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ABSTRACT: This paper presents a new method for optimization of dynamic response of 

structures subjected to seismic excitation. This method is based on the concept of uniform 

distribution of deformation. In order to obtain the optimum distribution of structural properties, 

an iterative optimization procedure has been adopted. In this approach, the structural 

properties are modified so that inefficient material is gradually shifted from strong to weak 

areas of a structure. This process is continued until a state of uniform deformation is 

achieved. It is shown that in general for a MDOF structure there exists a specific pattern for 

distribution of structural properties that results in an optimum seismic performance. It has 

been shown that the seismic performance of such a structure is optimal, and behaves 

generally better than those designed by conventional methods. The application of the 

proposed method for optimum seismic design of different structural forms such as truss-like 

structures and shear-buildings is presented. Effects of fundamental period, target ductility 

demand, damping ratio and seismic excitations on optimum distribution pattern are 

investigated. 

 

Keywords: optimal strength pattern, performance-based design, seismic loading, Ductility, 

optimum seismic performance 

 

INTRODUCTION 

Seismic design is currently based on force rather than displacement, essentially as a 

consequence of the historical developments of an understanding of structural dynamics and, 

more specifically, of the response of structures to seismic actions and the progressive 

modifications and improvement of seismic codes worldwide. Consequently, the seismic 

codes are generally regarding the seismic effects as lateral inertia forces. Although design 

 1 



procedures have become more rigorous in their application, this basic force-based approach 

has not changed significantly since its inception in the early 1900s. Use of forces as a design 

basis has remained more a matter of convenience than a representation of actual behavior 

during earthquakes. Many structures have apparently survived earthquakes capable of 

inducing inertia forces many times larger than those corresponding to their structural 

strength, if a linear response was assumed. The concept of ductility has then been 

introduced to reconcile this apparent inconsistency, and account for the anomaly survival 

with inadequate strength through nonlinear response. Subsequently, much research efforts 

have been directed to determining the available capacity of different structural systems, 

performing extensive experimental and analytical studies to determine their safe deformation 

capacity. This may be regarded as a more appreciation of the importance of deformation, as 

opposed to strength, in seismic design. 

Indeed, a review of the history of seismic design indicates that initially design was purely 

based on strength, or force consideration. As the importance of deformation has come to 

better appreciation, the approach has been to attempt to modify the existing force based 

approach to include consideration of deformation, rather than to rework the procedure on 

more rational basis.  

In the conventional seismic design, the pattern for distribution of structural properties such 

as strength, stiffness, and damping in a preliminary design is normally based on the 

presumption that the structure vibrates within its linear-elastic range [1]. Recent design 

guidelines, such as FEMA 356 [2] and SEAOC Vision 2000 [3], place limits on acceptable 

values of response parameters, implying that exceeding of these acceptable values 

represent violation of a performance objective. Further modifications to the preliminary 

design, aiming to satisfy the Performance Objectives could lead to some alterations of the 

original distribution pattern of structural properties. As structures exceed their elastic limits in 

severe earthquakes, the use of inertia forces corresponding to elastic modes may not lead to 

the optimum distribution of structural properties. This issue has been viewed by researchers 

from different angles. 

Many experimental and analytical studies have been carried out to investigate the validity of 

the distribution of lateral forces according to seismic codes. Lee and Goel [4] analyzed a 

series of 2 to 20 story frame models subjected to various earthquake excitations. They 

showed that in general there is a discrepancy between the earthquake induced shear forces 

and the forces determined by assuming distribution patterns. The consequences of using the 

code patterns on seismic performance have been investigated during the last decade [5, 6, 

7]. Chopra [8] evaluated the ductility demands of several shear building models subjected to 

the El- Centro Earthquake of 1940. The relative story yield strength of these models was 

chosen in accordance with the distribution patterns of the earthquake forces specified in the 
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Uniform Building Code [9]. It was concluded that this distribution pattern does not lead to 

equal ductility demand in all stories, and that in most cases the ductility demand in the first 

story is the largest of all stories. The first author [10, 11] proportioned the relative story yield 

strength of a number of shear building models in accordance with some arbitrarily chosen 

distribution patterns as well as the distribution pattern suggested by the UBC1997 [9]. It is 

concluded that: (a) the pattern suggested by the code does not lead to a uniform distribution 

of ductility, and (b) a rather uniform distribution of ductility with a relatively smaller maximum 

ductility demand can be obtained from other patterns. These findings have been confirmed 

by further investigations [12, 13], and led to the development of a new concept: optimum 

distribution pattern for seismic performance that is discussed in this paper.  

