
elifesciences.org

Dowdy et al. eLife 2014;3:e02565. DOI: 10.7554/eLife.02565 1 of 24

A user-friendly, open-source tool to 
project impact and cost of diagnostic 
tests for tuberculosis
David W Dowdy1,2*, Jason R Andrews3†, Peter J Dodd4, Robert H Gilman5

1Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 
Baltimore, United States; 2Center for Tuberculosis Research, Johns Hopkins University, 
Baltimore, United States; 3Division of Infectious Diseases, Department of Medicine, 
Massachusetts General Hospital, Boston, United States; 4School of Health and 
Related Research, University of Sheffield, Sheffield, United Kingdom; 5Department of 
International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, 
United States

Abstract Most models of infectious diseases, including tuberculosis (TB), do not provide results 
customized to local conditions. We created a dynamic transmission model to project TB incidence, 
TB mortality, multidrug-resistant (MDR) TB prevalence, and incremental costs over 5 years after 
scale-up of nine alternative diagnostic strategies. A corresponding web-based interface allows users 
to specify local costs and epidemiology. In settings with little capacity for up-front investment, 
same-day microscopy had the greatest impact on TB incidence and became cost-saving within 5 years 
if delivered at $10/test. With greater initial investment, population-level scale-up of Xpert MTB/RIF 
or microcolony-based culture often averted 10 times more TB cases than narrowly-targeted 
strategies, at minimal incremental long-term cost. Xpert for smear-positive TB had reasonable 
impact on MDR-TB incidence, but at substantial price and little impact on overall TB incidence and 
mortality. This user-friendly modeling framework improves decision-makers' ability to evaluate the 
local impact of TB diagnostic strategies.
DOI: 10.7554/eLife.02565.001

Introduction
Infectious disease transmission models are important tools for translating the best current know-
ledge of the natural history and epidemiology of infectious diseases into projections of epidemio-
logical impact (e.g., incidence, mortality) and costs under alternative strategies for disease control 
(Garnett et al., 2011). Currently, most published transmission models are either loosely calibrated to 
reflect global/regional outcomes or more tightly fit to specific epidemiological settings; in either case, 
model results may be difficult for local decision-makers in the majority of public health settings to 
utilize. Simplified models designed for in-country use by decision-makers, most notably the Spectrum 
suite of models supported by the Futures Institute (Stover et al., 2010), have been used to inform 
decision-making in the fields of reproductive health and human immunodeficiency virus (HIV) for over 
a decade (Stover, 2004). Estimates from the Spectrum models are now routinely incorporated into 
official global and country-level estimates of HIV disease burden (Brown et al., 2010) and intervention 
impact (Farnham et al., 2013). Other simplified models are readily available for impact projections 
related to non-infectious diseases, where transmission assumptions are less important (Betz Brown 
et al., 2000; Walker et al., 2013). However, to date, simple, user-friendly transmission models have 
not been widely used for decision-making related to many infectious diseases other than HIV. Diagnosis 
of active tuberculosis (TB) is an example of a public health intervention for which transmission models 
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may provide guidance on both global (Dowdy et al., 2006; Abu-Raddad et al., 2009) and country-
specific levels (Menzies et al., 2012). Specifically, an unprecedented number of new diagnostic strate-
gies for active TB are now recommended by the World Health Organization (WHO), including same-day 
microscopy (World Health Organization, 2011), microcolony-based culture techniques (Leung et al., 
2012) such as the microscopic-observation drug-susceptibility (MODS) assay (Moore et al., 2006), 
line-probe assays for drug susceptibility testing (Bwanga et al., 2009), and Xpert MTB/RIF (‘Xpert’), a 
molecular assay capable of providing results (including rifampin resistance) in 90 min with minimal 
human resource requirements (Boehme et al., 2010, 2011). TB program decision-makers must 
repeatedly determine when to invest in scaling up a novel diagnostic test, which test(s) to promote, 
and whether the implementation strategy should differ by epidemiological situation (Cobelens et al., 
2012). Without transmission models to provide locally relevant estimates of cost and impact under 
alternative implementation strategies, such decisions will be made without systematically considering 
the implications of available scientific evidence.

To aid in this decision-making process, we created a flexible, simple modeling tool that allows 
non-expert users to define their local situation according to three key epidemiological parameters 
(TB incidence, proportion of new TB cases that are multidrug-resistant [MDR], and adult human immu-
nodeficiency virus [HIV] prevalence) and local unit costs of TB diagnosis and treatment. This tool then 

eLife digest Tuberculosis is an infectious bacterial disease caused predominantly by the 
microorganism Mycobacterium tuberculosis. Although the number of deaths from tuberculosis has 
been falling in recent years, the disease still kills more than 1 million people every year, mainly in 
developing countries. Tuberculosis can be treated with antibiotics, but the emergence of bacteria 
that are resistant to existing drugs is threatening efforts to eradicate the disease.

Preventing the spread of tuberculosis is heavily dependent on accurate diagnosis of individuals 
with the disease. This is challenging because the initial symptoms are often mild, usually just a 
cough, which means that someone can spread the disease to many others over a period of several 
months before the symptoms become worse—fever, night sweats, and weight loss—and they 
realize that they are sick. Multiple diagnostic strategies are available, from the relatively low-tech—
examining sputum samples under a microscope to detect tuberculosis bacteria—to more 
sophisticated tests that can detect bacterial DNA and determine whether the bacteria are drug-
resistant in less than 2 hr.

Choosing which diagnostic strategy to adopt can be challenging because the optimal solution in 
a region will depend on the specific local conditions. To overcome this problem, Dowdy et al. have 
developed a computer program that enables decision-makers to input four key parameters that 
describe the tuberculosis situation in their region, and to obtain 5-year projections of the rate of 
new infections, mortality, and total costs likely to result from adopting any of nine different 
diagnostic strategies.

The four parameters are the number of new cases of tuberculosis each year (incidence), the 
proportion of new cases that are multi-drug resistant, the proportion of the adult population that 
has HIV, and the local costs of various diagnostic techniques and treatments. Since the entire 
computer program is written in a freely available open-source programming language (Python), any 
user can tweak these parameters to provide a more precise fit to their own region. Alternatively, the 
standard version of the program can be run directly from a website without any need to interact 
with computer code.

This model is the first to enable local decision-makers to evaluate the impact of different 
diagnostic strategies for tuberculosis under the conditions specific to their region. The model 
predicts, for example, that in areas where there is little money available for up-front  
investment, same-day microscopy analysis of sputum samples and starting patients on treatment 
is the most cost-effective strategy for reducing the rate of new infections. Given the wide 
variation in conditions within even small geographical areas, this more flexible approach should 
lead to the more efficient use of resources and may, ultimately, help to reduce the spread of 
tuberculosis.
DOI: 10.7554/eLife.02565.002
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incorporates those estimates into a combined decision analysis-transmission framework to generate 
5-year projections of TB incidence, mortality, and control costs for nine diagnostic strategies (Figures 1 
and 2). These strategies are:
 
1. ‘Baseline’: Sputum smear microscopy for each diagnostic attempt, with liquid-media TB culture 

only to evaluate smear-positive cases with a history of previous TB treatment for drug resistance. 
(Cultures in all scenarios trigger drug-susceptibility testing if positive.)

2. ‘TB culture if previously treated’: Sputum smear microscopy used for patients without a history 
of TB treatment; smear plus liquid-media culture used to diagnose TB in any previously treated 
individual with symptoms (regardless of smear status).

3. ‘Xpert if HIV-positive’: Xpert MTB/RIF for HIV-infected patients only, with a positive test for  
rifampin resistance triggering treatment for MDR-TB. Xpert is assumed to be deployed at the 
district level, such that results cannot generally be provided during the same clinical encounter 
(Lawn et al., 2012). This strategy is conceived as a ‘best-case’ scenario for HIV-targeted  
TB testing: if individuals unaware of their HIV status are not tested with Xpert, this strategy will 
overestimate effectiveness, and if those unaware of their status are tested, it will underestimate 
costs.

