
Using the TIME model
 in Spectrum to estimate
tuberculosis–HIV incidence and mortality

Carel Pretoriusa, Philippe Glazioub,M, Peter J. Doddc,M,

Richard Whited,M and Rein Houbend
aFutures Institute, G
1211 Geneva 27,
Sheffield, Sheffield

Correspondence t

E-mail: CPretorius
�

Philippe Glaziou

Received: 9 Septe

DOI:10.1097/QAD

ISSN 0269-9370 Q

of the Creative Com
provided it is prope
Objectives: Reliable estimates of the joint burden of HIV and tuberculosis epidemics
are crucial to planning strategic global and national tuberculosis responses. Prior to the
Global Tuberculosis Report 2013, the Global Tuberculosis Programme (GTB) released
estimates for tuberculosis–HIV incidence at the global level only. Neither GTB nor
United Nations Programme on HIV/AIDS (UNAIDS) published country specific esti-
mates for tuberculosis–HIV mortality. We used a regression approach that combined all
available data from GTB and UNAIDS in order to estimate tuberculosis–HIV incidence
and mortality at country level.

Methods: A regression method was devised to relate CD4 dynamics (based on national
Spectrum files) to an increased relative risk (RR) of tuberculosis disease. The objective
function is based on least squares and incorporates all available country-level esti-
mates of tuberculosis–HIV incidence. Global regression parameters, obtained from
averaging results over countries with population survey estimates for tuberculosis–
HIV burden, were applied to countries with no survey tuberculosis–HIV incidence
estimates.

Results: The method produced results that are in reasonably close agreement with
existing GTB estimates for global tuberculosis–HIV burden. It estimated that tubercu-
losis–HIV accounts for 12.6% of global tuberculosis incidence, 21.3% of all tubercu-
losis deaths, and 20% of all HIV deaths as estimated by the Spectrum AIDS Impact
Module (AIM). Regional estimates show the highest absolute incidence burden in East
and Southeast Asia, and the highest per capita burden in sub-Saharan Africa, where
between 12.5% (Central sub-Saharan Africa) and 60.6% (Southern sub-Saharan Africa)
of all tuberculosis disease occurs in people living with HIV (PLWH). Tuberculosis
mortality follows a similar pattern, except that a disproportionate percentage of global
tuberculosis deaths (12.1%) relative to global incidence (8.7%) occurred in Southern
sub-Saharan Africa.

Conclusion: The disaggregation of tuberculosis incidence using a regression method on
RR of tuberculosis disease and all available data on HIV burden (from UNAIDS) and
tuberculosis–HIV testing (survey, sentinel and routine surveillance data) produces
results that closely match GTB estimates for 2011. The tuberculosis–HIV incidence
and mortality results were published in the Global Tuberculosis Report 2013. Several
limitations of and potential improvements to the process are suggested.
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Introduction
HIVand tuberculosis remain two of the most challenging
global public health problems for national and global
planners alike. According to the Global Tuberculosis
Report 2013 [1], 8.6 million people developed tubercu-
losis in 2012. Among these cases, 1.3 million died from
tuberculosis disease, including 320 000 tuberculosis–HIV
associated deaths. Targets for the reduction in tuberculosis
deaths are clearly set out in WHO declarations such as the
Millennium Development Goals (MDGs).

Significant progress has been made in fighting tubercu-
losis and tuberculosis–HIV through following the WHO
strategies for these diseases. Tuberculosis incidence and
tuberculosis-associated mortality is now on a continuing
downward trend, but more can be done to accelerate
progress towards achieving MDG impact targets, which
aim to halve the 1990 number of HIV/tuberculosis deaths
by 2015.

Global health partners, including theWHOand theGlobal
Fund to Fight AIDS, Tuberculosis and Malaria, are
committed to setting further targets and monitoring
progress in fighting HIV, tuberculosis and joint tubercu-
losis–HIV epidemics. As part of these efforts, countries
need tuberculosis–HIV-related estimates for both planning
and monitoring purposes. For example, 41 high-burden
countries are now required to submit joint tuberculosis/
HIV ‘concept notes’ or applications to the Global Fund to
Fight AIDS, tuberculosis and Malaria as mandated in their
new funding model [2].

