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Logic Gates with Bright Dissipative Polariton Solitons in Bragg-Cavity Systems

E. Cancellieri,∗ J. K. Chana, M. Sich, D. N. Krizhanovskii, M. S. Skolnick, and D. M. Whittaker
Department of Physics and Astronomy, University of Sheffield S3 7RH, UK

(Dated: October 28, 2015)

Optical solitons are an ideal platform for the implementation of communication lines, since they
can be packed extremely close one to another without risking partial loss of the encoded information
due to their interaction. On the other hand, soliton-soliton interactions are needed to implement
computations and achieve all-optical information processing. Here we study how bright dissipative
polariton solitons interact and exploit their interaction to implement AND and OR gates with state
of the art technology. Moreover, we show that soliton-soliton interaction can be used to determine
the sign of α2, the parameter describing the interaction between polaritons with opposite spin.

PACS numbers: 71.36.+c, 42.65.Pc, 42.65.Tg

I. INTRODUCTION

Solitons are self-reinforcing wavepackets that maintain
their shape while propagating. Bright dissipative soli-
tons are a particular class of solitons typical of out-of-
equilibrium systems. Differently from their conservative
counterpart, dissipative solitons are implemented by
means of a continuous gain, compensating the loss of
particles from the system, and by means of a trigger,
which generates a bright wavepacket on top of a much
less intense background. This kind of solitons has been
extensively studied in a wide range of systems and single
and multiple solitons states as well as oscillating bound
states have been predicted and demonstrated1–4. Sur-
prisingly very little attention has been devoted to the
study of interactions among bright dissipative solitons in
dynamical systems5,6 and, to the best of our knowledge,
no attention has been devoted to the implementation of
devices based on dissipative solitons, unlike for the con-
servative ones7.
Since the first observation of strong light-matter cou-

pling in a semiconductor micro-resonator8 this system
has been intensively studied for the implementation of
a new generation of optical devices. In fact, the dual
light-matter nature of polaritons, the particles emerging
from the coherent strong coupling of cavity photons with
quantum well excitons, provides significant advantages
with respect to electronic as well as standard nonlinear
optical systems. On the one hand the light component al-
lows high propagation velocities and fast control and, on
the other hand, the matter component guarantees strong
nonlinearities, much stronger than in traditional opti-
cal systems with Kerr nonlinearities9. For these reasons
several theoretical proposals have been advanced for the
implementation of neural networks, switches and logic
gates10–12. And several experimental implementations
such as switches, spin switches, resonant tunneling diodes
and transistors have also been demonstrated13–17.
To implement fast and efficient polariton devices, how-

ever, the major problem of the long reset-time of the de-
vice needs to be solved. In fact, in all these approaches
after each “calculation” one needs either to completely
turn off the device or to wait hundreds of picoseconds to

allow long-lived excitonic reservoirs to decay. A possible
way to address this problem is to use red-detuned ultra-
short Stark pulses18 but with the major drawback that
very high laser intensities are needed. Bright dissipative
polariton solitons (BDPSs) can, in principle, solve this
problem. In fact, BDPSs can be triggered with few ps-
long pulses that do not excite excitonic reservoirs and,
after the passage of a soliton, the system is left, by defi-
nition, in its OFF state.

In this work we study the interaction of dynamical
BDPSs in circuits etched in planar Bragg-microcavities
and show that AND and OR gates can be implemented
by exploiting these interactions. Moreover, we show that
by studying soliton-soliton interactions it is possible to
evaluate the constant characterising the interaction of
polaritons with different spins.