 

CONCEPT OF OPTIMIZATION FOR DYNAMIC EXCITATION 

• Background 

As discussed before, for decades seismic codes have regarded the seismic effects as lateral 

inertia forces. Consequently, in almost all optimization approaches developed for seismic 

design, the forces are regarded as static with a pre-assumed pattern of distribution such as 

triangular. In effect, these approaches are similar to the conventional optimization methods 

for design of structures subjected to static loadings. It is generally endeavored to induce a 

status of uniform deformation throughout the structure to obtain an optimum design as in 

Gantes et al. [14]. In an attempt for developing an optimization method for seismic design of 

steel frames, Gong et al. [15] used a set of story drift limits as performance objectives, and 

considered the seismic effects as static forces with parabolic distribution. From their results it 

can by concluded that the structural weight decreases as the deformation approaches to a 

uniform status. It should be noted that although in this procedure the effect of nonlinear 

behavior is considered, the seismic effects are regarded as external static forces rather than 

induced deformation. Therefore, the procedure is still remains similar to the conventional 

optimum design methods. 

Some researchers have attempted to consider the effect of dynamic nature of seismic 

forces. Lee and Goel [4] proposed a design procedure using predefined performance 

targets. The procedure is based on minimizing the difference between the earthquake 

induced shear forces and the forces used for seismic design. Although within the linear 

range this concept seems to have a rather rational basis, the use of shear forces as a means 

of assessing the adequacy of design looses its weight in nonlinear ranges of vibration.  

In his early attempts to establish and apply the performance-based method for seismic 

design of structures in late 1980's, the first author recognized the fact that several 

acceptable solutions could be obtained for a given set of objective targets such as ductility 

demands. This was later confirmed by the results of nonlinear dynamic analysis of shear 
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buildings subjected to seismic excitations [10, 11].  These early studies demonstrated that a 

conventional seismic design does not lead to a uniform distribution of ductility. Further 

investigations [12, 13], suggested that we need to move towards a rather uniform distribution 

of ductility in order to reduce the ductility demand. Afterwards extensive studies have been 

conducted to highlight and establish a rational basis for this concept [16]. Indeed, in spite of 

those who assume the concept of uniform deformation as a performance objective, the 

authors are using it as a means for obtaining an optimum design. In the following, it has 

been attempted to substantiate the concept of uniform deformation and its application in 

optimum design for seismic excitation. 

• Inefficient Material 

As discussed before, the use of distribution patterns for lateral seismic forces suggested by 

codes do not guarantee the optimum performance of structures. The current studies indicate 

that during strong earthquakes the deformation demand in structure does not vary uniformly. 

For instance, the steel frame shown in Figure 1 is designed in accordance with UBC1997 [9] 

and subjected to the Northridge earthquake of 1994 (CNP196). Non-linear dynamic analysis 

is conducted using the computer program DRAIN-2DX [17]. It is illustrated in Figure1 that 

deformation demand is not distributed uniformly. On the other hand, the maximum inter-story 

drift occurs almost at the top, and it decreases downward. Hence, it can be concluded that in 

some parts of the structure, the deformation demand does not reach the maximum level, and 

therefore, the capacity of the material is not fully exploited. 

• Principle of Strength-Deformation Reciprocal Relation 

Early studies on shear building models have proved that it is possible to improve the 

performance of a model by shifting the material from strong to weak parts [12, 13, 16]. This 

results in a uniform distribution of deformation, and reduces the maximum deformation 

demand. The coincidence of uniform distribution of deformation with better seismic 

performance can be explained by the principle of strength-deformation reciprocal relation. 