Estimates of tuberculosis–HIV mortality at the country
level have been produced by Global Tuberculosis
Programme (GTB), relying partly on overall HIV
prevalence estimates from UNAIDS. Recent changes
to the Spectrum AIDS Impact Module (AIM) model
structure present a more detailed picture of HIV burden.
Tuberculosis–HIV estimates are also accumulating
through population surveys of tuberculosis–HIV preva-
lence, sentinel HIV data, and routine HIV testing of
reported tuberculosis cases. These recent changes
prompted an initiative to produce improved tubercu-
losis–HIV mortality estimates at the national level.

A collaboration between GTB, UNAIDS, TB Modelling
and Analysis Consortium (TB MAC), the Stop TB
Partnership, Futures Institute, and a wide group of experts
was launched under the auspices of the UNAIDS
Reference Group on Estimates, Modelling and Projec-
tions. The aim was to assess all available data and methods
for combining data sources from GTB and UNAIDS in
order to produce the best estimates for tuberculosis–HIV
burden. A method was developed by Futures Institute and
finalized by the reference group. This study offers a
technical account of this method, which has been
integrated into TIME (TB Impact Model and Estimates)
[3], a wider suite of tuberculosis tools in Spectrum [4,5],
under the name TIME Estimates.

TIME Estimates uses a regression model that relates the
seven CD4 categories of the adult HIV population in
Spectrum AIM to their relative risk (RR) for tuberculosis
disease. The model does not attempt to simulate any parts
of tuberculosis natural history or care and control in a
mechanistic way, but looks to directly distribute the
overall burden of incident tuberculosis across HIV/CD4
strata. The model draws no distinction between adult and
pediatric tuberculosis, and assumes that combined adult
and childhood tuberculosis can be regressed on adult HIV
CD4 distributions.

To this end, a regression method for tuberculosis
incidence was devised to estimate RR for tuberculosis
incidence. The model was fit to total estimated incidence
from the WHO GTB database [6] and disaggregated
according to HIV burden numbers, which were further
disaggregated by the seven CD4 categories used by
Spectrum AIM for national HIV projections. Tubercu-
losis mortality was calculated as the product of number of
incident cases and estimated case fatality ratios (CFRs)
by HIV/antiretroviral therapy (ART) and tuberculosis
notification status.
Methods

Methods are presented in five sections: (1) A brief
overview of the cubic-spline method used in the analysis,
(2) a bootstrap method for obtaining confidence intervals,
(3) functional form for the regression method to
estimating tuberculosis–HIV incidence, (4) the objective
function used, and (5) the use of CFRs to estimate
tuberculosis–HIV mortality.

Projection with cubic splines
The regression methods used by TIME relied on
estimation with cubic-splines (penalized B-splines in
particular), a technique widely used use for projecting
trends forward in time. The same method was used as one
of the techniques of shaping the force of infection of
HIV in the Estimation and Projection Package (EPP)
estimation approach [7]. In simple terms, this can be
explained as follows:

A time-dependent function, such as tuberculosis inci-
dence, which is called I(x) below, can be represented as a
linear combination of cubic-spline basis functions.
Keeping the specification general, the linear representa-
tion involves k time-dependent m’th order cubic-spline
functions [8]:

IðxÞ ¼
X

i¼1 to k

biB
miðxÞ (1)
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where bi is the i’th spline coefficient and Bmi(x) represents
the evaluation of the i-th basis function at time(year) x.
We used 10 equally spaced knots (k¼ 10), which
sufficiently span the projection period of 1990–2012.
The order of each basis function was m, and we used
cubic-splines, that is, m¼ 3, as in EPP.

For our application, the values of the cubic-spline
coefficients b were determined by an optimization
routine that minimized the least squares error between
incidence data (Iobs) and the estimated curve I(x):
X

x¼1990:2012

jIðXÞ � IobsðXÞj2 þ lbTSb (2)

Here jI - Iobsj2 is the sum of squared errors, S a second-
order difference matrix, and l a smoothness penalty
matrix applied directly to the parameters b to control the
level of variation between adjacent coefficients of the
cubic-spline.

Global Tuberculosis Programme data
The most successful approach to estimating tuberculosis
incidence at national level is through routine surveillance
systems, on which reports of notified new and relapse
cases are based. Generally, countries with universal health
coverage have near complete notification reports,
providing a reliable proxy for tuberculosis incidence [9].

