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The long-term fate of permafrost 
peatlands under rapid climate 
warming
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Permafrost peatlands contain globally important amounts of soil organic carbon, owing to cold 
conditions which suppress anaerobic decomposition. However, climate warming and permafrost thaw 
threaten the stability of this carbon store. The ultimate fate of permafrost peatlands and their carbon 
stores is unclear because of complex feedbacks between peat accumulation, hydrology and vegetation. 
Field monitoring campaigns only span the last few decades and therefore provide an incomplete 
picture of permafrost peatland response to recent rapid warming. Here we use a high-resolution 
palaeoecological approach to understand the longer-term response of peatlands in contrasting states 
of permafrost degradation to recent rapid warming. At all sites we identify a drying trend until the 
late-twentieth century; however, two sites subsequently experienced a rapid shift to wetter conditions 
as permafrost thawed in response to climatic warming, culminating in collapse of the peat domes. 
Commonalities between study sites lead us to propose a five-phase model for permafrost peatland 
response to climatic warming. This model suggests a shared ecohydrological trajectory towards a 
common end point: inundated Arctic fen. Although carbon accumulation is rapid in such sites, saturated 
soil conditions are likely to cause elevated methane emissions that have implications for climate-
feedback mechanisms.

Twenty-first century climatic warming is projected to be greatest in high-latitude areas of the Northern Hemisphere. 
IPCC AR5 climate models project that global mean surface temperatures are likely to increase by 0.3 °C to 4.8 °C by 
the end of the 21st century relative to 1986-2005, with a very high confidence that the Arctic region will warm more 
rapidly. Projected temperature increases over the Arctic land region have central estimates of 1.9 °C (RCP2.6), 3.9 °C 
(RCP4.5), 4.5 °C (RCP6.0) and 7.5 °C (RCP8.5)1. The implications for ecosystem structure and carbon budgets at 
high latitudes are likely to be of global importance through biosphere-climate feedbacks that have the potential to 
either accelerate or dampen the global warming effect2. Zones of permafrost have retreated rapidly poleward in 
recent decades, evidenced by the widespread development of degradation features such as thaw lakes3, increased 
active layer thickness4 and in some locations the complete disappearance of permafrost5,6.

Given their relatively small global areal extent, permafrost peatlands are disproportionately important to the 
future of global-scale ecosystem-climate feedbacks. Organic-rich permafrost peat stores approximately 277 Pg of 
carbon (C)7, equivalent to 14% of the global soil C store8. Until recently this huge soil C store has been rendered 
effectively inert, protected from decomposition by lethargic microbial activity in frozen soil conditions. The pros-
pect of widespread permafrost thaw leaves this C store vulnerable to rapid decomposition, with a huge reciprocal 
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global warming potential from increased fluxes of greenhouse carbon gases (GHGs) – chiefly CH4 from water-
logged soil conditions – to the atmosphere9. However, this global warming effect may be partially compensated 
or even outweighed entirely by increased CO2 sequestration through newly-invigorated ecosystem productivity 
and peat accumulation10.

Contemporary GHG flux rates from degrading permafrost peatlands, and their relationships to highly localised 
water-table and temperature measurements, have only been intensively monitored since the 1990s6. A dearth of 
palaeoecological studies into the response of permafrost peatlands to climatic change during the instrumental 
period (i.e., the last 100–150 years) leaves the future of degrading permafrost peatlands, and their likely feedbacks 
to the global climate system, highly unclear.

The Abisko region of northern Sweden (Supplementary material 1) is an area characterised by currently degrad-
ing permafrost peat11,12. Abisko has experienced rapid warming during the twentieth century13; mean annual air 
temperature exceeded the 0 °C threshold around AD 2000 leaving the region beyond the climatic envelope that 
can sustain permafrost. Climate model projections suggest continued marked temperature increases in the near 
future (Supplementary material 2). Active-layer deepening and increase in surface wetness through thawing of 
permafrost are both coincident with the sharp temperature rise in the last ~30 years (Fig. 1).

Distinct forms of degraded permafrost peatlands can be identified in Abisko, despite similar climatic conditions 
across the region. These include partially collapsed palsas and peat plateaux, thermokarst lakes, and Arctic fens and 
bogs that no longer contain permafrost (Supplementary material 1). However, it is unclear whether these distinct 
forms represent divergent trajectories for degrading permafrost peatlands, or stages along a pathway towards a 
common end-point. The answer to this question has important implications for the future of permafrost peatlands 
and their global-scale ecosystem-climate feedbacks. Earlier research on permafrost peatlands suggested cyclical 
models of palsa development under steady climates14. Such an explanation for the distinct permafrost forms at our 
study area seems unlikely to hold given that the entire region has now surpassed the 0 °C threshold and continues 
to warm, making refreezing and development of new palsas all but impossible. We reconstruct the recent ecohy-
drological and carbon dynamics of currently degrading Abisko peatlands to assess the likely future trajectories of 
Northern Hemisphere permafrost peat in response to future warming in the arctic and subarctic.

We analysed peat cores from i) a desiccating permafrost bog; ii) an area of peatland that has recently collapsed 
due to permafrost degradation; and iii) an Arctic fen, currently devoid of permafrost (Supplementary material 
1, 3-7). All three of our study sites have become drier over the last century (Figs 2 and 3). However, two sites (the 
collapsed peatland and Arctic fen) show a subsequent abrupt shift to wetter conditions. In the Arctic fen this wet 
shift tracks the temperature increase of the latter twentieth century (Fig. 1), whereas the collapsed peatland is 

Figure 1.  Recent changes in the Abisko region (a) deepening of the active layer since the 1980s (data from4,26). 
(b) Rapid shift to wetter conditions in an Arctic fen starting at ~1980 (this study, reconstructed using testate 
amoebae – see Fig. 2), blue line shows a locally-weighted scatterplot smoothing function; s.u. =  standardised 
water table units25. (c) Annual maximum temperature from Abisko showing two distinct periods of warming 
in the twentieth century (see Supplementary material 1 and 2); the red line shows a locally-weighted scatterplot 
smoothing function.
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influenced by water-table fluctuations in the surrounding fen. The desiccating bog exhibits a strong drying trend 
and has not undergone any rapid shift to wetter conditions.