The effect of variation of strength on seismic performance has been studied extensively [18, 

19]. These studies have lead to development of numerous strength- ductility (R-µ) 

relationships. Figure 2 shows a typical R-µ-T relationship. R is inversely proportional to 

strength. In this figure, three types of structures have been modeled. ST1 and ST2 represent 

low and high period structures, respectively. In these models, it is assumed that stiffness 

remains unchanged as strength varies. ST3 represents structures in which any decrease in 

strength is accompanied by a decrease in stiffness. This figure indicates that generally µ 

increases as strength decreases. It should be noted that in some exceptional cases this 

principle may be violated in low period range of ST3 type in which a decrease in strength is 

accompanied by an intensified decrease in stiffness (represented by the dotted arrow ST4 in 
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Figure 2). Investigations have indicated that this rule is also applicable for MDOF systems 

[12]. 

• Theory of Uniform Deformation 

Consider the mentioned structure of Figure 1 in which the distribution of deformation is not 

uniform. If maximum story drift is taken as the failure criterion, the results  indicate that only 

some parts of the structure have failed. On the other hand, the deformation in the remaining 

parts is less than the maximum allowable limit. The Strength-Deformation Reciprocal 

Relation suggests that if the strength in these parts decreased, the deformation would 

increase. Hence, if the strength is decreased incrementally, we should eventually obtain a 

state of uniform deformation. At this point the material capacity is fully exploited. As any 

decrease in strength is normally accompanied by a decrease of material, a structure 

becomes lighter as deformation is distributed more uniformly as compared with a structure 

with non-uniform deformation. Therefore, in general it may be concluded that we need to 

reach the status of uniform deformation for optimum use of material. This is denoted as the 

Theory of Uniform Deformation.  

 

OPTIMUM SEISMIC DESING OF TRUSS-LIKE STRUCTURES  

The Theory of Uniform Deformation is examined by a conceptual example shown in Figure 

3. The objective is to design a truss-like structure for sustaining four masses M1 to M4 by 

using any number of stud members connecting these masses to each other and to the 

supports A to E. This structure should not exceed a member ductility demand of 4 when 

subjected to the horizontal component of the Northridge Earthquake of 1994 (CNP196). A 

Rayleigh damping of 5% is assumed. No weight is considered for the masses and only the 

seismic forces are considered. Masses M1 to M4 are assumed to be 20, 5, 10, and 5 tons, 

respectively. Computer program Drain-2DX [17] is used for nonlinear dynamic analyses. At 

the starting point, a very general arrangement is chosen by considering all possible 

connections as shown in Figure 4.  In the first step, an identical area of cross section of 1 

cm2 is assumed for all members. It is also assumed that the strength of each member is 

equal to (Afy) in both tension and compression. The structure is subjected to the seismic 

excitation, and the ductility demand is calculated for all members. Subsequently, the area of 

cross section of all members is scaled until the maximum ductility demand reaches the 

target level of 4. 

The distribution of material and ductility demand at this stage is shown in Table 1. These 

results indicate that some members undergo much less deformation than others. This 

implies that the material is not fully exploited in some members. 
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Considering the Theory of Uniform Deformation, it should be attempted to move towards a 

uniform ductility distribution demand to obtain a lighter structure. To accomplish this, the 

following optimization procedure is employed: 

1. An arbitrary primary pattern is assumed for the distribution of structural properties that 

control the response of structure (such as strength, stiffness, and damping). Here, the 

cross section area is the only controlling parameter. Hence, as mentioned before, a 

uniform pattern is chosen. 

2. The structure is subjected to the excitation, and the maximum deformation is calculated, 

and compared with the target value. The structural properties are then scaled, without 

changing the primary pattern, until the maximum deformation demand reaches the target 

value. This pattern is regarded as a feasible answer, and referred to as the first 

acceptable pattern. For the above example, member ductility represents the deformation 

demand, and the results of the first and the final steps are presented in Table 1. 

3. The coefficient of variation (cov) of deformation distribution within the structure is 

calculated. If the cov is considered to be small enough, we can stop, and consider the 

pattern as practically optimum. Otherwise the analysis continues. The cov of the first 

acceptable pattern was determined as 0.785. It is decided that the cov is high, and the 

analysis should continue. 

