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Abstract
Peatlands in Amazonian Peru are known to store large quantities of carbon, but there is high
uncertainty in the spatial extent and total carbon stocks of these ecosystems. Here, we use a
multi-sensor (Landsat, ALOS PALSAR and SRTM) remote sensing approach, together with
field data including 24 forest census plots and 218 peat thickness measurements, to map the
distribution of peatland vegetation types and calculate the combined above- and below-ground
carbon stock of peatland ecosystems in the Pastaza-Marañon foreland basin in Peru. We find that
peatlands cover 35 600 ± 2133 km2 and contain 3.14 (0.44–8.15) Pg C. Variation in peat
thickness and bulk density are the most important sources of uncertainty in these values. One
particular ecosystem type, peatland pole forest, is found to be the most carbon-dense ecosystem
yet identified in Amazonia (1391 ± 710Mg C ha−1). The novel approach of combining optical
and radar remote sensing with above- and below-ground carbon inventories is recommended for
developing regional carbon estimates for tropical peatlands globally. Finally, we suggest that
Amazonian peatlands should be a priority for research and conservation before the developing
regional infrastructure causes an acceleration in the exploitation and degradation of these
ecosystems.

S Online supplementary data available from stacks.iop.org/ERL/9/124017/mmedia
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1. Introduction

The large carbon stocks of Amazonian forests have been
recognized for many years [1] and estimates of total Ama-
zonian above-ground biomass (AGB) for terra firme (dry

land) forest, based on forest census data and remote sensing
range from 58 to 134 Pg C [2–8]. However, there is another
significant store of carbon in Amazonia which has not, to
date, been incorporated into regional or global carbon bud-
gets: the carbon stored in peatlands. Recent work on the
Pastaza-Marañón foreland basin (PMFB) in Northwest Peru
has revealed the presence of extensive and deep accumula-
tions of peat that contain 2–20 Pg C in below-ground stocks
[9, 10]. Such values are significant in the context of both
national (e.g. 6.9 Pg C held in AGB in Peru [11]) and regional
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carbon budgets. Hence it is important that the uncertainties in
these estimates are reduced.

The PMFB in Northwest Peru contains the most exten-
sive peatlands yet discovered in Amazonia [10]. It is a sub-
siding foreland basin of c.100 000 km2 formed during the
Cenozoic uplift of the Andes [12–15] and possibly still
actively subsiding today [16]. High rainfall, frequent flooding
and low lying topography provide the waterlogged and anoxic
conditions required for peat formation which, in this geolo-
gical setting, have enabled significant thicknesses (up to
7.5 m) of peat to accumulate [9, 17, 18]. Much smaller
peatlands have also been reported from Southern Peru
(294 km2, 0.027 PgC [19]), central Amazonia (area and car-
bon stocks unknown [20]), and North of the Amazon basin in
the Orinoco delta (7000 km2, 0.049 Pg C [21]). In contrast
with the better-known but highly degraded and at-risk peat-
lands of SE Asia [22], those of the PMFB remain largely
intact and the threat of destruction from direct human impacts
is comparatively low. Climate models suggest that by the end
of the 21st century, the Western Amazon, unlike SE Asia, is
not likely to become significantly drier, though it is predicted
to warm significantly [23, 24]. Increasing wet season pre-
cipitation over the last 20 years supports this prediction [25],
although evidence for decreased dry season river discharge
over the same time period could suggest enhanced seasonality
rather than any change in annual precipitation [26]. Therefore,
improving carbon storage estimates for the PMFB peatlands
is important as they face an uncertain future, which could
enhance or diminish this carbon stock depending on climatic
and land use change.

Uncertainties in the existing estimate of the amount of
carbon stored in the PMFB peatlands derive from a number of
factors. The geographical extent and remoteness of the PMFB
mean that a relatively small proportion of the peatlands have
been mapped in the field, and variability in peat thickness and
carbon density at local scales mean that extrapolations from a
small number of field observations introduce large uncer-
tainties. In addition, although most of the peatlands are
forested, little attempt has previously been made to estimate
the above-ground component of the carbon stock using
ground data [27, 28], which may be valuable for validating
recent remote sensing estimates of above-ground carbon
stocks that include the PMFB [11].