Although the number of observations is limited, correlation analysis (Supplementary material 8) illustrates that 
in the case of the permafrost-free Arctic fen there are significant negative correlations between temperature data 
for several months throughout the year and reconstructed water-table depth. This indicates the site has become 
wetter due to thawing permafrost elsewhere in the catchment. The water-table depth reconstruction from the 
collapsed peatland is largely uncorrelated with instrumental temperature variables providing further evidence that 
the site has now passed a threshold beyond which its hydrology is controlled by autogenic mechanisms rather than 
climate. The desiccating bog is strongly linked to climate, where water-table depth exhibits positive correlations 
with temperature for several months of the year. This site has become drier due to temperature-driven increases 
in evapotranspiration.

Despite some similarities in hydrology, the three sites exhibit contrasting carbon accumulation (CA) regimes. 
CA rates are typically much higher in the upper peat profile in most peatland systems because full decomposition 
has yet to take place; however, the substantial differences in CA regime between the three sites here indicate a 
change in CA dynamics through time. In the desiccating bog CA has remained extremely low due to large decom-
position lossescf.15. The collapsed peatland has a very high CA, seemingly prompted by early twentieth century 
warming; since the collapse, CA rates have become mostly disconnected from climate and exhibit variable temporal 
behaviour which we interpret as allogenic (climate) and autogenic (internal feedbacks) controls competing for 
dominance. In the Arctic fen CA has increased sharply in recent years, likely due to increased productivity from 
higher temperatures16 and reduced decomposition in anoxic, saturated peat.

We propose five distinct phases along a trajectory of degradation for permafrost peatlands (Fig. 4). We con-
tend that genuinely pristine permafrost peatlands (Phase 1) are no longer present in our study region because 
mean annual temperature has been above 0 °C for more than a decade. The second stage (Phase 2; desiccating) is 
characterised by drying of surficial peat due to higher temperatures, leading to greater evapotranspirative losses, 
desiccation of the peat surface, slow lowering of the water table and high levels of decomposition. The system is 

Figure 2.  Peat property and testate amoeba data from the three study sites. Chronological determinations 
are from the age models are shown (see Supplementary material 7). Standardised water-table reconstructions 
are illustrated (see Supplementary material 5).
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driven by allogenic climatic forcing in Phase 2. Phase 3 represents a threshold of rapid change: continued drying 
leads to peat shrinkage and the peat surface begins to crack (very commonly observed in the field – Fig. 4, Phase 3 
photo), increasing thermal connectivity between the atmosphere and what remains of the permafrost. The result 
is a collapsed peatland (Phase 4) due to runaway degradation of permafrost, causing rapid collapse of the peatland 
and saturation with thaw water. In the final stage (Phase 5; Arctic fen) the peatland is devoid of permafrost; it is 
now influenced by surface and groundwater flow into the system from adjacent areas and local hydrochemistry17. 
This final stage has the potential for large carbon sequestration through newly invigorated productivity and rapid 
peat accumulation (Fig. 3f); however, elevated methane fluxes also seem likely owing to saturated soils9,18,19.

Although autogenic mechanisms have dominated ecosystem dynamics during certain periods of permafrost 
degradation, persistent warming has eventually forced inevitable collapse, followed by re-invigorated productivity 
and peat accumulation. This is in contrast to commonly held concerns about catastrophic loss of the peatland C 
stock under future climate change20. The temporal limit of ongoing monitoring campaigns provides only a partial 
record of the response of permafrost peatlands to recent warming. Palaeoecological studies such as ours and 
investigations of longer-term changes during the Holocene provide important baseline information over longer 
timescales that allows a fuller understanding of the fate of degrading permafrost peatlands.

Methods
We identified three different peatlands in the Abisko region in different states of permafrost decay, despite being 
subject to the same climate: 1) desiccating bog albeit with largely intact permafrost; 2) recently thawed and partially 
collapsed area of peatland surrounded by fen; and 3) Arctic fen with no current permafrost and abundant thaw 
pools (Supplementary material 3 and 4). We collected peat cores from the Arctic fen and desiccating bog using a 
Russian corer21. Refer to12 for information on sampling of the collapsed peatland. In the laboratory we carried out 
bulk density and loss-on-ignition analyses following standard methods22. Carbon accumulation was calculated 
following23. We analysed testate amoebae in each core following24 (Fig. 2), and the transfer function of17 was 

Figure 3.  (a–c) Standardised water-table reconstructions based on testate amoeba analysis from the three study 
sites. All sites show a marked drying trend until the latter twentieth century; however, the collapsed peatland 
and Arctic fen show a subsequent rapid shift to wetness. Linear regression statistics for the drying trends in each 
site are shown. (d–f) Annotated carbon accumulation data from the three sites.
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used for water-table depth reconstruction. Water-table depth data were standardised following25. The chronology 
of each core was based on 210Pb, AMS radiocarbon, spheroidal carbonaceous particles and tephrochronology 
(Supplementary material 6) and age-depth models were constructed using linear interpolation between dates 
(Supplementary material 7). We compiled available data on active layer thickness and instrumental climate data to 
compare with the peat-based data. For more detailed information on methods refer to Supplementary material 5.
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