4. ‘Xpert if Smear-Positive’: Xpert MTB/RIF for smear-positive patients only (i.e., for rapid DST), with 
a positive test for rifampin resistance triggering treatment for MDR-TB.

5. ‘Xpert for All’: Xpert MTB/RIF for all patients.
6. ‘Xpert with Culture DST Confirmation’: Xpert MTB/RIF for all patients, but treatment for MDR-TB 

only initiated if rifampin resistance is confirmed by culture.
7. ‘MODS/TLA’: Sputum smear, plus microcolony-based TB culture (e.g., MODS or thin-layer agar, 

TLA) for all patients.
8. ‘Same-Day Microscopy’: Double the per-test cost of sputum smear microscopy, in exchange for 

the ability to provide results to patients in the same clinical encounter (e.g., with peripheral,  
unbatched reading of sputum smears).

9. ‘Same-Day Xpert’: Double the per-test cost of Xpert MTB/RIF, in exchange for the ability to pro-
vide results to patients in the same clinical encounter (e.g., peripheral deployment, with greater 
costs reflecting lower volume per machine [Vassall et al., 2011]).

 
For purposes of illustration, we evaluated each of these diagnostic strategies in four emblematic 

epidemiological settings, defined by TB incidence, MDR-TB prevalence among new cases, and adult 
HIV prevalence:
 
1. ‘Reference/High-Incidence Setting’ (e.g., Southeast Asia): TB incidence 250 per 100,000/year 

(twice the global incidence [World Health Organization, 2012]), MDR-TB prevalence of 3.7% in 
new TB cases (the estimated global prevalence [World Health Organization, 2012]), adult HIV 
prevalence of 0·83% (the estimated global prevalence [UNAIDS, 2012]);

2. ‘Low-Incidence Setting’ (e.g., United States, Western Europe): TB incidence at entry of 8.9 per 
100,000/year and declining, with similar MDR-TB (as a proportion of new cases) and HIV preva-
lence as above;

3. ‘High MDR Setting’ (e.g., former Soviet Union): TB incidence 100 per 100,000/year, MDR-TB  
prevalence of 10% in new TB cases, adult HIV prevalence of 0.83%; and

4. ‘High HIV Setting’ (e.g., sub-Saharan Africa): Adult HIV prevalence of 20%, TB incidence 500 per 
100,000, and MDR-TB prevalence among new cases of 3.7%.

 
In each setting, we used a uniform set of costs for purposes of comparison (Table 1). Although 

these four settings form the basis of the results presented here, decision-makers can use the 
open-source model program (included as Supplementary file 1, written in the open-source pro-
gramming language Python, Version 2.7, www.python.org) to re-define any parameter in Table 1 
according to their best local knowledge; a manual for doing so is also included as Supplementary 
file 2. Capacity to create non-equilibrium settings (e.g., declining TB incidence, increasing MDR-TB) 
is included. We also provide a web-based interface (flexdx.modeltb.org) that allows users to input 
local TB incidence, MDR-TB prevalence, HIV prevalence, and unit costs; this interface provides cus-
tomized results without the requirement to manipulate programming code. The program corre-
sponding to the web version is also available on a public repository (https://github.com/JJPennington/
FlexDx-TB-Web-Django).
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Results
Model validation
To validate the model, we compared selected model outcomes to published global estimates. In the 
high-incidence setting, our model estimated TB mortality at 14% of incidence (95% uncertainty range: 
7–20%, WHO global estimate 14% [World Health Organization, 2012]), HIV-associated TB at 13% of 
all incident TB (95% uncertainty range: 4–14%, global estimate 13% [World Health Organization, 
2012]), previously treated cases at 13% of all incident cases (95% uncertainty range: 9–34%, global 
estimate 14% [World Health Organization, 2012]), and duration of TB disease at 1.2 years (95% uncer-
tainty range 0.8–2.1, global estimate 1.4 years [World Health Organization, 2012]). Our model esti-
mated that MDR-TB prevalence in previously treated cases was 15.4% (WHO estimate 20% [World 
Health Organization, 2012]), but unlike our model, WHO notifications often count failure and recur-
rence after default (in the same person) as two separate cases. At steady-state in the model, 80% of 
incident TB was due to recent infection rather than reactivation.

Comparison of diagnostic strategies in the high incidence scenario
Figure 3 shows the projected incremental 5-year cost and impact of each of nine selected diagnostic 
strategies (described in greater detail in the ‘Materials and methods’ section), in the high-incidence 
scenario. In general, both the cost and impact of targeted strategies (culture for retreatment, Xpert for 

Figure 1. Overview of user-friendly model. Users are asked, via open-source computer script or Web interface, to select one of the nine diagnostic 
strategies and to provide unit costs and three basic epidemiological parameters (TB incidence, MDR-TB prevalence among new cases, and adult HIV 
prevalence). The selected diagnostic strategy is used to populate a decision tree that calculates (a) the probability of missed diagnosis, unsuccessful 
treatment, and successful treatment, (b) costs, and (c) diagnostic delays. These outputs depend on patients' TB (yes/no, and drug susceptibility status), 
HIV, and TB treatment history status. The selected epidemiological parameters are then used to populate a dynamic transmission model, creating a 
steady-state population that reflects local TB epidemiology. The decision tree—which inputs user-defined unit costs—is then incorporated into the 
transmission model to project outcomes under the selected diagnostic scenario. Users can sequentially select multiple diagnostic scenarios for 
comparison, and the computer script (though not the Web interface) allows users to manipulate input parameters at their discretion.
DOI: 10.7554/eLife.02565.003
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HIV-positive, Xpert for smear-positive) on incidence were small relative to broader diagnostic strate-
gies (Xpert for all, MODS/TLA, same-day Xpert). The incremental cost-effectiveness, in terms of cost 
per case averted (i.e., slope of the line from origin to each point in Figure 3), was similar across all 
strategies with the exception of same-day smear, which was cost-saving and had greater effectiveness 
than the baseline. Same-day microscopy remained cost-saving by year 5 as long as same-day results 
could be provided at less than five times the per-smear cost of routine results (i.e., <$10/test). Among 
the targeted strategies, Xpert for smear-positives was the most expensive but had the greatest impact 
on MDR-TB cases averted, whereas Xpert for HIV-infected individuals and culture for retreatment 
cases offered smaller gains at lower cost. Among the broad strategies, culture confirmation of rifampin-
resistant tests on Xpert saved costs with little reduction in effectiveness. There was little difference 
between culture-confirmed Xpert and MODS/TLA, and same-day Xpert was the most expensive and 
most effective strategy.