4. At this stage the distribution pattern of structural properties is modified. Using the Theory 

of Uniform Deformation, the inefficient material is reduced until an optimum structure is 

obtained. To accomplish this, the positions where the deformation is less than the target 

value are identified, and the material is reduced accordingly. Experience has shown that 

this alteration should be applied incrementally in order to achieve convergence in the 

numerical calculations. Hence, the following equation is used in the present studies: 
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Using these modified cross sections; the procedure is repeated from step 2, until a new 

feasible pattern is obtained. It is expected that the cov of deformation distribution for the new 

pattern is smaller than the corresponding cov for the previous pattern. This procedure is 

iterated until cov becomes small enough, and a status of rather uniform deformation prevails. 

Starting from a cov of 0.785, we reach a cov of 0.001 at the final step.  

A comparison of the results of primary and final steps in Table 1 illustrates that member 

ductility demands in the final step have become remarkably uniform and the weight of total 

material has decreased from 162.3 ton to 52.7 ton. The method has been able to recognize 

and eliminate the redundant and inefficient members. Out of 26 members in the primary 

arrangement in Figure 4 only 11 members remain in the final step as shown in Figure 5. 

Figure 6 demonstrates the variation of total structural weight from the first feasible answer 

toward the final one. It is shown in this figure that total structural weight is decreased up to 

50% in seven steps. It can be concluded that the proposed method has good convergence 

to the optimum solution. 

• Target Ductility Demand 

The optimization algorithm was conducted on previous example for different values of target 

ductility demands. Optimal topology corresponds to target ductility demands of 4, 6 and 8 are 

compared in Figure 7. It is shown in this figure that optimal topology depends on target 

ductility demand, and therefore, a fixed topology cannot be appropriate for all the case. It can 

be concluded that conventional optimization methods witch are usually based on elastic 

vibration modes; are not appropriate for structures in nonlinear range of behavior. The 

proposed method can optimize the design for all types of performance objectives such as 

deformation, acceleration and velocity. Authors are not aware of any similar studies, capable 

of optimizing the nonlinear dynamic response of structures for a given set of performance 

objectives. 

 

OPTIMUM SEISMIC DESIGN OF SHEAR BUILDINGS 

The Theory of Uniform Deformation can be easily adapted for evaluation of optimum 

patterns for shear buildings. To obtain such optimum patterns, in principle, the steps 

mentioned in the previous section are followed with some modifications. It should be noted 

that there is a unique relation between the distribution pattern of lateral seismic forces and 

the distribution of strength (as the strength at each floor is obtained from the corresponding 

story shear force). Hence, for shear buildings, we can determine the optimum pattern for 

distribution of seismic lateral loads instead of distribution of strength. Let us assume that we 

want to evaluate the most appropriate lateral loading pattern to design a 10-story shear 

building with a fundamental period of 1 sec, so that it can sustain the Northridge earthquake 

of 1994 (CNP196) without exceeding a maximum story ductility demand of 4. In the example 
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model, each floor is considered as a lumped mass and the total mass of the structure is 

distributed uniformly over its height as shown in Figure 8. The Rayleigh damping is adopted 

with a constant damping ratio 0.05 for the first few effective modes and non-linear dynamic 

analyses are conducted utilizing the computer program DRAIN-2DX [17]. Considering the 

Theory of Uniform Deformation, the following optimization procedure is used: 

1. 1. Arbitrary patterns for primary height-wise distribution of strength and stiffness are 

considered. However, for shear buildings it is assumed that these two patterns are 

similar, and therefore, an identical pattern is assumed for both strength and stiffness. 

Here, the uniform pattern of Figure 8 is chosen for the primary distribution of strength 

and stiffness. 

2. The stiffness pattern is scaled so as to attain a fundamental period of 1 sec.  

3. Maximum ductility demand is calculated by performing nonlinear dynamic analysis for 

the given exaction. Subsequently, the strength is scaled (without changing the primary 

pattern) until the maximum deformation demand gets to a target value of 4. The resulting 

pattern is a feasible solution and can be considered as the first acceptable pattern. The 

first and final steps are illustrated in Table2. 