The main requirements for the implementation of
BDPSs, predicted and observed in planar 2-dimensional
cavities19–21, are twofold: 1) the pump wavevector has
to be above the point of inflection of the lower polari-
ton branch, in order for the effective mass to be negative
and compensate for the repulsive interactions between
polaritons with the same spin component; 2) the pump
has to be blue-detuned from the polariton branch in or-
der to guarantee a bistable regime. In fact, BDPSs can
be qualitatively interpreted as spatially localised excited
regions of the modulationally unstable upper branch so-
lution20. The main advantage of BDPSs is that they can
propagate for very large distances determined by the size
of the pump. The main drawback, instead, is that being
part of the pump state their energy, velocity and direc-
tion of propagation are set by the pump itself. Therefore,
the propagation paths of two BDPSs can never intersect,
making impossible the implementation of logic gates. To
solve this issue we propose to inject BDPSs moving from
left to right in circuits with the shape of a Y [Fig. 1(a)].
In this way the two converging arms act as filters allowing
only the part of the pump parallel to them to enter in the
cavity and forcing two BDPSs to meet at the junction.

The paper is structured as follows. In section II we
present the mean field approach used to describe the
four components wavefuction (two exciton and two pho-
ton components, one for each spin/polarisation degree of
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freedom). Section III describes the main results of our
research. First it will be demonstrated that dissipative
solitons can propagate in straight wires and, making use
of this result, the possible implementation of OR and
AND gates will be addressed. The final part of section
III will deal with the interaction of dissipative polariton
solitons with opposite polarisation and with an analysis
of the role played by the TE-TM splitting on the possible
implementation of the gates. Conclusions and outlooks
will be given in section IV.

II. METHODS

The system of a quantum well embedded in a semicon-
ductor microcavity can be modelled by means of a four-
component wave function where the spin up and spin
down excitonic fields (ψex

± ) are strongly coupled to the

two σ+ and σ− circularly polarised photonic fields (ψph
± )

through the vacuum Rabi coupling ~ΩR (2.55 meV in our
case). The dynamics of the system can be modelled by
means of the generalised Gross-Pitaevskii equation22:

i~∂tψ
ph
± =

[

~ωph(k) + U± − i~γph/2 + β (ikx ± ky)
2
]

ψph
±

+F± + ~ΩRψ
ex
± ,

i~∂tψ
ex
± =

[

~ωex(k)− i~γex/2 + α1|ψ
ex
± |2 + α2|ψ

ex
∓ |2

]

ψex
±

+~ΩRψ
ph
± . (1)

Here ωph(k) = ω0
ph+

~k
2

mph
, with mph = 5.0×10−5m0, is

the dispersion of the confined photon mode andm0 is the
free electron mass. Since the exciton mass is much higher
than mph a flat exciton dispersion is taken (ωex(k) =
ω0
ex). Throughout the paper the zero energy is set to the

bare exciton frequency and exciton-photon detuning is
taken to be equal to zero (ωph(0) = ω0

ex = 0). The terms
U± describe wires etched in the top cavity-mirror. All the
results shown here correspond to U⊥

± (r) = 1
2mphω

2
hpd

2,
where ωhp determines the potential strength and d is
the distance from the wires centre. In order to test the
robustness of the proposed device we numerically con-
firmed the implementation OR and AND gates using po-
tentials proportional to d3 and to d4. The parameters
γph, γex, α1 and α2 respectively describe the photon and
exciton decay rates, and the interaction between exci-
tons with identical and opposite spin. For the sake of
generality we rescale field densities and interaction con-
stants to have α1 = 1 and α2 = −0.123. Finally, the
terms proportional to β describe the TE-TM splitting22,
while the terms F± describe a continuous wave (CW)
and a pulsed laser fields. Throughout the paper the CW
terms will be taken equal to F 0

±f(r)e
i(kp·r−ωpt), where

f(r) has a top-hat spatial profile, ωp is the pump fre-
quency and kp = (kp, 0) is the pump wavevector. The
pulsed terms have the same frequency and wavevector

of the CW ones, intensity fpb± , and Gaussian profiles

FIG. 1. (Color online) (a) Schematic of the proposed device.