A remote sensing approach is useful for mapping peat-
land area as it provides detailed information at a regional
scale, and is especially promising in the PMFB because the
peatlands have been found to be floristically, structurally and
topographically distinct from terra firme [18, 28]. These
features are not only distinctive on the ground, but also in
satellite data. Landsat products are effective at describing the
surface reflectance properties of vegetation and have pre-
viously been used to distinguish between peatlands and terra
firme in this region and elsewhere [10]. L-band SAR (syn-
thetic aperture radar) products, such as Advanced Land
Observing Satellite (ALOS) phased array type L-band SAR
(PALSAR), are able to penetrate the canopy and are effective
in characterising forest structure [29, 30] and biomass in terra
firme and peatland forests [31–33]. Additionally, SAR

responds to soil moisture and can therefore distinguish
between inundated and non-inundated areas [34]. SRTM
(shuttle radar topography mission) data provide an estimate of
elevation and are useful for identifying large-scale topo-
graphical boundaries within tropical forests [35, 36]. The
most effective approaches to mapping vegetation and esti-
mating AGB identified so far combine data from multiple
sensors, such as those described above, in a single analysis
[33, 37–40].

Remote sensing data are not only useful for delineating
peatland area but may also be useful for constraining the
properties of peat (thickness, bulk density and carbon con-
centration) that account for much uncertainty in estimating
carbon stocks. In the PMFB, peat has been found beneath
palm swamp forest, ‘pole’ forests (low stature forest with
many thin-stemmed trees), and almost entirely herbaceous
‘open’ communities [18, 78]. These different peatland vege-
tation types are associated with different peat properties and,
therefore, differing quantities of below-ground carbon, as has
been observed elsewhere in tropical peatlands [41, 42]. If
peatland vegetation types can be identified by remote sensing
and the amount of below-ground carbon is associated with
vegetation type, as has been shown for Northern peatlands
[43], then detailed vegetation mapping has the potential to
better constrain regional carbon estimates.

In addition to our use of data from multiple sensors and
using vegetation type as a constraint on peat properties, our
approach differs from previous work in the region [10] in the
following ways:

• remote sensing classifications have been performed on a
single image which spans the entire region, rather than
two Landsat scenes individually which can introduce
errors in area estimates;

• the number of training points is approximately twice as
large as in previous studies, providing more data for the
remote sensing classification;

• the number of measurements of peat thickness, bulk
density and carbon concentration has also been doubled,
providing more representative mean values;

• the contribution of AGB has been included, utilising
recently published species-specific allometric equations
for palms [44], which are a dominant component of
peatland forests.

We thus incorporate vegetation and soil data with a
number of suitable remote sensing products (Landsat, ALOS
PALSAR and SRTM) to answer the following questions:

1. What is the total area and carbon stock of the peatlands
of the PMFB?

2. How large are the AGB and peat elements of the carbon
stock of the peatlands of the PMFB, and how do these
vary spatially?

3. What are the relative contributions of the different
peatland ecosystem types (pole forests, palm swamps
and open peatlands) to the total carbon stock of
the PMFB?
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4. How accurate are our estimates of peatland area and
carbon storage likely to be, and where does the
uncertainty lie?

2. Methods

2.1. Study area and field data

The study area is the PMFB, located in Loreto, Northeast
Peru (figure 1). Four categories of field data were used (table
S.1): (1) 218 ground reference points, used for remote sensing
classification; (2) 24 forest census plots, used to estimate
quantities of above-ground carbon; (3) 218 peat-thickness
measurement points, used to determine quantities of below-
ground carbon; and (4) 33 peat cores, from which C content
and dry bulk density were measured. The equal number of
ground reference points and peat thickness measurements is
coincidental: only 115 of the measurements occur at the same
place. Some of these sites were selected as they have been
identified as peatlands in previous studies [9, 10]. Other sites
were selected based on examination of Landsat data and
chosen to provide a representative sample of the range of
ecosystem types known to harbour peat.

2.2. Satellite imagery

All remote sensing image processing and analysis was con-
ducted in ENVI 5.1 (Exelis VIS). Three data products were
used: Landsat Thematic Mapper data from the Landsat 5
satellite (six scenes using bands 4, 5 and 7), ALOS/PALSAR

(25 scenes using HH and HV polarizations) and SRTM [46].
A final seven-band image stack consisting of Landsat bands 4,
5 and 7, PALSAR bands HH, HV and their ratio (HH/HV),
and an SRTM elevation band in metres above sea level was
then created (figure 2). Details of images (table S.2) and pre-
processing can be found in the supplementary material.