4. The cov (coefficient of variation) of story ductility distribution is determined. The 

procedure continues until cov decreases down to an acceptable level. For the first 

feasible pattern, the cov was determined as 0.719. The cove is considered to be high, 

and the analysis continues. 

5. Considering the Theory of Uniform Deformation, the distribution pattern is modified. To 

achieve this, the stories where the ductility demand is less than the target values are 

identified, and weakened by reducing the strength and stiffness. Similar to Equation 1, 

the following equation is used for the good convergence: 

                          

(3) 

 

Where iµ ′  is ductility demand at ith story, and tiµ ′  is the target ductility assumed as equal to 

4 for all stories. Vi is the shear strength of the ith story. n denotes the step number. α is the 

convergence coefficient ranging from 0 to 1. For the above example, an acceptable 

convergence has been obtained for a value α=0.1. At this stage, a new pattern for height 

wise distribution of strength is obtained. As mentioned before, the same pattern is used for 

height wise distribution of stiffness. Now the procedure is repeated from step 2, until a new 

feasible pattern is obtained. It is expected that the cov of ductility distribution for this pattern 

is smaller than the corresponding cov for the previous pattern. This procedure is iterated 

until cov becomes small enough, and a rather uniform ductility demand is achieved. The 
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story ductility patterns for preliminary and final designs are compared in Figure 9. This figure 

indicates the efficiency of this method to reach the status of uniform ductility demand.  

Table 2 illustrates the results of analysis for the first and final step. Figure 10 demonstrates 

the variation of cov and the total strength from the first feasible pattern toward the final one. 

It can be concluded that the proposed method has a good capability for converging to the 

optimum solution. As shown in Figure 10, the total strength decreases up to 40% in five 

steps. The figure also indicates that the decrease in cov is accompanied by a decrease in 

total strength. Here the total strength is in proportion to the total weight of the seismic 

resisting system. These results are in agreement with the Theory of Uniform Deformation. 

The height wise distribution of strength can be converted to the distribution of lateral forces. 

Such pattern may be regarded as the optimum pattern of seismic forces for the given 

earthquake. As shown in Figure 11, this would enable us to compare this optimum pattern 

with the conventional lateral load distribution suggested by codes for seismic design. 

• Initial Load Pattern 

As described before, an initial strength distribution is necessary to begin the optimization 

algorithm. In order to investigate the effect of this initial load (or strength) pattern on the final 

result, for the previous example four different initial load patterns have been assumed: 

1) A concentrated load on the roof level 

2) Triangular distribution similar to the UBC code of 1997 [9] 

3) Rectangular distribution 

4) An inverted triangular distribution with the maximum lateral load on the first floor and the 

minimum lateral load at the roof level 

For each case, the optimum lateral load pattern was derived for Northridge 1994 (CNP196) 

event. The comparison of the optimum lateral load pattern for each case is depicted in 

Figure 12. As is shown in this figure, the optimum lateral force pattern is not dependent on 

the initial strength pattern. However, the convergence speed of the algorithm is to some 

extent dependant on this initial pattern. This conclusion has been confirmed by analysis of 

additional shear buildings and ground motions. 

• Seismic Excitation 

To investigate whether or not these findings are dependant on the selected seismic 

excitation, the following seismic records are also applied to the foregoing 10-storey shear 

building model: (1) The 1994 Northridge earthquake CNP196 component with a PGA of 

0.42g, (2) The 1979 Imperial Valley earthquake H-E08140 component with a PGA of 0.45g, 

(3) The 1992 Cape Mendocino earthquake PET090 component with a PGA of 0.66g, and (4) 

A synthetic earthquake record generated to have a target spectrum close to that of the 

UBC1997 [9] code with a PGA of 0.44g.  
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All of these excitations correspond to the sites of soil profiles similar to the SD type of UBC. 

Subsequently, the optimum strength-distribution patterns corresponding to these excitations 

are determined. In Figure 13, total strength demand for optimum structures are compared 

with does designed according to seismic load pattern suggested by the UBC1997 [9]. The 

figure indicates that for the same ductility demand, the optimum design requires less 

strength as compared with the conventional design.  