(b) Spectra associated to ψph
+ and lower polariton modes (yel-

low) induced by the harmonic potential U⊥
± (r). (c) Cuts of

|ψph
+ |2 along the centre of the wire at different times. The

parameters are: ~γph = ~γex = 0.05 meV, β = 0.0 meV,
kp = kpb+ = 2.5 µm−1, ~ωp = ~ωpb+ = −0.8 meV, F 0

± = 0.07

meVµm−1, fpb
+ = 0.5 meVµm−1, ~ωhp = 2.0 meV (corre-

sponding to wires 3 µm wide).

in space and time: fpb± ei(kp·r−ωpt)e−x2/2σ2
sp−t2/2σ2

t , with
σt = 1.5 ps and σsp = 1 µm.

III. RESULTS

A. Straight Wires

We first consider the case of a single wire with zero
TE-TM splitting and demonstrate the existence of soli-
tonic solutions for harmonic potentials (see24 for super-
Gaussian profiles). In analogy with19,20 we fix the CW-
pump frequency and angle in order to be blue-detuned
(∆E = 0.166 meV) from the lower polariton dispersion
at a wavevector above its point of inflection. Here, how-
ever, the relevant polariton dispersion is the one corre-
sponding to the lowest confined mode of the harmonic
trapping potential [Fig. 1(b)]. Here and in the follow-
ing we numerically simulate the time evolution of the
system with a pump linearly polarised parallel to the
wire and a trigger circularly polarised σ+. Figure 1(b)
shows the typical solitonic linear dispersion while panel
(c) shows 1-dimensional cuts along the propagation di-

rection of the σ+-polarised cavity emission (ψph
+ ). After

an initial transient time, in which the excited Gaussian-
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FIG. 2. (Color online) Or gate. In the logic table 1 represents
a σ+ polarised soliton and 0 the absence of it while UP and
LOW indicate the upper or lower oblique arms. For the OR
gate an output equal to 1 is expected every time there is at
least a soliton in one of the inputs. The output 0 is expected
only when no solitons enter the device. The top and bottom
panels show the σ+ cavity emission at three different times
(t = 26, 60 and 92ps) for the first and third rows of the OR
logic table. The parameters used here are the same as in Fig.
1 and θ = 16◦.

shaped wavepacket transforms into a solitary wave (9−88
ps), the profile does not change until the wavepacket ex-
its the CW-pump, therefore demonstrating the existence
of BDPS solutions (animation in supplementary material
SVwire).

B. Logic gates: OR and AND

Let us now address the case of Y junctions still consid-
ering β = 0. Since the CW-pump is set in order to inject
polaritons moving from left to right, the region of the
device downstream the junction is analogous to the case
of the single wire. Therefore, considering the same CW-
pump as before we are sure that BDPSs can propagate
in this part of the device. The question is whether BDPS
solutions exist in the two oblique wires. As already said,
these wires essentially act as filters allowing only the com-
ponents of the CW-pump parallel to them to enter into
the microcavity. Therefore, inside the oblique wires the
polariton wavevector is: k‖ = kpcos(θ/2), where θ is the
angle between the two wires. If θ is small enough so that
k‖ is above the point of inflection of the polariton disper-
sion soliton propagation is permitted. For our choice of
the parameters (θ = 16◦) k‖ = 2.47 µm−1 is still above
the point of inflection.
In order to demonstrate the implementation of logic

gates we define the base of the binary logic as follows:
1 corresponds to the presence of a BDPS polarised σ+,
and 0 to the absence of it. Note that since we are consid-
ering β = 0 and linearly polarised CW pumps, a BDPS
polarised σ− as 1 is an equivalent choice. Linearly po-
larised BDPSs, instead, cannot be used since the inter-
action of excitons with opposite spin components makes
them unstable21.
Figure 2 demonstrates the implementation of an OR

gate. The top panel shows the σ+ polarised emission from
the cavity at different times: when the soliton is in the

FIG. 3. (Color online) AND gate. As in Fig.2 the top and

bottom panels show |ψph
+ |2 at t = 26, 60 and 92ps for the first

and third rows of the logic table. The parameters here are
the same as in Fig. 2 and 1 apart from the strength of the
harmonic potential ωhp = 1.90, which correspond to wider
wires.