Comparison of diagnostic strategies across settings
The projected impacts and costs of the nine diagnostic strategies relative to the baseline strategy, in 
each of four selected epidemiological settings, are shown in Figure 4. In all four settings, the ranking 
of diagnostic strategies remained similar for all outcomes, although the cost of broader diagnostic 
strategies relative to targeted strategies fell substantially over 5 years in higher-incidence settings as 
the broader strategies generated declines in TB incidence. In the low-incidence setting, where a higher 
proportion of TB treatments are false-positive and more incident TB is also due to reactivation (60% of 
all new cases), the relative cost of improved TB diagnosis was the highest, while the relative impact 
was the least. In the high HIV setting, the impact of diagnostic interventions on TB incidence was 

Figure 2. Transmission model of TB diagnosis. Boxes represent sub-populations in the model, and arrows 
represent rates of movement between those sub-populations. Parallel structures exist for: (a) HIV-infected vs 
HIV-uninfected; (b) never-treated vs previously treated (for TB); and (c) among TB-infected individuals, drug- 
susceptible vs isoniazid-monoresistant vs rifampin-resistant (including MDR). ‘Pre-diagnostic’ TB refers to individu-
als who are infectious but have not yet begun to seek care. Mortality occurs from all sub-populations (not shown), 
and at a higher rate among those with HIV and active TB.
DOI: 10.7554/eLife.02565.004
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Table 1. Model input parameters*

Parameter Value Reference(s)/Rationale

TB and HIV Transmission

Transmission rate, per smear-positive/highly  
 infectious person-year

Calibrated to user-defined TB incidence†

Proportional reduction in per-case transmission  
 rate, MDR-TB

Calibrated to user-defined MDR-TB 
prevalence†

Proportional reduction in fitness,  
 isoniazid-monoresistant TB

25% of MDR-TB  
reduction

Assumption

HIV incidence rate, per year Calibrated to user-defined HIV prevalence†

Relative transmission rate from  
 smear-negative/less infectious TB

0.22 (Behr et al., 1999)

Proportion of pulmonary TB that is  
 smear-positive/highly infectious

 HIV-negative 0.63 (Steingart et al., 2006a; Steingart et al., 
2006b)

 HIV-infected 0.50 (Getahun et al., 2007)

TB Progression

Endogenous reactivation rate

 HIV-negative 0.0005/year (Horsburgh et al., 2010)

 HIV-infected 0.05/year (Antonucci et al., 1995)

Proportion of recent infections resulting in  
 rapid progression

 HIV-negative 0.14 (Vynnycky and Fine, 1997; Dye et al., 
1998)

 HIV-infected 0.47 0.75 without ART, (Daley et al., 1992)

75% reduction if on ART, (Williams et al., 
2010) 50% ART coverage

Reduction in TB rapid progression probability  
 due to latent TB infection (HIV-negative only)

0.79 (Andrews et al., 2012)

TB Mortality and Resolution

Life expectancy at age 15 55 years (World Bank, 2012)

Annual mortality from HIV 0.05/year (UNAIDS, 2012)

Annual mortality from TB

 HIV-negative, smear-positive/highly infectious 0.23/year (Tiemersma et al., 2011)

 HIV-negative, smear-negative/less infectious 0.07/year (Tiemersma et al., 2011)

 HIV-infected 1.0/year (Corbett et al., 2003; Corbett et al., 2007; 
Wood et al., 2007)

Rate of spontaneous TB resolution  
 (HIV-negative only)

 Smear-positive/highly infectious 0.1/year (Tiemersma et al., 2011)

 Smear-negative/less infectious 0.27/year (Tiemersma et al., 2011)

TB Treatment Outcomes and Emergence of Drug Resistance

Probability of failure or relapse (within 1 year)

 Drug-susceptible 0.04 (World Health Organization, 2012)

 INH-monoresistant, first-line therapy 0.21 (Menzies et al., 2009b)

 INH-monoresistant, retreatment or 2nd-line 0.16 (Menzies et al., 2009b)

 MDR-TB, first-line or retreatment 0.50 (Espinal et al., 2000)

 MDR-TB, second-line therapy 0.30 (World Health Organization, 2010)

Table 1. Continued on next page
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Parameter Value Reference(s)/Rationale

Proportion of one-year recurrence due to failure

 Drug-susceptible 0.14 (Lew et al., 2008)

 INH-monoresistant 0.33

 MDR-TB 0.56

Probability of acquired drug resistance  
 (per treatment course)

 Susceptible becoming INH-monoresistant 0.001 (Menzies et al., 2009a; Menzies et al., 
2009b)

 Susceptible becoming MDR-TB 0.002

 INH-monoresistant becoming MDR-TB 0.045

 If treated with 2 effective drugs for >6 mos 0.017

Behavioral Parameters

Infectious months before starting to seek care

 HIV-negative 9 months (Dowdy et al., 2013)

 HIV-infected 1 month (Corbett et al., 2004)

Diagnostic frequency while seeking care 5.0/year (Storla et al., 2008; Sreeramareddy et al., 
2009)

Probability of treatment in a TB patient  
 whose microbiological test is negative

0.25 (Wilkinson et al., 2000; Dowdy et al., 
2008)

Loss to follow-up between diagnostic  
 presentation and treatment initiation

 Sputum smear or GXP (not same-day) 0.15 (MacPherson et al., 2014)

 Culture (microcolony or commercial liquid) 0.25 (Dowdy et al., 2008)

 Same-day diagnosis 0 Assumption

Diagnostic Accuracy

Sensitivity for smear-negative/less-infectious TB

 Sputum smear microscopy 0

 Xpert MTB/RIF 0.72 (Brownell et al., 2012)

 Culture (microcolony or commercial liquid) 0.85 (Cruciani et al., 2004; Leung et al., 2012)

Specificity for TB (Steingart et al., 2006; Boehme et al., 
2011; Leung et al., 2012)

 Sputum smear microscopy 0.98

 Xpert MTB/RIF 0.98

 Microcolony culture 0.98

Sensitivity for drug resistance (if TB detected)

 Microcolony culture (rifampin and isoniazid) 0.98 (Minion et al., 2010)

 Xpert MTB/RIF (rifampin only) 0.94 (Boehme et al., 2011)

Specificity for drug resistance (if TB detected)

 Microcolony culture (isoniazid) 0.96 (Minion et al., 2010)

 Microcolony culture (rifampin) 0.99 (Minion et al., 2010)

 Xpert MTB/RIF (rifampin) 0.98 (Boehme et al., 2011)

Diagnostic Delay and non-TB Care-Seeking

Days from presentation to treatment initiation

 Sputum smear or Xpert MTB/RIF 7 days Assume 1 week

 Microcolony or commercial liquid culture 30 days (Boehme et al., 2011)

Table 1. Continued

Table 1. Continued on next page
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diminished relative to the high-incidence setting, though the impact on TB mortality was similar. 
Additionally in this setting, the Xpert for HIV-positive strategy was substantially more costly, but also 
more effective, than in other settings.

Sensitivity analyses
The impact of the ‘Xpert for all’ strategy on TB incidence (selected a priori as the primary outcome for 
sensitivity analysis) was most sensitive to three parameters, both in terms of absolute effects on impact 
estimates and partial rank correlation coefficients. These three parameters were: (1) the proportion of 
TB patients who would be empirically treated even if microbiologic testing yielded a negative result 
(‘empiric treatment proportion’), (2) duration of infectiousness before seeking care (‘pre-diagnostic 
delay’), and (3) rate of reactivation from latent infection to active disease (‘reactivation rate’). For this 
latter parameter, in-depth investigation revealed that the key determinant was not the reactivation 
rate per se, but rather the proportion of active TB representing recent vs remote infection. If the empiric 
treatment proportion was increased from 25% to 37.5%, the projected reduction in TB incidence fell 
from 20% to 13%. By contrast, when only 12.5% of false-negative patients were started on therapy, 
‘Xpert for all’ achieved a 31% reduction in incidence. Corresponding reductions in incidence with 
‘Xpert for all’ (20% at baseline) included: 27% if pre-diagnostic delay was shortened from 9 months to 
4.5 months, 14% if pre-diagnostic delay was lengthened to 13.5 months, 15% if the reactivation rate 
was doubled from 0.05% to 0.1% per year, and 23% if reactivation was halved to 0.025% per year. The 
projected 5-year reduction in incidence for this strategy did not fall outside the range of 12–25% under 
variation of any other model parameter, up to 50% of that parameter's baseline value (Table 1).