The optimum lateral load patterns correspond to each case are presented in Figure 14. It is 

shown in this figure that every seismic excitation has a unique optimum distribution of 

structural properties. The optimum pattern depends on the earthquake and it varies from one 

earthquake to another. Therefore, a fixed pattern cannot be appropriate for all the case and 

it must be related to the earthquake and structural characteristics. However, Figure 14 

shows that there is not a big discrepancy between different optimum load patterns 

correspond to the seismic excitations with similar soil profiles.  

• Target Ductility Demand 

In order to study the effect of target ductility demand on optimum distribution pattern, 10 

story shear- building models with fundamental period of 1 sec and target ductility of 1.5, 4, 6 

and 8 have been considered. Optimum lateral load pattern was derived for each model 

subjected to Northridge 1994 (CNP196) event. Comparing the results, the effect of target 

ductility demand on optimum distribution of seismic loads is illustrated in Figure 15. The 

results indicate that optimum distribution is highly dependent on target ductility demand of 

the structure. Hence, using conventional lateral load patterns witch are based implicitly on 

the elastic vibration modes, may not lead to the optimum distribution of structural properties. 

• Fundamental Period 

To investigate the effect of fundamental period on the optimum distribution pattern, 10 story 

shear-building models with target ductility demand of 4 and fundamental periods of 0.2, 0.6, 

1 and 2 sec have been assumed. For each case, the optimum lateral load pattern was 

derived for Northridge 1994 (CNP196) event. The comparison of the optimum lateral load 

pattern for each case is presented in Figure 16. As shown in this figure, optimum distribution 

of seismic loads is a function of fundamental period of the structure. 

• Damping Ratio 

The effect of damping ratio on optimum load distribution pattern is illustrated in Figure 17 for 

a 10 story shear-building model with target ductility demand of 4 and fundamental period of 1 

sec; subjected to the Northridge earthquake of 1994 (CNP196). As shown in this figure, 

earthquake forces correspond to the top floors decrease with an increase in damping ratio. 

This can be easily explained; higher mode effects mainly affect top floor forces and 

increasing the damping ratio is usually accompanied by decreasing these effects. It can be 

noted from Figure 17 that optimum load pattern is rather insensitive to the variation of 

 10 



damping ratios greater than 3%. Hence, for practical purposes, optimum load pattern can be 

considered independent of the damping ratio. 

 

CONCLUSION 

1. This paper presents a new method for optimization of dynamic response of structures 

subjected to seismic excitation. This method is based on the concept of uniform 

distribution of deformation. 

2. It is shown that using the strength pattern suggested by seismic codes does not lead to 

a uniform distribution of deformation demand, and, it is possible to obtain uniform 

deformation by shifting the material from strong to weak parts. It has been shown that 

the seismic performance of such structure is optimal. Hence, it can be concluded that 

the condition of uniform deformation results in optimum use of material. This has been 

denoted as the Theory of Uniform Deformation. 

3. By introducing an iterative method, Theory of Uniform Deformation has been adapted 

for topology optimization in seismic design of truss-like structures. It is shown that this 

method can reduce the required structural weight by eliminating the redundant and 

inefficient members. The effect of target ductility demand on optimal topology is 

investigated. 

4. With some modifications, Theory of Uniform Deformation has been adapted for optimum 

seismic design of shear buildings. It is concluded that this can efficiently provide an 

optimum design. 

5. It has been demonstrated that there is generally a unique optimum distribution of 

structural properties, which is independent of the seismic load pattern used for initial 

design. 