2.3. Image classifications

A supervised classification method was used whereby a
number of ‘known pixels’, assigned to predefined classes,

Figure 1. The location of 30 clusters of study sites within the PMFB
(shaded area). Filled dots represent clusters of peat depth measure-
ment points; ringed dots represent individual or clusters of 0.5 ha
forest census plots; and triangles represent vegetation surveys where
peat thickness was not measured (data from [45]). The boundary of
the PMFB has been delineated using SRTM elevation data and is
based on an elevation drop from c.140 to c.120 m above sea level.
Numbers correspond to the site names provided in table S.1.

Figure 2. Remote sensing data mosaics. Panel A is an RGB
composite Landsat image with bands 4, 5, and 7 assigned to red,
green and blue, respectively. Panel B is an RGB composite of the
PALSAR data, with HH, HV and HH/HV bands assigned to red,
green and blue. Panel C is the SRTM data showing estimated metres
above sea level.
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were used to train a classifier for all pixels in the image. These
known pixels correspond to ground reference points of a
known location and class. In this study these classes are land
cover or vegetation types corresponding to three peat-forming
(pole forest, palm swamp and open peatlands) and four non
peat-forming categories (terra firme/occasionally flooded
forest, seasonally flooded forest, open water, and urban areas/
river beaches). 218 ground reference points were used: half of
these were used as known pixels to perform the classifica-
tions, henceforth referred to as ‘training data’. The remaining
ground reference points (referred to as ‘test data’) were used
to test the accuracy of the classifications by quantifying how
closely the predefined classes of these known pixels corre-
spond to the classes they were assigned by the classification.
Details of ground reference points can be found in the sup-
plementary information.

Three classifications were undertaken, firstly using
Landsat data alone, secondly using Landsat and PALSAR
data, and finally using Landsat, PALSAR and SRTM data.
The accuracy of each classification was assessed and the most
accurate classification was used to provide the area estimates
that we used to generate carbon stock estimates. The support
vector machine (SVM) classifier in ENVI was used for all
classifications because this approach has been found to pro-
duce accurate results with limited field data [47]. In this
instance it was also more accurate than either the maximum
likelihood or ENVI standard neural network classifiers. The
default ENVI SVM classifier was used with the radial basis
function kernel type. The SVM classifier is a binary classifier
but a multiclass classification is achieved by implementing a
pairwise classification strategy.

2.4. Above-ground carbon measurements

Twenty-four 0.5 ha forest census plots were established fol-
lowing the RAINFOR (Amazon Forest Inventory Network)
protocol [48]. Diameters of all trees with dbh (diameter at
breast height, 1.3 m) ⩾10 cm were recorded and each tree was
identified to species (c. 70% of individuals) or genus level (c.
30% of individuals) by comparison with specimens held in
herbariums Herrerense (HH) and Amazonense (AMAZ).
Stem height of palms was measured using a clinometer or a
laser range finder. The plots were established in five field
seasons in 2008, 2009, 2010, 2012 and 2013. Biomass of
dicot trees was estimated using the pan-tropical three-para-
meter (dbh, wood density and E) equation of [49]. Species-
specific wood density values were obtained from [28] where
available, and the global wood density database otherwise
[50, 51]. These sources accounted for more than 95% of
calculations in all plots. When species-specific wood density
values were not available then a genus-level, or family level
mean was used, and if no family-level values were available
then the mean plot wood density was used, following [52].
Palm biomass was estimated using species-specific allometric
equations [44] which require stem or total height as the only
parameter. Above-ground carbon was assumed to be 50% of
above ground biomass

2.5. Below-ground carbon measurements

Three measurements are required to determine quantities of
below-ground carbon: peat thickness, dry bulk density and
carbon concentration. Peat thickness was measured at each
peat measurement point using a Russian-type corer [53], from
both the edges and centre of the peatlands, though the number
of measurements made varied between sites. Stratigraphic
units were visually assessed in the field and assigned to peat,
‘clayey peat’, or ‘mud’ (deposits dominated by minerogenic
sediments) following [10]. Deposits assigned as ‘mud’
were excluded from all further analysis and were not
included in peat thickness measurements. Thirteen peat cores
from different vegetation types were analysed as part of this
study. Dry bulk density (dry weight (g)/volume (cm3)) was
calculated on 100 cm3 samples taken every 50 cm from the
peat core and dried at 80 °C for 24 h or until a constant
weight was reached. Carbon concentration was primarily
determined using previously published data from 30 cores
[9, 10], where carbon concentration was measured every
50 cm down-core. Additionally, ten further cores were used
in which carbon concentration was determined in four
samples from 5, 10, 20 and 30 cm depths. All carbon con-
centration estimates were made using an Elementar Vario
Microcube.