Both costs and incremental costs were more sensitive to the cost of TB treatment than the cost of 
diagnostics. For example, doubling the cost of first-line therapy (from $500 to $1000 per person) aug-
mented the incremental year 1 costs for ‘Xpert for all’ from a 57% increase over baseline to a 77% 
increase, and doubling the cost of MDR therapy (from $5000 to $10,000 per person) generated an 

Parameter Value Reference(s)/Rationale

Months of therapy before a failing regimen will  
 be changed, or before default and recurrence

6 months Assumption

Annual rate of diagnostic evaluation for TB,  
 among people who do not have active TB

0.01/year 10% of suspects have TB, high-incidence 
setting

Cost Parameters (user-defined; values below for comparison purposes only)

Per-patient cost of TB therapy

 First-line US$500 User-defined

 Retreatment US$1000 (Vassall et al., 2011)

 Second-line/MDR US$5000 (Vassall et al., 2011)

 Outpatient visit (diagnosis or follow-up) US$10 (Vassall et al., 2011)

Per-test cost:

 Sputum smear US$2 (Vassall et al., 2011)

 Same-day sputum smear US$10 Assumption

 Xpert MTB/RIF US$15 (Vassall et al., 2011)

 Same-day Xpert MTB/RIF US$30 Assumption

 Microcolony culture (with DST) US$5 (Solari et al., 2011)

 Commercial liquid-media culture US$20 (Vassall et al., 2011)

 Commercial liquid-media culture + DST US$40 (Vassall et al., 2011)

*In the actual model program (Supplementary file 1), users can change any parameter based on local values.
†For reference, the transmission rate (in infections per person-year during diagnosis-seeking active TB) is 36.9 in 
the reference scenario, 14.0 in the low-incidence scenario, 25.4 in the high MDR scenario, and 12.9 in the high HIV 
scenario. Corresponding proportional reductions in MDR-TB transmission rate are 0.23, 0.23, 0.21, and 0.19; and 
HIV incidence estimates (per 1000 adult person-years) are 0.7, 0.6, 0.6, and 18.9.
DOI: 10.7554/eLife.02565.005

Table 1. Continued
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86% increase in incremental year 1 costs, whereas doubling the unit cost of Xpert (from $15 to $30) 
only resulted in a 72% increase. Unit costs other than those for first-line treatment, MDR treatment, 
and the diagnostic modality under study in each scenario were not important determinants of incre-
mental costs.

Discussion
To date, most transmission models of infectious disease control interventions present results that 
are not directly usable by decision makers because they are not customizable to local conditions. We 
present a flexible, user-friendly model of TB diagnosis and transmission that allows users without 

Figure 3. Incremental 5-year cost and impact of TB diagnostic strategies, high-incidence setting. Shown are 
cumulative projected 5-year costs and impact (averted TB cases [panel A] or MDR-TB cases [panel B]) of each 
diagnostic strategy described in the Introduction, incremental to the baseline strategy, per 100,000 population. 
Strategies with greater impact appear to the right on the x-axis; more costly strategies appear higher on the y-axis. 
The same-day smear strategy is cost-saving but shown at an incremental cost of $0 for simplicity.
DOI: 10.7554/eLife.02565.006
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Figure 4. Relative impact of diagnostic strategies in emblematic settings. Shown are projected changes in TB incidence, MDR-TB incidence,  
TB mortality, and costs (in Year 1 and Year 5 after immediate implementation), relative to baseline (Strategy 1) after implementing each of the diagnostic 
Figure 4. Continued on next page

http://dx.doi.org/10.7554/eLife.02565
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modeling expertise to define an epidemiologic setting (according to TB incidence, MDR-TB prevalence, 
and HIV prevalence) and unit costs, evaluating various diagnostic strategies in that setting in terms of 
population-level costs and impact. While this model cannot precisely replicate the epidemiological 
situation in any given location, it applies a standardized methodology across a wide range of settings, 
thereby illustrating important interactions between epidemiological parameters and projected impact. 
We provide both a web interface for rapid calculations and full model code whereby users can change 
any model parameter for ‘personalized’ sensitivity analysis. Our model results suggest that the rank-
ordering of diagnostic strategies may be relatively stable across epidemiological settings, but that the 
actual population-level costs and impact differ dramatically. This model also serves as an example of 
how epidemiologists can provide decision-makers across a wide variety of local settings with rapid 
access to customizable ‘first-pass’ projections of cost and impact from transmission models without 
the need to construct tightly fitted models to represent all epidemiological settings.

Our results provide important guidance to TB decision-makers. Specifically, in settings where 
little additional up-front investment is possible (<25% increase in TB control budget), same-day 
microscopy has the greatest impact on TB incidence with no increase in overall cost at 5 years, pro-
vided that same-day microscopy can be feasibly delivered for less than $10 per patient.  For settings 
in which containing MDR-TB is the most important consideration, Xpert for smear-positives has the 
greatest effectiveness for this outcome, but at substantial price and very little impact on overall 
TB incidence and mortality. Xpert for HIV-positives and culture for retreatment cases both offer mean-
ingful, albeit small, gains; the cost and impact of these strategies are the highest in HIV-endemic set-
tings. In settings where more initial investment is possible (about 50% increase in TB control budget), 
broader scale-up of either Xpert or MODS/TLA for all TB diagnosis can offer substantially greater 
benefits, both in terms of reduced incidence (often 10 times more TB cases averted than with the more 
narrowly-targeted strategies above) and long-term costs (in that the incremental cost of these strate-
gies declines greatly by Year 5). In general, culture confirmation of positive Xpert results before com-
mitting to a course of second-line therapy is preferred. Finally, where the greatest impact is sought, 
combination of Xpert for all plus infrastructure for same-day diagnosis achieves this aim in all settings, 
but at the highest cost.

Although this model represents a highly simplified framework, it compares well to other global 
estimates to which it was not fit (e.g., WHO estimates of TB mortality, previously treated TB, HIV-
associated TB, and MDR-TB prevalence among previously treated cases). Its results are also similar to 
those of other mathematical models of TB diagnosis that are fit to specific locations. For example, 
Menzies et al. (2012) modeled scale-up of Xpert for people living with HIV in southern Africa, esti-
mating a 6% reduction in incidence, 21% reduction in TB mortality, 25% reduction in MDR-TB inci-
dence that declines to <10% over a longer time frame, and 40% increase in costs (not including costs 
of antiretroviral therapy). Our corresponding estimates for the Xpert for HIV-positive strategy in the 
high-HIV setting are 5% reduction in incidence, 25% reduction in TB mortality, 7% reduction in MDR-TB 
incidence, and increase in costs from 41% (year 1) to 28% (year 5). For purposes of deciding between 
alternative strategies of scaling up TB diagnostics, the estimates from these two models are likely to 
provide similar guidance.

For any such simplified transmission model to have an impact on decision-making, it is important to 
consider who the eventual users of such a model might be, and to develop the model in consultation 
with those groups. In this case, we identified a number of potential end-user organizations including 
technical assistance agencies (e.g., KNCV Tuberculosis Foundation), funding bodies (e.g., Global Fund 
for AIDS, Tuberculosis, and Malaria), non-governmental organizations (e.g., Medecins Sans Frontiers), 
National Tuberculosis Programs, and regional offices of the World Health Organization. We then 
invited representatives of these organizations to attend a 1-day workshop (April 2014, The Hague, The 

strategies described in the text. Epidemiological outcomes are measured at the end of Year 5. Panel A (high incidence) shows a setting with  
TB incidence of 250 per 100,000/year, stable MDR-TB prevalence of 3.7% among new cases, adult HIV prevalence of 0.83%, and cost of $500 to treat one 
case of TB with first-line therapy. In panel B (low incidence), the TB incidence is reduced to 8.3 per 100,000/year (implemented by gradual decline in 
incidence over 50 years). In panel C (high MDR), MDR-TB prevalence among new cases is set at 3.7% in the beginning of year 1, increasing to 10.7% by 
the end of year 5. In panel D (high HIV), adult HIV prevalence is set to 20% and TB incidence is set to 500 per 100,000/year.
DOI: 10.7554/eLife.02565.007
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Netherlands) describing methods and challenges related to modeling of TB diagnostics in general, 
including this transmission model in particular. We developed ‘hands-on’ exercises for participants to 
better learn the model and solicited specific feedback, which is being incorporated into the model struc-
ture and web interface in ongoing fashion. We next intend to develop a series of informal ‘case studies’ 
whereby the use of this model for in-country decision-making can be demonstrated and disseminated.

