we have realised such a reference architecture
through the implementation of a toolbox, details of which can
be found in [9]. Figures 1,2,3 provide an overview of the
proposed architecture. It includes the high-level interactions
of all components, is separated into three distinct layers and
follows the standard Cloud deployment model.

In the SaaS layer, illustrated by Figure 1, a set of compo-
nents interact to facilitate the modelling, design and construc-
tion of a Cloud application. The components aid in evaluating
energy consumption of a Cloud application during its con-
struction. A number of plug-ins are provided for a frontend
Integrated Development Environment (IDE) as a means for
developers to interact with components within this layer. A
number of packaging components are also made available to
enable provider agnostic deployment of the constructed cloud
application, while also maintaining energy awareness.

The PaaS layer, illustrated by Figure 2, provides mid-
dleware functionality for a Cloud application and facilitates
the deployment and operation of the application as a whole.
Components within this layer are responsible for selecting the
most energy appropriate provider for a given set of energy
requirements and tailoring the application to the selected
providers hardware environment. Application level monitoring
is also accommodated for here, in addition to support for
Service Level Agreement (SLA) negotiation.

In the IaaS layer, illustrated by Figure 3, the admission,
allocation and management of virtual resource are performed
through the orchestration of a number of components. Energy
consumption is monitored, estimated and optimized using
translated PaaS level metrics. These metrics are gathered via
a monitoring infrastructure and a number of software probes.
The Energy Awareness provision is an important step in the
architecture implementation plan as it concentrates on deliv-

ering energy awareness in all system components. Monitoring
and metrics information will be measured at IaaS level and
propagated through the various layers of the Cloud stack
(PaaS, SaaS) considering static energy profiles. The Cloud
Stack Adaptation with regard to energy efficiency will focus on
the addition of capabilities required to achieve dynamic energy
management per each of the Cloud layers, in other words intra
and inter layer adaptation and is the subject of future work.

IV. LIFE-CYCLE, ENERGY-AWARENESS AND OVF

This section discusses the life-cycle of Cloud applications
in the context of energy-awareness and the metrics this re-
quires, in addition to the ASCETiC implementation of the OVF
standard used to describe applications. There are many phases
to the life-cycle of an application run on a Cloud. The phases
recognised by the ASCETiC architecture are:

1) Construction - An application is developed, inte-
grated, tested, packaged and uploaded on a devel-
oper’s local machine via an IDE.

2) Submission - The application and its description is
submitted for deployment on to a Cloud provider.

3) Negotiation - A number of rounds of Service Level
Agreement (SLA) negotiation are performed with
suitable Cloud providers that meet the requirements
of the application contained within its descriptor.

4) Contextualization - The application is configured in
the context of the Cloud provider’s environment for
which it is about to be executed (see [3] for details).

5) Deployment - The application is distributed to and
scheduled on the physical infrastructure of the se-
lected Cloud provider.

6) Initialization - The application is initializing its
virtual resources, i.e. the VM’s operating system is
booting and the application is starting up.

7) Operation - The application is ready and able to
service end-user requests.



Fig. 2: ASCETiC Architecture - PaaS Layer

8) Undeployment - The application execution is
stopped and is removed from the selected Cloud
provider.

In the context of this paper the following phases have been
covered in experimentation: 1) Submission; 2) Negotiation;
3) Contextualization; 4) Deployment; 5) Initialization and
6) Undeployment. This choice has been made to provide
perspective on the performance and energy consumption of
the ASCETiC architecture and its OVF implementation. Con-
struction and Operation have been omitted from this scope as
these phases are highly dependent on the application. This is
also true of Initialization but this phase enables comparisons
to be drawn on the energy consumption of the ASCETiC
architecture against that of operating a Cloud application,
where by in normal usecases of a Cloud, Operation energy
consumption far out-ways that used in Initialization. Energy
metrics at various levels (host, VM, tasks) are targeted in
the ASCETiC Architecture in order to measure the energy
consumed by application’s events, operations or components
defined at development time. These metrics have different
contexts: software, platform, infrastructure and architectural
component level. Examples of such metrics include: 1) host
energy consumption from the socket; 2) host resource usage
(e.g. CPU Utilization); 3) VM energy consumption; 4) VM
resource usage (e.g. I/O Utilization); 5) application energy
consumption; and 6) application throughput (e.g. sessions per
time unit).