2.6. Carbon stock calculations

The above- and below-ground peat carbon pool was calcu-
lated using the equation below, following [54]:

∑
ρ

= +
=

D C A AGC A
CP

 

10 10
, (1)

p

p
p p p p p p

1
12

 

12

v

where: CP is the total peatland carbon pool (Pg), p represents
each peatland ecosystem type, v represents the total number of
peatland ecosystem types, Dp is peat thickness (m), ρp is dry
bulk density (kg m3), Cp is carbon concentration (expressed
as the percentage mass of carbon in the dry peat), AGCp is
above-ground carbon (kg m2), and Ap is area (m2).

In order to generate mean values and confidence intervals
for the carbon stock estimates for each peatland ecosystem
type, a bootstrap resampling and randomized Monte Carlo
method was used as the data are not normally distributed.
Firstly, measured values for each variable of equation (1)
were grouped into the three peatland ecosystem types pro-
viding a distribution of values for each variable in each
ecosystem type, e.g. peat thickness in pole forest or bulk
density in palm swamps. These distributions of values were
then resampled with replacement 1000 times, generating a
series of simulated bootstrapped distributions for each vari-
able in each ecosystem type. A randomly selected, single
value from each simulated distribution was then entered into
equation (1). This process was repeated 107 times, to generate
a distribution of simulated carbon stock values for each
ecosystem type, from which the mean value and 95% con-
fidence limits could be extracted. Confidence intervals for
peatland area were generated separately using the method
described by [55], whereby the confusion matrix of the
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classification was used to estimate map classification error
and 95% confidence intervals for the area of each peatland
ecosystem type. These 95% confidence intervals were used to
generate a simulated distribution of 1000 values of area for
each peatland ecosystem type.

2.7. Sensitivity analysis

To assess the importance of each input component (Dp, ρp,
Cp, Ap and AGCp), as defined in equation (1) in determining
the carbon stock output in each peatland ecosystem type,
ranked partial correlation coefficients (RPCCs) were used.
RPCCs assess the significance of the relationship between
each input component and the carbon stock estimate [56]
whilst controlling for variation in the other terms. This was
done by extracting 1000 simulated carbon stock values and
the corresponding input values; RPCCs were then calculated
for each input component in each peatland ecosystem type.
All statistical analysis was performed in R [57].

3. Results

3.1. Carbon stock of the PMFB

The total peatland area of the PMFB is estimated to be
35 600 ± 2133 km2 (table 1). Palm swamps account for the
majority of the peatland area (78 ± 1.5%), with pole forests
and open peatlands accounting for 11 ± 1.7% and 11 ± 0.3%,
respectively (table 1). Palm swamps have the greatest total
carbon stock (2.3 Pg C), followed by pole forests (0.5 Pg C)
and open peatlands (0.3 Pg C), giving a total peatland carbon
stock of 3.14 Pg C for the PMFB. However, pole forests store
carbon at the greatest density (1391 ± 710Mg C ha−1). All
three peatland ecosystem types store a greater amount of
carbon per unit area than neighbouring terra firme forest
(figure 3).

Overall, approximately 90% of the carbon in these
peatland ecosystems is stored below ground in peat, with the
remaining 10% stored in AGB, though this ratio varies
between peatland ecosystem types. Pole forests in this study
are always located on thick peats (>2.5 m) and have low AGB
stocks due to their low stature and thin trunks. Palm swamps
occur on both thin and, less typically, thick peats, and store
large amounts of carbon in AGB, comparable to quantities of
AGB found in terra firme forests (figure 3). Un-forested
(open) peatlands were assumed to have negligible AGB with
all carbon stored in peat, which was variable in thickness.
Open peatlands had the lowest carbon density, as although
their below-ground carbon density was approximately
equivalent to that of palm swamps, the lack of appreciable
AGB reduced their overall carbon stock (figure 3).