As with any modeling analysis, this research has important limitations. In order to provide sufficient 
flexibility and generalizability, we make a number of strong assumptions that include a constant pop-
ulation, homogeneous mixing, no change in parameter values over time, and simplistic incorporation 
of HIV and drug resistance. Without making such simplifying assumptions, it is impossible to deliver a 
flexible modeling framework that can generate transparent, customizable, rapid results (i.e., without 
complex statistical fitting to each individual epidemiological scenario). This model can replicate 
user-defined TB incidence, MDR-TB prevalence, and HIV incidence but does not describe the break-
down of these values in key subpopulations (e.g., congregate settings or geographical ‘hotspots’), nor 
does it incorporate operational aspects of the TB diagnostic system in any one setting. Thus, this 
model does not ameliorate the need for more detailed models in settings where precise estimates are 
needed; rather it provides access to ‘first-pass’ estimates in settings (i.e., the vast majority of local 
decision-makers) where such tightly calibrated model projections are not available. This model focuses 
on transmission dynamics and thus does not include pediatric TB and extrapulmonary TB; these 
largely non-infectious disease manifestations remain very important components of the TB epidemic 
that are not captured here. We validate our model against global estimates and other models; ideally, 
further validation would be performed over time using field data across a wide variety of settings. Our 
model allows users to define three key epidemiological parameters (as well as other model assump-
tions within the program), but data to inform even these three parameters—as well as unit costs—are 
unlikely to be available on sub-national levels. As a result, users wishing to adapt the model to a 
smaller geographic scale will need to perform additional data-gathering exercises to inform these 
estimates if they wish to maximize the utility of the model.

Nevertheless, even if high-quality data are not available at the local level, this model allows deci-
sion-makers to estimate epidemiological and economic values according to reasonable assumptions 
(e.g., comparison of TB notification rates or budget line-items to those in the published literature or at 
the national level), vary those assumptions in real-time, and obtain corresponding projections of com-
parative impact that incorporate the best available current data on epidemiological or natural history 
parameters (e.g., TB progression and reactivation). Future efforts might also provide flexibility to 
specify operational characteristics (e.g., health system capacity) as well.

A final concern is that, by providing users the ability to specify TB incidence, MDR-TB prevalence, 
and adult HIV prevalence, a number of scenarios can be created (e.g., low TB incidence and very high 
adult HIV prevalence) that are not epidemiologically realistic. Although there is danger in allowing 
uninformed users to make projections for such scenarios (and the model will reject or alert users to 
highly implausible values), we believe that this risk is outweighed by the benefit of providing full flexi-
bility to model epidemiological scenarios (e.g., sub-district level data) that will never be captured by a 
limited number of closely-calibrated TB transmission models.

In summary, we have created a flexible modeling framework that allows users without modeling 
expertise to generate simulated populations with locally relevant values for TB incidence, MDR-TB 
prevalence, adult HIV prevalence, and TB treatment costs. By comparing an array of diagnostic options 
across emblematic epidemiological scenarios, we provide guidance to decision-makers who seek to 
ascertain the optimal diagnostic strategy to achieve their selected disease control targets, and to do 
so using a standardized methodology. Success in the fight against infectious disease generally, and TB 
specifically, depends on our ability to place global knowledge in the hands of local decision-makers, 
enabling them to choose those interventions that are likely to have the greatest impact, given existing 
resources and local epidemiological realities. This flexible modeling framework of diagnostic interven-
tions takes an important step in that direction.

Materials and methods
Transmission model
Using previously published models of TB diagnostics as a guide (Dye et al., 1998; Abu-Raddad et al., 
2009; Menzies et al., 2012; Dowdy et al., 2013), we constructed a transmission model of TB using 
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ordinary differential equations. This model categorizes patients according to HIV status (positive or 
negative), TB treatment status (never treated or previously treated), TB disease status (as shown in 
Figure 2), and among those who are infected with TB, drug resistance status (susceptible, isoniazid-
monoresistant, and rifampin-resistant including MDR), and level of infectiousness (smear-negative/
less-infectious and smear-positive/highly infectious). Individuals enter the model at age 15, and TB 
with no pulmonary component (i.e., not infectious) is not included. For purposes of transparent com-
munication, we chose a population size of 100,000 (to match standard reporting of TB outcomes) and 
assumed a constant population with no net population growth or immigration/emigration. After con-
structing the transmission framework, we used decision analysis to estimate (a) the probability of each 
diagnostic outcome; (b) the diagnostic delay; and (c) the cost of TB diagnosis and treatment under 
each of the nine diagnostic strategies, assuming immediate implementation at the beginning of a 
given year (‘Year 1’). Two separate authors (DWD and PJD) independently coded the model; these 
models gave comparable results.

Model initiation
After setting probabilities and costs under each diagnostic strategy, we then created a flexible mod-
eling structure capable of generating epidemiological scenarios as a function of three variables, which 
the user specifies: HIV prevalence (assuming a global mean level of antiretroviral therapy coverage), 
TB incidence, and MDR-TB prevalence among new TB cases. We accomplished this by allowing three 
key parameters to vary across model scenarios: annual HIV incidence, rate of TB transmission per 
smear-positive/highly infectious person-year, and relative per-case transmission rate of rifampin-resistant 
TB. We also allow users to specify all relevant unit costs for TB diagnosis and treatment; other model 
parameters were estimated from existing literature (Table 1). We then created a program that numerically 
generates a unique steady-state population meeting the user-defined values; this population serves as 
the baseline strategy (Strategy 1 above) at the beginning of the time frame under evaluation. The 
program has flexibility to create its steady-state population 50 years in the past, allowing it to replicate 
the protracted, slow declines in TB incidence as seen in many lower-incidence settings; this is done 
automatically for any scenario with a target TB incidence less than 50 per 100,000/year.

Model compartments
The mathematical model consists of the following TB compartments:
 
•	 Uhp, Uninfected
•	 Lhdp, Latently infected
•	 Ehdp, Early active (infectious status i = 0)
•	 Ahdip, Late active
•	 Phdip, Active ‘pre-treatment’: diagnosis in progress, will lead to appropriate therapy
•	 Ihdip, Active ‘inappropriate treatment’: receiving therapy that ends in default or failure
 

In these compartments, the subscript h refers to HIV status (h = 0 if HIV-uninfected, 1 if HIV-infected), 
d refers to drug resistance status (d = 0 if drug-susceptible, 1 if isoniazid [INH]-monoresistant, and 
2 if multidrug-resistant [MDR]), i refers to infectious status (i = 0 if smear-negative/less infectious 
and 1 if smear-positive/highly infectious), and p refers to previous treatment status (p=0 if never 
treated, 1 if previously treated). Infectious status can be conceptualized as an individual's sputum 
smear status, if two smears were to be performed in a quality-assured laboratory at any given point 
in time.