6. The effects of fundamental period, target ductility demand, damping ratio and seismic 

excitation on optimum distribution of seismic loads have been studied.  
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Table 1. The preliminary and final arrangement of members 
 

Members 

Preliminary Arrangement Final Arrangement 

Cross Section 
(cm

2
) 

Member 
Ductility 

Cross Section 
(cm

2
) 

Member 
Ductility 

1 1243.6 4.009 2363.8 3.998 

2 1243.6 2.303 0.0 --- 

3 1243.6 1.077 3246.9 4.001 

4 1243.6 1.173 0.0 --- 

5 1243.6 1.129 0.0 --- 

6 1243.6 1.735 0.0 --- 

7 1243.6 0.453 0.0 --- 

8 1243.6 0.580 140.1 4.002 

9 1243.6 0.484 0.0 --- 

10 1243.6 0.650 522.2 3.999 

11 1243.6 0.209 0.0 --- 

12 1243.6 0.764 330.0 4.001 

13 1243.6 0.623 0.0 --- 

14 1243.6 0.485 0.0 --- 

15 1243.6 0.273 0.0 --- 

16 1243.6 1.191 691.2 4.000 

17 1243.6 1.123 818.6 4.000 

18 1243.6 0.189 0.0 --- 

19 1243.6 0.940 0.0 --- 

20 1243.6 1.800 1146.6 3.999 

21 1243.6 0.457 10.9 3.997 

22 1243.6 1.517 581.6 4.000 

23 1243.6 1.233 0.0 --- 

24 1243.6 0.226 0.0 --- 

25 1243.6 0.690 0.0 --- 

26 1243.6 1.057 629.6 4.001 

Cov  0.785  0.001 

Weight 162.3 ton 52.7 ton 
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Table 2. The preliminary and final arrangement of Strength and Stiffness 
 

Story 

Preliminary Arrangement Final Arrangement 

Story 
Stiffness 
(ton.f/m) 

Story 
Strength 

(ton.f) 

Story 
Ductility 

Story 
Stiffness 
(ton.f/m) 

Story 
Strength 

(ton.f) 

Story 
Ductility 

1 176717 1753 4 256456 1433 3.99 

2 176717 1753 2.46 241577 1350 3.99 

3 176717 1753 1.78 219796 1228 3.99 

4 176717 1753 1.41 194841 1089 4.00 

5 176717 1753 1.38 170502 953 4.00 

6 176717 1753 1.19 144584 808 3.99 

7 176717 1753 0.98 118423 662 3.99 

8 176717 1753 0.82 91522 511 3.99 

9 176717 1753 0.59 66385 371 3.98 

10 176717 1753 0.31 36515 204 3.99 

Cov   0.719   0.001 

Sum  17352   8610  
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Figure 1.  Inter-story drift distribution for a 10 story steel frame subjected to 
Northridge Earthquake 1994 (CNP196) 

 
 
 
 
 
` 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Typical R-µ−Τ relationship 
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Figure 3. The position of masses and supports 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4. Preliminary arrangement of members 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 

Figure 5. Final arrangement of members 
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Figure 6. Total structural weight for feasible answers 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Optimal topology for different target ductility demands 
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Figure 8. Primary load distribution pattern for the shear building  
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Figure 9. Primary and Final distribution pattern for story Ductility, 10 story shear 

building with T=1 Sec and µti=4, Northridge 1994 (CNP196) 
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Figure 10. Cov of story ductility factors and total story strength for feasible patterns, 

10 story shear building with T=1 Sec and µti=4, Northridge 1994 (CNP196) 
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Figure 11. Comparison of UBC-97 & Optimum lateral force distribution, 10 story 

shear building with T=1 Sec and µti=4, Northridge 1994 (CNP 196) 
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Figure 12. Optimum lateral force distribution for different initial load patterns, 10 

story shear building with T=1 Sec and µti=4, Northridge 1994 (CNP196) 

 
 
 
 

 
 

Figure 13. Comparison of total strength demand for UBC-97 & Optimum distribution, 

10 story shear building, T=1 Sec and µti=4 
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Figure 14. Optimum lateral force distribution for different earthquakes, 10 story 

shear building with T=1 Sec and µti=4 
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Figure 15. Optimum lateral force distribution for different target ductility demand, 10 
story shear building with T=1 Sec, Northridge 1994 (CNP196) 
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Figure 16. Optimum lateral force distribution for different fundamental period, 10 

story shear building with µti=4, Northridge 1994 (CNP196) 
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Figure 17. Optimum lateral force distribution for different damping ratio, 10 story 

shear building with T=1 Sec and µti=4, Northridge 1994 (CNP196) 
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