upper arm, when is just after the junction, and when is
propagating downstream the junction. This panel shows
that the first line of the OR logic table can be imple-
mented using travelling BDPSs in Y junctions (supple-
mentary material SVOR1). What is it worth noticing
is that at t = 60 ps the polariton distribution does not
have the typical BDPS-like distribution as at t = 26 ps
(a bright peak followed by a few less intense peaks). This
can be understood by observing that in the junction the
laser-lower polariton detuning (∆E) is not the same as
in the wires, and therefore BDPSs entering the junction
will need to adapt to the new conditions. For the spe-
cific set of parameters chosen here the bright wavepacket
is able to pass through the junction, to enter into the
downstream wire and, after few ps, to stabilise to the
usual BDPS shape. However, if in the junction the de-
viation from the optimal condition for soliton formation
is too large (i.e. ∆E is too big), the BDPS will disap-
pear because the pump is too weak to sustain its excess
population while in the junction.

The lower panel in figure 2 shows the implementation
of the third line of the OR logic table. Here, two BDPSs
simultaneously arriving at the junction transform into
a single BDPS downstream the junction (supplementary
material SVOR3). What is worth noticing here is that
the two solitons merge into a single BDPS having lower
intensity than the sum of the two initial ones. This is
because the CW-pump is fixed in order to sustain a sin-
gle BDPS, and is too low to sustain the population of
two BDPSs and. Therefore, the population forming two
BDPSs is bound to decrease down to the population of
a single soliton. Finally, the second and fourth lines of
the OR logic table are trivial if the first and third are
satisfied.

In order to implement an AND gate it is useful to re-
call what was just said about ∆E being, in the junction,
too big to allow for the pump to sustain a BDPS. A
possible way to implement an AND gate is to increase
∆E enough to forbid one soliton to pass, but keeping it
small enough for two solitons to pass. Since we want to
build a complex circuit we would like to use the same
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FIG. 4. (Color online) Interaction of σ+ and σ− BDPSs in the
case of α2 < 0. Top (bottom) panel: σ+ (σ−)-polarised cavity
emission at t = 26, 60 and 92ps. A linearly polarised pump,
as in Fig. 1 and 2, is used to sustain σ+ and a σ−-polarised
BDPSs respectively in the upper and lower arms. When two
BDPSs meet at the junction they mutually annihilate. All
parameters are as in Fig. 1 and 2, except for the polarisation
of the lower arm trigger.

CW-pump over several devices and, therefore, we chose
to increase ∆E by decreasing the value of ωhp, i.e. by
increasing the wire size. Clearly, the change in the wire
size between OR and AND gates will need to be smooth,
in order to avoid reflections at the interface. Figure 3
demonstrates the implementation of the AND gate in
the case of wider wires (see animations in SVAND1 and
SVAND3). In particular, the upper panel shows a BDPS
not being able to cross the junction. This is because,
in the junction the detuning ∆E is bigger with respect
to the OR case and, therefore, it is more difficult for
the pump to sustain the needed excess population. In-
stead, the lower panel shows two solitons simultaneously
reaching the junction and a BDPS surviving downstream,
therefore demonstrating the AND function. This is be-
cause even if many polaritons are lost while crossing the
junction the amount of population due to the two initial
BDPSs is enough to sustain a single BDPS.

Since the success of the operation relies on the sum
of the population of the two BDPSs, their arrival at the
junction must happen at the same time. For our choice
of the parameters BDPSs travel at ≈0.7 µm/ps and have
a FWHM of about 1.5 µm. Therefore the needed preci-
sion over the time of their arrival is of the order of ±1
ps (this value has been confirmed by our simulations).
These values also allow determining the expected achiev-
able repetition rate for the device: considering a mini-
mal distance between solitons of four times the FWHM
(6 µm), a repetition rate of the order of 100 GHz can be
evaluated. Finally, in order to check the robustness of
the proposed device we numerically confirmed that OR
and AND gates can be implemented for a series of differ-
ent parameters (ωp and kp have been varied in a range
of about 5% and 8% respectively).