Model structure
The model assumes an adult population of stable size with no immigration or emigration: the number 
of individuals entering the uninfected compartment U is set as equal to the number who die (whether 
from TB or other causes) from all other compartments. Pediatric and purely extrapulmonary TB are not 
explicitly considered because the diagnostic considerations for these manifestations are different. In 
the short-term, however, to the extent that these forms of TB are non-infectious and equally fatal as 
adult pulmonary TB, their effects on TB incidence and mortality may be approximated by dividing the 
model's projected incidence and mortality by (1 − proportion of TB that is not adult pulmonary), to 
obtain a new incidence/mortality estimate. Thus, if 20% of all TB in a given location is extrapulmonary 
or paediatric, the rough projected total TB incidence would be (projected TB incidence)/(0.8).

http://dx.doi.org/10.7554/eLife.02565
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In this model, we consider latent TB infection to be asymptomatic and non-infectious, with a con-
stant rate of reactivation and ongoing risk of exogenous reinfection leading to active TB; individuals 
successfully treated for TB are assumed to return to this compartment upon initiation of effective 
therapy (i.e., therapy that will result in completion, with no relapse for 2 years). Upon developing active 
TB, individuals enter a ‘pre-diagnostic’ phase that is characterized by a low level of infectiousness and 
mortality (equivalent to smear-negative TB) and during which individuals do not actively seek diagno-
sis. The duration of this phase (9 months) was selected a priori based on an existing model (Dowdy 
et al., 2013) in which the total duration of disease after incorporating this phase reflected the global 
ratio of prevalence to incidence, as estimated by the World Health Organization. We compared the 
total duration of disease to this ratio as part of our model validation and assumed that this ‘pre-
diagnostic’ phase is much shorter for HIV-infected vs HIV-uninfected individuals. Upon completing 
this ‘pre-diagnostic’ phase, individuals progress to a diagnosis-seeking phase of active disease, 
which is characterized by separation into highly infectious (‘smear-positive’) and less infectious 
(‘smear-negative’) compartments. Among HIV-uninfected individuals, the highly infectious compart-
ment also carries higher mortality risk. Diagnosis-seeking active TB implies active seeking of diagno-
sis at a defined rate; the probability that any single diagnostic attempt will result in effective therapy 
is calculated as a function of diagnostic sensitivity, probability of empiric therapy (i.e., without bac-
teriological confirmation), prior treatment status, and losses to follow-up, as described below. 
Each diagnostic attempt, if successful, leads either to effective therapy (which is initiated after a 
defined diagnostic delay) or to ineffective therapy (defined as leading to failure or default). In order to 
focus on differences between the nine selected strategies above in a tractable framework, we sub-
sumed all other diagnostic tests and procedures (e.g., chest X-ray, antibiotic trials) as a probability of 
non-microbiologic diagnosis, without attempting to specify the associated cost or diagnostic delay. 
Once effective therapy is initiated, it is assumed to immediately render the individual non-infectious, 
with no residual risk of mortality. Upon initiation of ineffective therapy, individuals are assumed  
to remain infectious (at the ‘smear-negative’/less infectious level) for a defined period before 
either failing (followed by another round of therapy, which can be either appropriate/curative or 
ineffective) or default. Reasoning that default will occur, on average, at the midpoint between 
receipt of fully-ineffective and fully-effective therapy, half of defaulters are presumed to develop 
recurrent TB (which is assumed to occur immediately), while the other half return to the latent  
TB compartment (from which reactivation or reinfection remains possible). All individuals who 
relapse within 1 year are included as failures; thus, no specific parameter for relapse is incorporated. 
Individuals who are effectively treated, or whose disease is contained without therapy, return to the 
latent compartment following the convention of other TB models (Dye et al., 1998; Abu-Raddad 
et al., 2009).

Role of HIV coinfection
As the goal of this model is to focus on TB-related interventions, HIV is modeled as occurring at a 
defined annual incidence, calibrated to achieve a given user-defined prevalence at baseline. We 
do not explicitly model HIV infection in dynamic fashion (i.e., the HIV incidence rate does not 
depend on the number of HIV-infected individuals in the model). HIV infection is assumed to affect 
all parameters related to TB disease, including the level of immune protection afforded by latent 
infection (assumed zero if HIV-infected), mortality rate (increased), rate of reactivation from latent 
TB (increased), duration of ‘pre-diagnostic’ TB (decreased), and risk of ‘primary’ progression to 
active disease upon infection (increased). For purposes of maintaining a simple model structure, 
we do not explicitly model CD4 counts or antiretroviral therapy (ART), but instead assume the 
global average of ART coverage, as estimated by UNAIDS (2012). We weight all HIV-related 
parameters according to this estimated probability of ART receipt; this probability can be modified 
by users.

Drug resistance
We assume infection with TB strains of three different drug resistance levels: fully susceptible, INH-
monoresistant, and MDR. Dual infection with multiple strains is not considered in this model, but su-
perinfection (i.e., reinfection of a latently infected individual with a different strain, resulting in primary 
progression to disease with the reinfecting strain) is allowed, as is acquisition of resistance (i.e., change 
of strain from more susceptible to less susceptible) as a result of therapy.
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Individuals without TB
A key consideration with any TB diagnostic strategy is the role of the diagnostic test as applied to 
individuals who do not have TB (i.e., specificity). We included this element by considering that a small 
proportion of the population without TB would present with TB-like symptoms each year. This propor-
tion (selected such that 10% of individuals being evaluated in the high-incidence setting actually have 
underlying TB) remains constant across all scenarios, such that the pre-test probability of TB is higher 
in settings of high TB incidence, and declines over time as successful TB control strategies are 
employed. Individuals without TB who are (inappropriately) treated for TB incur costs of TB therapy 
and are also marked as ‘previously treated’ for purposes of diagnostic evaluation in the future.

Economic evaluation
Economic parameters are estimated using a unit-costing approach, whereby the unit cost of a TB 
diagnostic attempt and a TB treatment course (separately for first-line, category two, and second-line 
therapy) is enumerated under each scenario, and this cost is multiplied by the number of diagnostic 
attempts and treatment courses performed. For simplicity, we adopt the perspective of a TB control 
program for our costing; additional costs of HIV care and general health services (e.g., hospitalization) 
are not included. The decision tree below is used to estimate the cost per diagnostic attempt or treat-
ment course, conditional on an individual's HIV, drug resistance, and previous treatment status. 
Individuals who default or die on therapy are assumed to incur half the cost of a treatment course. 
Given the short time horizon (5 years), the focus on costs and outcomes (rather than cost-effectiveness 
per se), and the desire to compare costs in year 1 and at the end of year 5 in equivalent terms, we did 
not discount future costs or outcomes for this analysis. All costs are reported in US dollars, assuming 
the year of costs that is specified by the user.

Decision analysis: probability of diagnostic success
Under each scenario, we use decision analysis to ascertain the following quantities related to each 
diagnostic attempt:
 
•	 Probability of receiving successful treatment.
•	 Probability of receiving ineffective treatment (resulting in failure or default, including the probability 

of acquired resistance).
•	 Cost of treatment (conditional on whether treatment is successful or ineffective).
•	 Cost of diagnosis.
•	 Diagnostic delay incurred before treatment initiated.
 

These quantities are calculated conditional on each patient's infectious (smear) status, drug resist-
ance status, HIV status, and prior treatment status. These probabilities are calculated for each diagnos-
tic attempt, with the result fed back into the transmission model for purposes of appropriately 
allocating flows between compartments. Inputs into the decision model include the probabilities of 
failure/recurrence, probability of empiric therapy, loss to follow-up before treatment, diagnostic accu-
racy, diagnostic delay, and economic parameters as shown in Table 1. Outputs from the decision tree 
appear as parameters in the model, as described in Table 2 and the following equations.

Outcomes and sensitivity analysis
Our primary outcomes under each scenario were TB incidence, TB mortality, MDR-TB incidence, and 
incremental TB diagnostic and treatment costs (during year 1 and at the end of the 5-year period) 
relative to the baseline strategy. By giving flexibility to change model inputs, we provide users the 
ability to conduct any sensitivity analysis desired. However, for illustrative purposes, we also con-
ducted a series of one-way sensitivity analyses in which each model parameter in Table 1 was varied 
by ±50% of its listed value (for proportions, 50% of the difference between the value and either zero 
or one). Our primary outcome for sensitivity analysis was the change in TB incidence, comparing the 
‘Xpert for all’ strategy to baseline in the high incidence setting.