However, surveillance system often fail to provide a
reliable estimate of tuberculosis incidence, the major
reasons of which include: laboratory errors [10], lack of
notification by public [11] and private providers [12],
failure of health-care staff to recognize tuberculosis signs
and symptoms among people accessing health services
[13] and lack of access to health services [14]. These
factors all contribute to uncertainty about tuberculosis
incidence estimates obtained from case notification data.
Reliance on expert opinion to estimate incidence in
countries with weak surveillance and health systems often
result in biases in estimates and considerable uncertainty
in tuberculosis estimates, as mentioned in the Global
Tuberculosis Report [1].
Table 1. Indicators fitted with cubic splines, either directly or through fu

Regressand Regressor

Direct fitting
Total tuberculosis incidence (I) Spline coefficients b

Total tuberculosis notification (N) Spline coefficients b

Fitting through composite functional relationship
Total tuberculosis incidence, tuberculosis–HIV

survey, sentinel and routine survey data
Spline coefficients b

Tuberculosis–HIV pro
parameter
The prevalence of HIV among reported new and relapse
tuberculosis cases is used as a proxy for HIV prevalence
among incident tuberculosis. Sources of data at country
level include nationwide representative HIV serological
surveys among a sample of reported tuberculosis cases,
data from HIV sentinel groups, and results from routine
testing of tuberculosis patients when testing coverage of
newly reported cases is high.

Tuberculosis indicators and fitting algorithm
The cubic-spline projection method outlined above was
adapted to fit and project a number of tuberculosis
indicators relevant to this analysis. A general framework
was used to control the terms that define each objective
function, which comprise terms that minimize the error in
fitting to data and terms that ensure smoothness of the fit.
The method available in Spectrum TIME was replicated in
MATLAB to facilitate batch processing, using the fmincon
function with its Levenberg–Marquardt minimization
method for non-linear least squares problems [15].

This analysis required projections for total tuberculosis
notification and incidence, the ratio of which determined
the case detection ratio (used in tuberculosis mortality
calculations), as well as the breakdown of total
tuberculosis incidence into HIV status. These indicators
are described in Table 1.

Overall tuberculosis incidence and notification were first
estimated directly from respective data. The projected
tuberculosis incidence figures were then used as simulated
data, together with observed tuberculosis–HIV data, to
estimate disaggregations into three assumed tuberculosis
incidence components: HIV-negative, HIV-positive not
on ART, and HIV-positive on ART tuberculosis cases
(see section ‘Tuberculosis–HIV incidence disaggrega-
tion’). Tuberculosis mortality was finally determined
using incidence and notification projections, in order to
apply different case fatality ratios to incident and notified
tuberculosis cases (see section ‘Estimating Tuberculosis–
HIV mortality’).

For tuberculosis indicators directly fitted to data (total
tuberculosis notification and incidence), we used
nctional relationship.

Description and/or purpose

Provides envelope for HIV-negative and HIV-positive
tuberculosis incidence

Determines case detection ratio¼N/I, used in mortality
calculations

Provides estimate for risk of tuberculosis infection for
HIV-negative and CD4þ cell count > 500 cells/ml
tuberculosis cases

gression Provides fit to available tuberculosis–HIV data
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generalized cross-validation [8] to determine a smooth-
ness parameter. We did not apply a smoothness penalty to
estimate the breakdown of projected total tuberculosis
incidence by HIV status.

Confidence intervals
The cubic-spline method was then used to fit an indicator
(incidence or notification) to a set of bootstrapped data,
obtained by sampling from the normal error distribution
with zero mean and a standard deviation of the residuals of
the spline regression. This bootstrap method produced
a sample of projected cubic-spline curves that inherits
the temporal biases and systematic errors of the data.
Confidence intervals based on the bootstrapped data,
namely 2.5th and 97.5th percentile of projected cubic
splines, were typically narrow in the years where the
model had data to utilize, and ‘spread out’ after that,
according to a Gaussian process with a linearly increasing
variance.

Note our confidence intervals do not propagate the
uncertainty bounds around tuberculosis incidence
described in the GTB datasets, but rather represent
uncertainty arising from our spline fit to the GTB best-
estimate time series.

Tuberculosis–HIV incidence disaggregation
The disaggregation of tuberculosis incidence by HIV
and CD4 category is based on the idea that increase in the
RR for tuberculosis incidence is a function of CD4
decline. Williams et al. [16] captured this idea in a model
for the relationship between the RR for tuberculosis and
CD4 decline. They suggested a 42% (26–59% for the
95% confidence interval) increase in RR for tuberculosis
for each unit of 100 ml CD4 decline. The model
approximated this principle by first estimating HIV-
negative tuberculosis incidence, and then calculating the
‘risk of tuberculosis’ function F(HIV-negative)¼ I� / P�,
where I� is HIV-negative tuberculosis incidence and P�

the number of HIV-negative individuals susceptible
to tuberculosis.