The metrics used in this paper’s evaluation are discussed
in further detail within the next section of the paper and
are used within the ASCETiC OVF implementation and as
a data model, starting from the SaaS layer. A developer at
the SaaS layer can use the integrated plug-ins within their
IDE to create an OVF description of the application and it’s
potential workload profile they wish to construct, deploy and
execute containing metrics and KPIs within the extensible

<ProductSection> key-value store. In addition to this, the
section is used to specify the constraints on an applications
virtual resource allocation. When a developer is ready to
deploy their application the images and associated OVF de-
scription is uploaded to the PaaS layer and processed by the
Application Manager component where contextulization adds
configuration to the OVF in the form of a virtual CDROM
device and a unique deployment ID. Additionally, energy and
price modelling alongside SLA negotiation is performed using
the OVF virtual resource and workload definitions, to evaluate
the suitability of cloud providers to run the application. Finally
the altered OVF is passed to the IaaS layer where the (Virtual
Machine Manager) VMM component breaks up the OVF into a
number of VM instances and instantiates them via an API call
to the virtual infrastructure manager. The freely available open
source ASCETiC implementation of the OVF specification [13]
is implemented in Java using XMLBeans [22] and to the best
of our knowledge at the time of writing, there are currently no
complete Java implementations available.

V. EXPERIMENTAL DESIGN

This section presents the experimental design. The objec-
tives of the experiments are to ascertain the viability of using
OVF as a means to enable interoperate between cloud service
providers and capture/share energy efficiency requirements
while having a minimal impact on the energy consumption
of the Cloud system as a whole.

A. Cloud Testbed

To perform the experiments outlined in this section, a cloud
testbed was used. The cloud testbed is located at the Technische
Universität Berlin (see Figure 4). The computing cluster con-
sists of sixteen nodes. Each of these nodes is equipped with
two quad-core processors with 2, 66 GHz, 32 GB of RAM,



Fig. 3: ASCETiC Architecture - IaaS Layer

750 GB of local hard disk capacity and an IPMI card for ad-
ministration. Each node is connected to two different networks
and able to transfer full speed with one Gbit/s synchronously.
The first network is dedicated for infrastructure management as
well as regular data exchange between the nodes. The second
network is available for storage area network usage only where
storage nodes are accessible through a distributed file systems.
While some hardware information is obtainable through the
IPMI we measure the energy-consumption of each node just
before the power supply unit. Each energy-meter can measure
voltage, current and power consumption. We use identical
energy-meters to guarantee comparative measurements. The
actual devices are Gembird EnerGenie Energy Meters [5] that

Fig. 4: Cloud Testbed

share their measurements over the local network. These devices
can measure power up to 2500 watts with an accuracy of
±2% and are able to deliver two measurements per second.
A dedicated node collects all measurements regularly and can
share the aggregated information with monitoring components.
Furthermore, this node shares visualized real-time information
in a web front-end with the local cluster administrators. Addi-
tionally, the Cloud Testbed deploys OpenStack[17] to manage
virtual infrastructure and Zabbix[19] to store monitored data.
The VMM component within the ASCETiC Architecture was
configured to use an energy aware scheduling algorithm that
tries to minimise energy consumption of newly provisioned
VMS.

B. Cloud Application & Experimental Set-up

The application we have chosen to fulfil the objectives
of the experiments is a generic three tier web application.
The three tier web application is composed of a set of VM
images as illustrated in Figure 5. The load balancer image
implemented via HAProxy [14] distributes load between ap-
plication servers. These application servers are comprised of a
single JBoss [15] web container running within a Java VM and
have pre-installed a photo album application. The photo album
application stores and retrieves data within a single MySQL
[16] image.