We also conducted multivariable uncertainty analyses by calculating partial rank correlation coefficients 
(Kendall, 1942) between each natural history parameter and the outcomes of TB incidence, TB mortality, 
and 5-year costs. In addition, we constructed 95% uncertainty intervals around our estimates of outcomes 
in each individual country by simultaneously varying each model parameter by ±10% over a uniform distri-
bution and each target value (i.e., TB incidence, HIV prevalence, and MDR-TB prevalence) over its reported 
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Table 2. Model parameters and symbolic representations

Parameter Representation Baseline value (see Table 1)

Transmission rate (transmission events per highly  
 infectious person-year)

β Calibrated to TB incidence

Proportional reduction in per-case transmission rate

 Drug-susceptible TB φ0 1.0

 Isoniazid-monoresistant TB φ1 25%* of φ2

 MDR-TB φ2 Calibrated

HIV incidence rate, per year θ Calibrated to HIV prevalence

Relative transmission rate from smear-negative/less  
 infectious TB

ζ 0.22

Proportion of pulmonary TB that is smear-positive/highly  
 infectious

 HIV-negative ψ0 0.63

 HIV-infected ψ1 0.50

Endogenous reactivation rate, per year

 HIV-negative ε0 0.005

 HIV-infected ε1 0.05

Proportion of recent infections resulting in rapid  
 progression

 HIV-negative π0 0.14

 HIV-infected π1 0.47

Reduction in TB rapid progression probability due to  
 latent TB infection

 HIV-negative ι 0.79

 HIV-infected Not included 0

Baseline mortality rate, per year μbl 1/55 = 0.018

Additional HIV-related mortality rate, per year μh 0.05

Additional untreated TB-related mortality rate, per year

 HIV-negative, smear-positive/highly infectious μt1 0.23

 HIV-negative, smear-negative/less infectious μt0 0.07

 HIV-infected μth 1.0

Rate of spontaneous TB resolution, per year

 Smear-positive/highly infectious ν1 0.1

 Smear-negative/less infectious ν0 0.27

 HIV-infected Not included 0

Rate of starting diagnosis-seeking in active TB, per year

 HIV-negative δe0 1.33 (9 months)

 HIV-infected δe1 12 (1/month)

Rate of progression: ineffective therapy to repeat  
 therapy (failure) or active TB (relapse), per year

δf 6/12 = 0.5

Rate of diagnostic evaluation for TB, per year

 Late active TB Input into decision  
tree

5.0

 No active TB τ0 0.01

Decision tree outputs (in addition to unit costs): Vary by intervention

 Successful diagnosis rate of late active TB, per year σhdip

 Rate of movement from successful diagnosis to  
  treatment (1/diagnostic delay), per year

ρhdip

Table 2. Continued on next page
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uncertainty range. In this fashion, we constructed 10,000 simulations using Latin Hypercube Sampling 
(McKay et al., 1979) and took 95% uncertainty ranges as the 2.5th and 97.5th percentiles of outcomes 
in these simulations; these ranges are provided in the web-based version of the model for each country.

Model equations
Rates of flow between compartments are governed by the system of ordinary differential equations 
listed in Equations 1–6.

We first define the forces of infection (according to resistance status) and total mortality for simplicity.

Forces of infection (λd)
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Thus, TB infection is modelled as a density-dependent process, a function of the transmission rate 
(β), total number of individuals in the population N(t), number of individuals with ‘less infectious’ TB (E, 
early active; Ahd0p, late active smear-negative; Phd0p, ‘pre-treatment’ smear-negative; and I, active on 
ineffective treatment) weighted by the relative transmission rate ζ, and the number of individuals with 
fully infectious TB (Ahd1p, late active smear-positive; Phd1p, ‘pre-treatment’ smear-positive). Three sepa-
rate forces of infection are calculated for the three separate strains of drug resistance, with relative 
transmission weights of φd. We use λtot to denote the sum of these three forces.

Total mortality (μtot)
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Thus, total mortality is the sum of:
 
•	 baseline mortality μbl (experienced by all individuals N),
•	 HIV-associated mortality μh (experienced by all individuals with HIV, h = 1),

Parameter Representation Baseline value (see Table 1)

 Ineffective diagnosis rate of late active TB, per year κhdip

 Rate of diagnosis and treatment leading to new  
  resistance, per year

  susceptible to INH-monoresistant αsihip

  susceptible to MDR αsmhip

  INH-monoresistant to MDR αimhip

*Calculated such that (1−φ1) = 0.25*(1−φ2).
DOI: 10.7554/eLife.02565.008
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•	 ‘less infectious’ (i.e., lower) TB-associated mortality μt0 (experienced by all HIV-uninfected individu-
als with early active TB, E, smear-negative active and ‘pre-treatment’ TB, A0d0p and P0d0p, and inef-
fectively treated TB, I0dip),

•	 ‘highly infectious’ (i.e., higher) TB-associated mortality μt1 (experienced by all HIV-uninfected indi-
viduals with smear-positive active and ‘pre-treatment’ TB, A0d0p and P0d0p), and

•	 TB/HIV–associated mortality μth (experienced by all HIV-infected individuals with any form of TB).
 

Uninfected compartment (U)
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where μtot is the sum of all mortality (to maintain a constant population), λd is the force of infection for 
a given drug resistance strain, μbl is the baseline mortality rate, μh is the HIV-specific mortality rate, Ieq 
is an indicator function (= 1 if the condition eq is met, 0 otherwise), θ is the HIV incidence rate, τ0 is the 
rate of seeking diagnosis among people without TB, and sh is the specificity of the diagnostic test. 
Thus, uninfected individuals exit through infection and death, acquire HIV according to the HIV inci-
dence rate, and become previously treated for TB (inappropriately) according to the specificity of the 
test. The HIV-uninfected, not previously treated compartment is replenished at a rate that matches 
total mortality and thereby maintains a constant population.
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( )
( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )( ) ( )

=0

=1 =0 0 0 0 0 0

,

0 1 2 =0

= * 1– * + * 1– *

                 + * * + * * + * + +

                 – + + * 1– * +

hdp

d h hp hdp h

d

p hdip hdip h dp i dip dip dip

i p i

h

dL t
t U t L t I

dt

I P t I E A P I

t t t I

          
                

∑

∑ ∑

λ π ι

ρ ν ν

λ λ λ ι ε ( ){ }
( ) ( )

=1

=0 0 =1 0

+ + * *

                 – * * + * *

h bl h h hdp

h dp h dp

I L t

I L t I L t

   
         

μ μ

θ θ  
(2)

where λd is the strain-specific force of infection, πh is the proportion of recent infections that progress 
rapidly to active TB, ι is the relative reduction in rapid progression after infection among people with 
latent TB, Ieq is an indicator function (= 1 if the condition eq is met, 0 otherwise), ρhdip is the rate of 
treatment after successful diagnosis is initiated, νi is the spontaneous recovery rate, εh is the endoge-
nous reactivation rate, μbl is the baseline mortality rate, μh is the HIV-specific mortality rate, and θ is 
the HIV incidence rate. Thus, individuals enter the latently infected compartment through initial 
TB infection (without rapid progression), reinfection (without rapid progression, and accounting for 
immune protection), initiation of successful treatment, or spontaneous resolution. Individuals complet-
ing treatment only enter the previously treated compartment (p=1). Individuals exit this compart-
ment through TB reinfection, endogenous reactivation, and death, and they acquire HIV infection at a 
constant rate.

Early active compartment (E)
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where λd is the force of infection, πh is the proportion of recent infections that progress rapidly to 
active TB, ι is the relative reduction in rapid progression after infection among people with latent TB, 
Ih=0 is an indicator function of HIV status (= 1 if h = 0, 0 otherwise), εh is the endogenous reactivation 
rate, μbl is the baseline mortality rate, μt0 is the TB-specific mortality rate for less-infectious TB, ν0 is the 
spontaneous recovery rate for less-infectious TB, δeh is the HIV-specific rate of progression to late active 
TB, μh is the HIV-specific mortality rate, μth is the TB-specific mortality rate for people living with HIV, and 
θ is the HIV incidence rate. Thus, individuals enter this compartment through rapid progression of recent 
infection or endogenous reactivation of latent infection. They exit through progression to late active 
disease, spontaneous cure (if HIV-uninfected), or death, and they acquire HIV infection at a constant rate.