An assumption was made that the risk of tuberculosis for
PLWH cases with CD4þ cell count more than 500 ml was
proportional to F(HIV-negative). For each 100 ml CD4
decline in the remaining categories (350–499, 250–349,
200–249, 100–199, 50–99 CD4þ cells/ml, and CD4þ

cell count less than 50 cells/ml), the risk of tuberculosis as
a function of CD4þ cell count was represented as:

Fðc< 500Þ ¼ FðHIV-negativeÞ � pð1Þ � pð2Þdc; (3)

where p(1) is a parameter that was used to recognize that
PLWH, even with high CD4þ cell counts, are at higher
risk of tuberculosis relative to HIV-negative cases, and
p(2) controls the exponential increase in RR with CD4
decline. The CD4 decline unit dc is the number of
100 mL CD4 decline associated with the midpoint of each
CD4 category relative to 500: dc¼ (0, 0.8, 2.0, 2.8, 3.6,
4.3, 4.8) for the seven CD4 categories.

There are a number of aspects of the RR approach
that have to be balanced: the ‘biological meaning’ we
would like to attach to these parameters, and a more
straightforward interpretation of these parameters as
regression coefficients. Either or both parameters can be
fixed or allowed to vary to fit the data. For the 2012
estimates, we assumed p(1)¼ 2.5 [17] and fit p(2) in order
to match total tuberculosis incidence and tuberculosis–
HIV estimates from HIV-test data where available.

We further assumed hazard ratios of 0.35 for all CD4 at
ART initiation categories. Suthar et al. [18] reports hazard
ratios of 0.16, 0.35, and 0.43 for those on ART with
CD4þ cell count less than 200, 200–350, and more than
350 cells/ml, and these values could in principle be used.
However, we used a single hazard ratio corresponding to
the prevailing CD4-based eligibility criterion at 2012. A
further assumption was made that the hazard ratio of 0.35
applied only to patients on ART for more than 6 months.
Spectrum’s ART-mortality estimates, derived mostly
from ART cohorts in Southern sub-Saharan Africa,
suggested that mortality is still very high in the first
6 months of treatment. As tuberculosis is a leading cause
of HIV mortality, it was felt that the hazard ratio of
0–6 month ART patients is likely still high and the
reduction factor due to ART was not applied.

The above algorithm can be described by a general
formula for incidence I:

IhðtÞ ¼
X

c

Ph;c � FðtÞ � Ah;c � Bh;c

Where h is a label for HIV status: HIV-negative (h¼ 1),
HIV-positive not on ART (h¼ 2), and HIV-positive
tuberculosis cases on ART for 0–6 months (h¼ 3),
7–12 months (h¼ 4), and more than 1 year (h¼ 5), and c
a label for the seven CD4 categories of each HIV-positive
state (h�2). Ph,cis the population size of group h, c (when
h¼ 1, c does not apply). Ah,c¼ p(1) � p(2)dc for h�2 or
more and c¼ 1–7 (1 otherwise) and Bh,c¼ 0.35 for h�4
or more (1 otherwise). The cubic spline parameters for
the ‘risk of tuberculosis’ function F(t) as well as p(2) is
estimated in an optimization step so as to minimize the
sum of squared residuals between predicted tuberculosis–
HIV incidence (

P
h>¼2Ih), described in the next section,

as well as a simulated (bootstrap) dataset for overall
tuberculosis incidence (

P
h>¼1 Ih).

Objective function for tuberculosis–HIV
estimates
A simple least squares approach was used to fit the model
to total tuberculosis incidence and to all available
estimates of tuberculosis–HIV incidence. Weighting of
the data on HIV-positive tuberculosis incidence was
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Table 2. Case fatality ratios by tuberculosis notification status, HIV
status and antiretroviral status.

Non-notified cases Notified cases

HIV negative
Mode 0.43 0.03
Lower bound 0.28 0.00
Upper bound 0.53 0.07

HIV positive not receiving ART
Mode 0.78 0.09
Lower bound 0.65 0.03
Upper bound 0.94 0.15

Receiving ART for less than 1 year
Mode 0.62 0.06
Lower bound 0.39 0.01
Upper bound 0.86 0.13

Receiving ART for more than 1 year
Mode 0.49 0.04
Lower bound 0.31 0.00
Upper bound 0.70 0.10

Showing the mode, lower and upper bound of the estimated triangular
distribution that represent each CFR. ART, antiretroviral therapy; CFR,
case fatality ratios.
dependent on the perceived strength of the data point.
Estimates of HIV-positive tuberculosis incidence were
obtained by three sampling methods: population surveys
of tuberculosis–HIV prevalence (least biased, but scarce
due to cost), sentinel HIV data (biases included more
testing of advanced HIVespecially in resource constrained
settings), and routine HIV testing of reported active
cases (variable coverage as is characteristic of different
contexts).