To ascertain the feasibility of using OVF and showcase
the energy awareness of the architecture in the life-cycle
(as described in Section IV) of a Cloud application, the
experimental results in the subsequent section measure the
time taken to complete each life-cycle phase. Additionally the
energy consumption and resource usage of the VMs deployed
are recorded. The experiments record the time taken to run the
Cloud application through its life-cycle in five different VM
configurations each performed over ten iterations to reduce



Fig. 5: Three Tier Web Application Architecture.

variance. Each configuration of VMs requires the use of both
the load balancer and MySQL backend after which the number
of JBoss application server instances is incremented from one
to five VMs. In addition to this, the per-VM attributed energy
consumption and CPU utilization are recorded as part of the
standard functionality in the ASCETiC architecture amongst
many other metrics and KPIs that are readily available for
retrieval.

VI. RESULTS

Fig. 6: Application life-cycle phases against the number of application server
instances.

This section discusses the performance results obtained
from the execution of the experiment defined in the previous
section. Figure 6 shows the time associated with each phase
of the life-cycle of an application run on the ASCETiC
architecture. The general performance message from the ex-
perimental results show that increasing the number of VMs
impacts different life-cycle phases in different ways. From
the graph it can be seen that as the number of application
server instances increases from 1 to 5 VMs that the Submission
and Negotiation phases using the OVF application descriptor
remains negligible. The time to contextualize is constant at
around 5 seconds. Deployment and Undeployment of the VMs
via OpenStack increases as the number of application server

Fig. 7: Linear relationships of application life-cycle phases against the number
of application server instances.

instances increases and oddly the initialization time of the
application decreases. This decrease in the initialization phase
time of the experiment is a artefact that can be attributed to
the specific application and additionally the mechanism used
to detect when initilaization of the application is complete.
It can be attributed to the non-deterministic nature in which
the application server instances register with the HAProxy
load balancer, where by only a single instance is required
for the application stack to be functional. As the number of
instances increases there is a higher probability that one of
these instances will be online and available to service requests.

Fig. 8: Power and CPU Utilization during deployment

From Figure 7 the linear relationships between the time
associated with the completion of each life-cycle phase and
the number of application server Instances can be seen. A
full set of the data from the experiment, including standard
deviation of phase times, can been seen in the Table I. From
the standard deviation it can be seen that the variance between
experimental iterations is minimal. Finally Figure 8 shows
the aggregated power consumption and CPU utilization as
a moving average of a single deployment of the three tier
web application using 2 application server instances and its
other associated VMs. From the graph it can be seen that
deployment and initialization of the virtual machines accounts
for the majority of energy consumed through the time period



TABLE I: Application life-cycle phases against number of application server instances.

Phase Application Server Instances

1 2 3 4 5

Submission 0.4s (+/- 0.59) 0.4s (+/- 0.40) 0.2s (+/- 0.40) 0.2s (+/- 0.40) 0.2s (+/- 0.40)

Negotiation 0.2s (+/- 0.40) 0.0s (+/- 0.40) 0.2s (+/- 0.40) 0.2s (+/- 0.40) 0.4s (+/- 0.49)

Contextualization 5.4s (+/- 0.80) 5.0s (+/- 0.80) 5.4s (+/- 0.80) 4.4s (+/- 0.80) 5.4s (+/- 0.80)

Deployment 56.0s (+/- 1.26) 72.4s (+/- 0.98) 87.8s (+/- 0.98) 103.2s (+/- 2.32) 120.0s (+/- 1.26)

Initialization 122.4s (+/- 3.61) 108.2s (+/- 3.72) 93.4s (+/- 3.72) 79.0s (+/- 2.85) 70.2s (+/- 4.02)

Undeployment 33.0s (+/- 1.10) 41.0s (+/- 0.80) 50.4s (+/- 0.80) 60.4s (+/- 1.50) 67.8s (+/- 0.75)

5-250 seconds. The initial phases of submission, negotiation
and contextualization that utilize an OVF description and are
directly attributable to the energy consumption of ASCETiC
architecture is minimal.