Late active compartment (A)
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where δeh is the rate of progression from early active TB, Ieq is an indicator function (= 1 if the condition 
eq is met, 0 otherwise), ψh is the proportion of active TB that is highly infectious (smear-positive), δf is 
the rate (1/duration) of ineffective therapy, μbl is the baseline mortality rate, μti is the TB-specific mor-
tality rate for non-HIV-associated TB, μh is the HIV-specific mortality rate, μth is the TB-specific mortality 
rate for people living with HIV, νi is the spontaneous recovery rate, σhdip is the rate of diagnosis ulti-
mately leading to successful treatment, κhdip is the rate of placing individuals on ineffective treatment 
that does not generate acquired resistance, αsihip is the rate of placing individuals on ineffective treat-
ment that generates INH monoresistance, αsmhip and αimhip are the rates of placing individuals on 
ineffective treatment that generates MDR-TB, and θ is the HIV incidence rate. Thus, individuals enter 
this compartment through progression from early active disease or relapse/failure after ineffective 
treatment. They exit through spontaneous recovery, diagnosis leading to successful treatment, initia-
tion of ineffective treatment (which can, in turn, generate acquired drug resistance), or death, and they 
acquire HIV infection at a constant rate.

Active ‘pre-treatment’ compartment (P)
This compartment consists of individuals who have initiated a diagnostic attempt that will lead to suc-
cessful treatment, yet remain infectious while awaiting initiation of treatment. Inclusion of this com-
partment is designed to capture the effects of diagnostic delays.
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where σhdip is the rate of initiating successful diagnostic attempts, Ih=0 is an indicator function of HIV 
status (= 1 if h = 0, 0 otherwise), μbl is the non-TB mortality rate, μti is the TB-specific mortality rate for 
non-HIV-associated TB, μh is the HIV-specific mortality rate, μth is the TB-specific mortality rate for peo-
ple living with HIV, νi is the spontaneous recovery rate, ρhdip is the rate of starting therapy after initiating 
a successful diagnostic attempt (1/diagnostic delay), and θ is the HIV incidence rate. Thus, individuals 
enter this compartment by initiation of successful diagnostic attempts and exit through initiation of 
treatment, spontaneous cure, or death. They acquire HIV infection at a constant rate.

Active ‘inappropriately treated’ compartment (I)
This compartment contains all individuals being treated whose treatment course ends in default or 
failure. Unlike the previous (successful treatment) compartment, diagnostic delay is not explicitly 
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incorporated into this compartment, as to do so would prolong the duration of time until individuals 
who default re-enter the ‘late active’ compartment. Inclusion of a diagnostic delay before this com-
partment does not materially affect results. Individuals exit this compartment either in default after 
partial therapy—which has a defined probability of achieving cure despite not being completed—or 
failure. Failure leads immediately to another course of treatment, which can either be successful (i.e., 
transition to the latent compartment) or unsuccessful (i.e., remain in the inappropriate treatment com-
partment—which results in transition to the ‘previously treated’ compartment, p=1, not shown below).

( )
( )

( ) ( ) ( )

( )
( )

( )

( )

=1 0 =2 0 1

=0 0

=1

=0 0

= *

                + * * + * * + *

+ * + +
                – *

+ * + +

                – * *

hdip

hdip hdip

d hdip h ip d hip h ip hip h ip

bl h t i f

hdip

h h th f

h dip

dI t
A t

dt

I si A t I sm A t im A t

I
I t

I

I I t

   
 
 
 
 

   

κ

α α α

μ μ ν δ
μ μ δ

θ ( )
=1 0

+ * *h dipI I t   θ  
(6)

where κhdip is the rate of placing individuals on ineffective treatment that does not generate acquired 
resistance, αsihip is the rate of placing individuals on ineffective treatment that generates INH monore-
sistance from drug-susceptible TB, αsmhip is the rate of placing individuals on ineffective treatment that 
generates MDR-TB from drug-susceptible TB, αimhip is the rate of placing individuals on ineffective 
treatment that generates MDR-TB from INH-monoresistant TB, μbl is the non-TB mortality rate, μti is 
the TB-specific mortality rate for non-HIV-associated TB, μh is the HIV-specific mortality rate, μth is the 
TB-specific mortality rate for people living with HIV, νi is the spontaneous recovery rate, δf is the rate 
(1/duration) of ineffective therapy, and θ is the HIV incidence rate. Thus, individuals enter this compart-
ment through ineffective treatment from the late active compartment (conditional on whether that 
treatment also generates new drug resistance) and exit through completion of a course of ineffective 
therapy, spontaneous resolution, or death. They acquire HIV infection at a constant rate.

Model fitting
The equations above comprise a series of 100 ordinary differential equations. In order to generate an 
equilibrium population according to user specifications of TB incidence, MDR-TB prevalence, and HIV 
prevalence, it is necessary to solve for the roots of a system of these 100 equations, plus three addi-
tional equations to account for the user inputs. We accomplish this using the ‘fsolve’ routine in SciPy 
(www.scipy.org). To solve for these three additional equations, we first match each user input to a 
single parameter: TB incidence to the transmission rate β, MDR-TB prevalence to the relative reduc-
tion in transmission for MDR-TB φ2, and HIV prevalence to the HIV incidence rate θ. We then constrain 
the system of equations such that the total population remains constant at 100,000, and we add the 
following three equations to the system:

( ) ( )= calculated TB incidence – user-defined TB incidenced dtβ  

( ) ( )2 = calculated MDR-TB prevalence – user-defined MDR-TB prevalenced dtϕ

( ) ( )= calculated HIV prevalence – user-defined HIV prevalenced dtθ  

By solving for the roots at which this system of equations equals zero, we generate an equilib-
rium (steady-state) population that also defines β, φ2, and θ such that the user-defined targets are 
also met.

Additional complexity is added to account for non-equilibrium in TB incidence and MDR-TB preva-
lence. We accomplish this by fitting an equilibrium defined by the user-specified target of HIV preva-
lence, and the user-specified ‘initial’ values of TB incidence and MDR-TB prevalence. This equilibrium 
is set to be 50 years in the past; at this time, the system of equations is solved as above. We then allow 
for the parameters β and φ2 to be altered from their original values (corresponding to the equilibrium 
condition) such that a second set of targets are attained after 50 years (start of the analysis). If these 
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calculated values at the end of 50 years do not match the user-defined targets, the parameter values 
are changed accordingly, and the model is re-run from equilibrium until the appropriate parameter 
value is identified that generates the user-defined TB incidence and MDR-TB prevalence, within a rel-
ative tolerance of 0.05 in each variable. These parameters may then be further modified such that they 
change over the analysis frame of five years (e.g., to describe an epidemic with increasing MDR-TB 
prevalence over time).

In the primary version of the model, this is only automated for low-incidence scenarios in which 
the user inputs a TB incidence of less than 50 per 100,000/year. In such cases, the model generates 
an equilibrium population 50 years in the past with a TB incidence of 50 per 100,000/year and 
reduces the transmission parameter β until the user-defined TB incidence is achieved 50 years later 
(i.e., the start of the analytic period). This accounts for the fact that most low-incidence settings have 
substantially more latent TB infection than would be estimated by an equilibrium population with 
a very low TB incidence—thereby more appropriately reflecting a higher proportion of TB due to 
reactivation rather than recent infection. However, we include code (described in the user manual 
below) that allows users to define high incidence scenarios that are likewise not at equilibrium,  
as well as ‘emerging MDR’ scenarios in which the prevalence of MDR-TB is increasing rather than 
stable.
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