To increase the weight of survey data, we duplicated the
survey data in the objective function for years with HIV-
test data, we simply added identical copies of the HIV-test
data to the objective function. This is a way of
(subjectively) giving more weight to HIV-test data in
the objective function, in which function it would be
competing with our total tuberculosis incidence estimate.
The total tuberculosis incidence estimate was based on
much more data, evenly spread out in the estimation
period 1990–2015. Our method makes no correction
for the degree to which tuberculosis–HIV prevalence
fails to approximate tuberculosis–HIV incidence, a point
elaborated upon in the concluding section.

Trial and error showed that using two replicas of the
HIV survey data (i.e., duplicating the survey data) HIV
sentinel data with coverage greater than 90%, and routine
testing estimates with coverage between 50–90%
(routine testing data with coverage 0–50% are not
used), gives a fit that passes close to survey points where
they are available.

For countries with no data, we used a range for p(2) based
on results from countries with survey data, which
suggested that p(2)¼ 1.96 (1.8–2.1) and fit the RR
model only to total tuberculosis incidence. We imposed a
lower bound of 1.3 and an upper bound of 3.7 on p(2)
when fitted to countries with survey data. There is no
satisfactory way of verifying results for HIV-positive
tuberculosis incidence when no HIV-testing data are
available, but comparison of the global estimate for HIV-
positive tuberculosis incidence produced by Spectrum
tuberculosis and GTB’s estimate (based a different method
using HIV prevalence instead of CD4 distributions and
using the same HIV-test but in a different way) suggested
that the RR model worked reasonably well.

Estimating tuberculosis–HIV mortality
Tuberculosis mortality is affected by a complex relation-
ship between active tuberculosis disease and many clinical
variables, which we approximated in a simple functional
relationship between incidence and CFR. For the
purpose of this work, CFR was defined as the ‘fraction
of individuals with active tuberculosis that will die due to
tuberculosis, during that tuberculosis episode, regardless
of the duration of that episode.’ This follows the
definition used by Straetemans et al. [19] and included
deaths recorded as ‘with tuberculosis as contributory
cause’, ‘attributable to tuberculosis’ or ‘related to
tuberculosis’.

We considered eight categories CFRs (HIV negative,
HIV positive not on ART, HIV positive on ART
<12 months and HIV positive on ART for �12 months,
by notification status) to be clinical states that were both
clinically relevant and possible to estimate from available
data. Using this approach, tuberculosis mortality was
calculated as product of incidence and CFRs:

M ¼
X

h

ðIh � NhÞFh;u þ NhFh; (4)

where I represented incident tuberculosis cases, N cases
that were notified, (I-N) tuberculosis cases that were not
notified and M tuberculosis mortality. The label h
referred to four HIV categories mentioned above. Fh,n

and Fh,u were the CFRs for notified and non-notified
incident cases, respectively. The disaggregation of
incident tuberculosis was based on the ratio of the point
estimate incidence and notified cases, both estimates
coming from the tuberculosis database. We further
assumed that all cases, regardless of HIV status, have
the same detection ratio, an approximation we could not
improve with available data.

CFRs and estimated parameters of their assumed
triangular distribution are stated in Table 2. These
parameter values were obtained in collaboration with the
TB Modeling and Analysis Consortium (TBMAC),
building on existing sources, and a new review of the
literature. For CFR values in HIV-negative tuberculosis
cases and HIV-positive tuberculosis cases not on ART
systematic reviews of prechemotherapy and pre-ART
data, respectively, were used [20–22], as well as existing
WHO estimates [1]. For the 2013 estimates described
here, preliminary results from a systematic review
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commissioned by UNAIDS were used to estimate the
relative CFR in patients receiving ART. This review is
now completed and under revision with a peer-reviewed
journal [23]. The point values used for the 2013
calculations (RR¼ 0.55 for <12 months of ART and
RR¼ 0.33 for �12 months of ART) sit towards the
upper and lower end of the range found in the review
(95% range for RR¼ 0.29–0.56). More details of the
calculations and assumptions can be found in the report
on the UNAIDS Reference Group website.
Results

Results are presented in two parts: (1) A typical projection
of national tuberculosis–HIV estimates and (2) regional
and global tuberculosis–HIV estimates. The complete
results set comprises results for 150 countries, reflecting
the total number for which Spectrum AIM files were
available at the time of estimation.