C. Interaction of σ+ and σ− polarised solitons

Let us now address the case of the interaction of BDPSs
with different spin. From equation (1) it can be seen that
the effect due to the presence of a population of polari-
tons σ− (σ+)-polarised is to shift the opposite-polarised
polariton branch by an amount α2|ψ

ex
+ | (α2|ψ

ex
− |), with

a positive or negative shift depending on the sign of α2.
Figure 4 shows the same situation as in the lower panel
of Fig. 2 but with a σ− polarised BDPS in the lower arm
(this is possible since the CW-pump is linearly polarised).
When the two BDPSs with different polarisation interact,
they mutually annihilate (supplementary material SVAL-
PHA2). In fact, since α2 is negative, the σ+ polarised
soliton red-shifts the σ− polarised polariton branch out
of resonance with the CW-pump by an amount α2|ψ

ex
+ |,

therefore inducing the decay of the σ− polarised soliton.
The same is valid for the σ− polarised soliton that in-
duces the decay of the σ+ polarised one. The situation
would have been completely different for α2 > 0. In that
case both BDPSs would have blue-shifted the polariton
branch with opposite polarisation therefore helping the
CW-pump to sustain the excess population.

D. Effect of TE-TM splitting

Finally let us comment on the effect of TE-TM split-
ting (β 6= 0). The case of BDPSs travelling in wires is
not qualitatively different from the case of planar Bragg-
microcavity. If the splitting induced by |β| at the pump
wavevector kp is small relatively to the detuning ∆E,
both σ+ and σ− polarised BDPSs can be excited21. This
is understood in terms of an “effective” quenching of
the TE-TM splitting. However, even if TE-TM splitting
does not forbid, in principle, the implementation of the
proposed logic gates, the condition ∆E > |β|k2p can be
rather restrictive, specially for weak lateral confinement
of the wires. In this case, in fact, the different polari-
ton branches are quite close one to another and therefore
the maximum allowed value for ∆E is small (we con-
firmed the feasibility of our devices for realistic values of
β = 0.02 meVµm222).

IV. CONCLUSION

In summary, we have theoretically demonstrated that
high speed travelling BDPSs can cross junctions about
10 µm wide and travel through Y-shaped devices. More-
over, we showed that two BDPSs meeting at the junction
show effective interactions that can be exploited to imple-
ment OR and AND gates with repetition rates up to 100
GHz. This result is achieved in devices that allow BDPSs
to move one towards another, overcoming the limitations
in propagation direction typical of BDPSs in planar mi-
crocavities. Moreover, we showed that with the proposed
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devices it is possible to investigate the sign of α2, the pa-
rameter describing the interaction between excitons with
opposite spin.

ACKNOWLEDGMENTS

We acknowledge support by EPSRC grant
EP/J007544, ERC Advanced grant EXCIPOL 320570,

and Leverhulme Trust.

∗ Corresponding author: emiliano.cancellieri@gmail.com
1 N. Akhmediev and A. E. Ankiewicz, Dissipative Solitons,
Lecture Notes in Physics, Vol. 661 (Springer, 2005).
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C. Tejedor, Phys. Rev. B 83, 214507 (2011).

12 T. Espinosa-Ortega and T. C. H. Liew, Phys. Rev. B 87,
195305 (2013).

13 M. De Giorgi, D. Ballarini, E. Cancellieri, F. M. Marchetti,
M. H. Szymanska, C. Tejedor, R. Cingolani, E. Giacobino,
A. Bramati, G. Gigli, and D. Sanvitto, Phys. Rev. Lett.
109, 266407 (2012).

14 A. Amo, T. C. H. Liew, C. Adrados, R. Houdré, E. Gia-
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