VII. CONCLUSION

This paper has highlighted the importance of providing
novel methods and tools to support software developers aiming
to optimise energy efficiency and minimise the carbon footprint
resulting from designing, developing, deploying and running
software at the different layers of Cloud stack while maintain-
ing other quality aspects of software to adequate and agreed
levels. In the architecture, energy efficiency is addressed at all
layers of the Cloud software stack and during the complete life-
cycle of a Cloud application. OVF is used to enable interoper-
ability between Cloud providers and as a data model across the
architectural layers. Its implementation, feasibility and perfor-
mance has been showcased via the deployment of a three tier
web application illustration, where by the introduction of OVF
and the ASCETiC architecture has minimal impact on life-
cycle phase times and host energy consumption. Future work
on the architecture will include support for the Topology and
Orchestration Specification for Cloud Applications (TOSCA)
[18] future proofing further Cloud provider interoperability.

ACKNOWLEDGMENTS

This work is partly supported by the European Commission
under FP7-ICT-2013.1.2 contract 610874 - Adapting Service
lifeCycle towards EfficienT Clouds (ASCETiC) project.

REFERENCES

[1] Alexander Nowak and Frank Leymann. Green Business Process Patterns
- Part II (Short Paper). In 6th IEEE International Conference on Service-

Oriented Computing and Applications, pages 168–173, Koloa, Hi, 2013.

[2] Anton Beloglazov, Jemal Abawajy, and Rajkumar Buyya. Energy-aware
resource allocation heuristics for efficient management of data centers
for Cloud computing. Future Generation Computer Systems, 28(5):755
– 768, 2012.

[3] Django Armstrong, Daniel Espling, Johan Tordsson, Karim Djemame,
and Erik Elmroth. Runtime Virtual Machine Recontextualization for
Clouds. In Euro-Par 2012: Parallel Processing Workshops, volume
7640 of Lecture Notes in Computer Science, pages 567–576. Springer
Berlin Heidelberg, 2013.

[4] ASCETiC. Requirements Specification and State of the Art. Deliverable
D2.1.1, February 2014. http://www.ascetic.eu/content/state-art.

[5] GEMBIRD Deutschland GmbH. EGM-PWM-LAN data sheet.
http://gmb.nl/Repository/6736/EGM-PWM-LAN manual—7f3db9f9-
65f1-4508-a986-90915709e544.pdf, 2013.

[6] Sebastian Götz, Claas Wilke, Sebastian Cech, and Uwe Aßmann. Run-
time variability management for energy-efficient software by contract
negotiation. Proceedings of the International Workshop on Models@

run. time, 2011.

[7] Wolfgang Hilty, Lorenz M.; Lohmann. The Five Most Neglected Issues
in ”Green IT”. CEPIS UPGRADE, 12(4):11–15, 2011.

[8] Timo Hönig, Christopher Eibel, Rüdiger Kapitza, and Wolfgang
Schröder Preikschat. SEEP: Exploiting Symbolic Execution for Energy-
aware Programming. In Proceedings of the 4th Workshop on Power-

Aware Computing and Systems, HotPower ’11, pages 4:1–4:5, New
York, NY, USA, 2011. ACM.

[9] Karim Djemame, Django Armstrong, Richard E. Kavanagh, Ana Juan
Ferrer, D. G. Perez, D. R. Antona, Jean-Christophe Deprez, Christophe
Ponsard, D. Ortiz, M. Macı́as, Jordi Guitart, Francesc Lordan, Jorge
Ejarque, Raul Sirvent, Rosa M. Badia, M. Kammer, Odej Kao, Eleni
Agiatzidou, Antonis Dimakis, Costas Courcoubetis, and L. Blasi.
Energy Efficiency Embedded Service Lifecycle: Towards an Energy
Efficient Cloud Computing Architecture. In Proceedings of the Energy

Efficient Systems (EES’2014) Workshop, 2nd International Confer-

ence on ICT for Sustainability 2014, volume 1203, page 1–6, Stock-
holm, Sweden, Aug 2014. CEUR Workshop Proceedings. http://ceur-
ws.org/Vol-1203/EES-paper1.pdf.