Tuberculosis incidence and mortality estimates
for Botswana
Figure 1a shows the results of fitting a cubic-spline curve
to the Botswana tuberculosis epidemic. This is a typical
result, where estimated tuberculosis incidence fits well
with recent data. We used the bootstrap method
described above to produce 300 simulated datasets, and
1990

0

0.5

1

1.5

2

2.5

1995 2000

1990
0

5000

10000

1995 2000

x 104
TB incidenc

black: data, r
(a)

(b) TB-HIV i
black star represent 

surveys (cyan), sentinel hiv

Fig. 1. Total tuberculosis incidence and tuberculosis–HIV incide
thus, 300 projections for each indicator. The widening
confidence sets for future periods are also typical of
most result sets, which is a direct result of the bootstrap
uncertainty method.

The tuberculosis–HIV incidence in Fig. 1b shows
another typical result for countries from tuberculosis
surveys: The tuberculosis estimate usually goes through
the population survey estimate as a result of the relatively
high weight given to population survey points.

Tuberculosis mortality estimates are shown in Fig. 2. The
HIV-negative (Fig. 2a) and HIV-positive (Fig. 2b)
mortality estimates are both close to estimates from
GTB. (Note that only the HIV-negative tuberculosis
mortality estimate was published prior to this analysis.)
This correspondence is encouraging as GTB uses
different regression methods for estimating tuberculosis
mortality.

Global tuberculosis–HIV estimates
The method outlined in the preceding sections was
applied to 150 countries with both UNAIDS and GTB
data, representing more than 98% of the world’s
population. For aggregate estimates, we added the
primary regression result of each country, that is, the
one that determines the residuals on which the boot-
strapped data is based, to give either a global or regional
result. Confidence intervals for global estimates are based
2005 2010 2015

2005 2010 2015

e (all types)
ed: projection

ncidence,
unpublished estimate,
 (blue), Routine test (green)

nce for Botswana.
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Fig. 2. Tuberculosis mortality estimates for Botswana.
on the 2.5th and 97.5th percentile of the resulting 300
aggregate indicator projections. For the mortality esti-
mates, CFRs are independently sampled, without hier-
archical dependence on country.

Figure 3a shows the regression result for the global
HIV-positive tuberculosis incidence estimate together
with GTB’s estimate. The regression method shows
reasonable agreement with GTB estimates in the period
2003–2010, when more HIV-test data are available to
inform the regression model. GTB HIV-positive
tuberculosis incidence is higher in the historically
(mostly) data-free zone, in which it is based on regression
with total HIV prevalence, whereas the regression
method uses the CD4 category which will typically
delay tuberculosis incidence as PLWH progress to low
CD4 categories over time. Figure 3b shows the
regression results for the global HIV-positive tuberculosis
mortality estimate together with points representing 20%
of all HIV deaths, as estimated by the global HIV dataset
produced by Spectrum/AIM. The regression results are
naturally very sensitive to the CFR estimates used (see
Table 2), particularly its estimate for CFR of ART
patients.

Table 3 shows tuberculosis incidence by geographic
region. The largest burden, as measured by absolute
number of incident cases, resides in the large populations
of East Asia (18.5%), South Asia (34.9%), and Southeast
Asia (12.8%). Tuberculosis mortality follows a similar
pattern, with Southern sub-Saharan Africa having a
disproportionate proportion of tuberculosis deaths
(12.1%) relative to incidence (8.7%) occurring in this
region.

Tuberculosis–HIV accounts for a large proportion of
tuberculosis incidence in the sub-Saharan regions:
Central sub-Saharan Africa (12.5%), Eastern sub-Saharan
Africa (31.5%), Southern sub-Saharan Africa (60.6%),
and Western sub-Saharan Africa (21.5%). Its contribution
of 17% to the tuberculosis epidemic of the Caribbean is
also high relative to regions outside of Africa. Globally,
tuberculosis–HIV is estimated to account for 12.6% of
tuberculosis incidence.

Table 4 shows tuberculosis deaths by WHO region.
Table 4 is highly correlated with Table 3 in terms of the
distribution of tuberculosis deaths as well as distribution
by case type. This can be expected from a CFR-based
approach such as we have used. Globally, tuberculosis/
HIV mortality was estimated to account for 21.3% of all
tuberculosis deaths and for 20% of all HIV deaths, as
estimated by Spectrum AIM/EPP (Fig. 3b).
Discussion

Although subject to the assumptions mentioned pre-
viously, and to limitations mentioned in the remainder of
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Fig. 3. Estimates for global tuberculosis–HIV incidence and mortality. Global Tuberculosis Programme data estimates are shown
as black stars, Spectrum tuberculosis estimates [TB Impact Model and Estimates (TIME)] in solid black line, and confidence
intervals in dotted black lines. The black stars in subfigure (b) depict 20% of all HIV deaths, as estimated by the global HIV dataset
produced by Spectrum/AIM.
this section, the TIME regression method provides a
simple but clear method to generate internally consistent
estimates for tuberculosis/HIV incidence and mortality,
which have had immediate tuberculosis programme
Table 3. Estimated tuberculosis incidence by geographic region in 2012.

Geographic region
All tuberculosis

cases
Prop

global

Andean Latin America 51 052
Australasia 1827
Caribbean 30 824
Central Asia 95 032
Central Europe 37 332
Central Latin America 62 861
Central sub-Saharan Africa 89 484
East Asia 1 576 362
Eastern Europe 189 855
Eastern sub-Saharan Africa 793 084
High-income Asia Pacific 26 997
High-income North America 13 132
North Africa and Middle East 128 547
Oceania 24 858
South Asia 2 975 842
Southeast Asia 1 089 497
Southern Latin America 14 078
Southern sub-Saharan Africa 742 700
Tropical Latin America 95 714
Western Europe 30 273
Western sub-Saharan Africa 450 946
Total 8 520 298
planning uses. Most importantly, it allows for the
evaluation of progress towards the 5th MDG target of
reducing tuberculosis mortality in HIV-positive indivi-
duals by 2015.
ortion of
burden (%)

HIV-positive
tuberculosis cases

Proportion HIV
positive (%)

0.6 1768 3.5
0.0 43 2.4
0.4 5244 17.0
1.1 1613 1.7
0.4 666 1.8
0.7 5385 8.6
1.1 11 142 12.5

18.5 36 410 2.3
2.2 15 016 7.9
9.3 250 110 31.5
0.3 184 0.7
0.2 1217 9.3
1.5 1336 1.0
0.3 1 067 4.3

34.9 134 279 4.5
12.8 43 593 4.0
0.2 499 3.5
8.7 450 399 60.6
1.1 16 237 17.0
0.4 1557 5.1
5.3 97 135 21.5

1 074 902 12.6
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Table 4. Estimated tuberculosis deaths by geographic region in 2012.

Geographic region
All tuberculosis

cases
Proportion of

global burden (%)
HIV-positive

tuberculosis cases
Proportion HIV

positive (%)

Andean Latin America 5907 0.4 470 8.0
Australasia 150 0.0 5 3.1
Caribbean 5173 0.3 1255 24.3
Central Asia 15 062 1.0 507 3.4
Central Europe 3 942 0.3 112 2.8
Central Latin America 10 036 0.7 1512 15.1
Central sub-Saharan Africa 13 290 0.9 2850 21.4
East Asia 189 495 12.6 11 836 6.2
Eastern Europe 20 796 1.4 3084 14.8
Eastern sub-Saharan Africa 184 579 12.2 83 005 45.0
High-income Asia Pacific 2083 0.1 19 0.9
High-income North America 1130 0.1 142 12.5
North Africa and Middle East 16 272 1.1 296 1.8
Oceania 3 723 0.2 244 6.5
South Asia 575 758 38.2 43 273 7.5
Southeast Asia 155 409 10.3 10 053 6.5
Southern Latin America 1456 0.1 81 5.5
Southern sub-Saharan Africa 171 019 11.3 121 689 71.2
Tropical Latin America 10 888 0.7 2568 23.6
Western Europe 2709 0.2 180 6.6
Western sub-Saharan Africa 118 212 7.8 37 834 32.0
Total 1 507 089 321 014 21.3
The results also provide countries with estimates of the
number of incident tuberculosis cases by CD4 category.
Many countries now follow 2010 ART guidelines, which
recommend that HIV-positive cases with active tubercu-
losis must initiate treatment regardless of CD4 count.
Most of them want to expand ART eligibility to higher
CD4 thresholds. The model can be used to estimate
resource requirements above those that will result from
current ART guidelines. Another important use is the
impact of ART expansion on tuberculosis–HIV inci-
dence and mortality.