[10] Kay Grosskop and Joost Visser. Identification of Application-level
Energy Optimizations. In Lorenz M. Hilty, editor, Proceedings of

the First International Conference on Information and Communica-

tion Technologies for Sustainability (ICT4S’2013), Zurich, Switzerland,
February 2013.

[11] Sonja Klingert, Andreas Berl, Michael Beck, Radu Serban, Marco
Girolamo, Giovanni Giuliani, Hermann Meer, and Alfons Salden. Sus-
tainable Energy Management in Data Centers through Collaboration.
In Energy Efficient Data Centers, volume 7396 of Lecture Notes in

Computer Science, pages 13–24. Springer Berlin Heidelberg, 2012.

[12] Olli Mammela, Mikko Majanen, Robert Basmadjian, Hermann Meer,
Andre Giesler, and Willi Homberg. Energy-aware job scheduler
for high-performance computing. Computer Science - Research and

Development, 27(4):265–275, 2012.

[13] ASCETiC OVF Java Implementation - Available on SVN. https://
ascetic-dev.cit.tu-berlin.de/svn/trunk/utils/ovf-xmlbeans-api, Jan 2015.

[14] HAProxy - A Reliable, High Performance TCP/HTTP Load Balancer.
http://www.haproxy.org/, Jan 2015.

[15] JBoss Application Server. http://jbossas.jboss.org/, Jan 2015.

[16] MySQL - Open Source Database. http://www.mysql.com/, Jan 2015.

[17] OpenStack: Open source software for building private and public clouds.
http://www.openstack.org/, Jan 2015.

[18] Topology and Orchestration Specification for Cloud Applications - Ver-
sion 1.0. http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.
0-os.html, Jan 2015.

[19] Zabbix - An Enterprise-class Monitoring Solution. http://www.zabbix.
com/, Jan 2015.

[20] Open Virtualization Format (OVF) - A standard from the Distributed
Management Task Force. http://www.dmtf.org/standards/ovf, Jan 2015.

[21] OPTIMIS Toolkit. http://optimistoolkit.com, Jan 2015.

[22] XMLBeans. http://xmlbeans.apache.org/, Jan 2015.

[23] Michael Pawlish, Aparna S. Varde, and Stefan A. Robila. Cloud
Computing for Environment-friendly Data Centers. In Proceedings

of the Fourth International Workshop on Cloud Data Management,
CloudDB ’12, pages 43–48, New York, NY, USA, 2012. ACM.

[24] Steven te Brinke, Somayeh Malakuti, Christoph Bockisch, Lodewijk
Bergmans, and Mehmet Aksit. A design method for modular energy-
aware software. In Sung Y. Shin and Jose Carlos Maldonado, editors,
Procedings of the 28th Annual ACM Symposium on Applied Computing

(SAC’2013, pages 1180–1182. ACM, 2013.

https://ascetic-dev.cit.tu-berlin.de/svn/trunk/utils/ovf-xmlbeans-api
https://ascetic-dev.cit.tu-berlin.de/svn/trunk/utils/ovf-xmlbeans-api
http://www.haproxy.org/
http://jbossas.jboss.org/
http://www.mysql.com/
http://www.openstack.org/
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://www.zabbix.com/
http://www.zabbix.com/
http://www.dmtf.org/standards/ovf
http://optimistoolkit.com
http://xmlbeans.apache.org/

	Introduction
	Related Work
	Energy Efficient Cloud Architecture
	Life-cycle, Energy-Awareness and OVF
	Experimental Design
	Cloud Testbed
	Cloud Application & Experimental Set-up

	Results
	Conclusion
	References