Combining data from different datasets often highlights
their fundamental incompatibilities. In this instance,
the incompatibilities can be traced to tuberculosis
reporting problems at country level, as well as different
types of biases in the data that underpin HIV prevalence
estimates. For example, in some cases the best
estimate of tuberculosis–HIV incidence from Spectrum
TIME Estimates model occasionally falls below the
number of notified tuberculosis–HIV cases from
routine surveillance. This may be the result of overall
tuberculosis incidence being too low, or tuberculosis–
HIV overreporting cases re-registering for ART.
Another problem is that the estimate of tuberculo-
sis–HIV mortality is not explicitly calibrated to be
compatible with the mortality envelope of total HIV
mortality, as estimated by Spectrum, with an unknown
consequence on mutual compatibility of HIV mortality
estimates.

Future improvements of the tool are envisioned along
two main themes: improving the methodology and
improving the accuracy of data, particularly the data at the
intersection of tuberculosis with HIV.
The method itself can be improved in several ways to
address its limitations. It uses a CD4-aggregated impact
estimate for the impact of ARTon tuberculosis incidence,
although Suthar et al. [18] provide an estimate for
tuberculosis incidence hazard ratios by CD4 at ART
initiation. Although our choice of a single hazard ratio,
0.35, is consistent with the CD4-based ARTrules for the
year of our estimates (2012), we plan to use the
disaggregated hazard ratios from Suthar et al. in a future
version of the method.

The regression incidence model does not explicitly
capture tuberculosis latency, and therefore, does not
capture reactivation of latent tuberculosis. This limitation
could be addressed through an extension of the current
regression model to approximate the contribution of
reactivation to tuberculosis incidence. Another approach
could be to use parameter-parsimonious dynamic
tuberculosis modeling to better capture the dynamic
relationship between tuberculosis–HIV prevalence and
incidence, improving our current assumption of direct
correspondence.

The confidence intervals of the global tuberculosis–HIV
estimates produced by the TIME Estimates model appear
to be too narrow. A robust treatment of global estimates
requires a more thorough uncertainty analysis. However,
the narrow uncertainty intervals can be traced to the
bootstrap method, which is designed to reflect growing
uncertainty for future projections, but which typically fit
existing data arguably too well. The sampling of case
fatality distributions also happen independently for each
country, which may lead to the cancelation of extreme
estimates, narrowing the aggregate confidence interval. A
solution to these concerns may be the use of a hierarchical
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regression method which places a hyper prior distribution
on all parameter distributions, and which provides more
complex data weighing possibilities that are sensitive to
the biases of tuberculosis–HIV data and the systematic
errors that may exist in the various datasets. Uncertainty
in the incidence data regressed on by including a
measurement model relating the true and observed
incidences in the regression likelihood.

Another methodological improvement is to draw a
distinction between adult and pediatric tuberculosis. The
need for pediatric tuberculosis estimates has already led to
preliminary methodological review. The next version of
the child UNAIDS HIV model will utilize the same CD4
structure currently used in the adult model, which
facilitates the adoption of the above-mentioned methods
to childhood tuberculosis.

In addition to data quality control processes, future
versions will place constraints on the regression method
to help control for inconsistencies between tuberculosis
and HIV incidence as estimated by the regression method
and assessed through routine surveillance. For example, a
constraint can be used to limit the degree to which an
estimate of tuberculosis–HIV incidence may be below
notified tuberculosis–HIV, and account for expected
overreporting of tuberculosis–HIV cases and for the
potential underreporting of overall incidence.

The integration of TIME Estimates into Spectrum allows
for further direct model interaction with Spectrum AIM,
which can help improve estimates for the total HIV
mortality envelope. In particular, it could help produce
CD4-based CFR estimates for tuberculosis–HIV, which,
until now, could not be systematically determined from
tuberculosis mortality data alone. It is apparent that the
challenge of ensuring mutually consistent tuberculosis–
HIV estimates requires two-way communication within
Spectrum between the tuberculosis modules in TIME
and HIV modules AIM and goals.

In addition to presenting an explicit account of current
methods, the tool has taken an important step forward in
providing reliable country level estimates of tuberculosis–
HIV burden. Those results, known as the ‘2012 TB-HIV
estimates’, were published in the Global Tuberculosis
Report 2013, and plans are underway to update the
tuberculosis–HIV estimates annually with updates to the
GTB and UNAIDS datasets.
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