3.2. Distribution of peatland ecosystem types

Peatlands in this region are not randomly distributed across
the landscape but instead appear to be largely confined to the
low-lying areas of the PMFB (figure 4). Whilst individual
pixels in upland areas may have spectral and/or structural

similarities to peatland vegetation, they can be assumed to be
part of the upland forest mosaic in the form of tree fall gaps,
heavily degraded forest, small isolated swamps in topographic
depressions, or patches of white sand forest. Some of these
areas may contain shallow peat deposits, but their inclusion in
the classification would lead to increased confusion between
terra firme forest and peatlands and potentially over-
estimations of peatland area. Furthermore, the different
peatland ecosystem types show a strong spatial pattern across
the PMFB (figure 4). Pole forests are apparently restricted to
the Northeastern part of the basin; palm swamps are most
extensive in the Pacaya-Samiria National Reserve and bor-
dering the Rio Pastaza (see figures 1 and 4), and open peat-
lands are most common in the Northwest and far South of the
region (figure 4).

3.3. Performance of remote sensing classification

The classification performed well when tested against an
independent dataset (table 2 and figure 5), with a mean,
minimum and maximum user’s accuracy (the proportion of
the classified area that corresponds to the correct class based
on ground reference points) of 91%, 79% and 100%, and an
overall kappa coefficient (coefficient of agreement accounting
for agreement occurring by chance) of 0.94. The most accu-
rately mapped vegetation class was terra firme forest; pole
forest was the least accurately mapped. The inclusion of the
three different satellite products, including optical (Landsat)
and radar (ALOS PALSAR and SRTM) data, improved the
accuracy of the classification for most classes apart from
flooded forests (figure 5) with mean user’s accuracy, produ-
cer’s accuracy (the proportion of ground reference pixels that

Figure 3. Above- and below- ground carbon density of the three
peatland ecosystem types: open peatlands (OP), palm swamps (PS),
pole forests (PF) and mean values for Amazonian terra firme forests
(TF). The negligible AGC of open peatlands is assumed to be zero.
Terra firme above-ground values are taken from [52] and below-
ground values from [58]. Error bars represent standard errors.

5

Environ. Res. Lett. 9 (2014) 124017 F C Draper et al



have been correctly classified) and kappa coefficients all
increasing with the addition of each product (table S.3).

Landsat data were generally effective at distinguishing land
cover classes, and successfully identified some of the areas of
peatlands. However, the Landsat classification was not able to
differentiate between pole forest and palm swamp, or between
pole forest and terra firme forests (figure 5). This was improved
by the addition of ALOS PALSAR data, which can identify the
structural differences between the forest types because the
backscatter signal of pole forest (many small trees) is very
different to that of both terra firme forest (fewer but larger trees)
and palm swamp forest (many palm species with no lateral
growth). Finally, the use of SRTM data further improved the
classification by constraining it to areas of suitable low-lying
topography within the PMFB (figure 5 and table 2).

4. Discussion

4.1. Carbon stock of the peatlands of the PMFB

Our analysis confirms the importance of the peatlands of the
PMFB as a substantial store of carbon (best estimate 3.14 Pg
C), and the most carbon-dense landscape in Amazonia, stor-
ing 892 ± 535Mg C ha−1. Of the three peatland vegetation
types, pole forest is the most carbon-dense with
1391 ± 710Mg C ha−1. Compared with typical terra firme
forests which store 63–190Mg C ha−1 in AGB [4, 52] and a
similar amount (132Mg C ha−1) below ground [59], our study
therefore suggests that peatland pole forests are, by a large
margin, the most carbon-dense forest type in Amazonia.

Our best estimate of the total PMFB peatland carbon
stock of 3.14 Pg C, including below-ground carbon, is nearly
50% of a recent estimate of above-ground carbon for the
whole of Peru (6.9 Pg C [11], but see table S4), whilst only

occupying 3% of the area of Peruvian forest [5]. It is therefore
apparent that these peatlands account for a very large pro-
portion of carbon stocks at regional and national levels and
therefore need to be included in total carbon storage esti-
mates. Where another study [6] estimated below-ground
biomass stocks for Amazonia, a simple positive relationship
between AGB and BGB was assumed. In the PMFB the
reverse of this relationship is generally true, illustrating that
carbon stocks in peatlands cannot be estimated accurately
with more general methods developed for pantropical carbon
stock estimates.

AGB typically contributes 10% to the overall carbon
stock of these peatland ecosystems; however, this varies
between peatland ecosystem types. Unsurprisingly, low-sta-
ture pole forest has low AGB (61.8 ± 9.8 Mg ha−1). Previous
topographical and geochemical studies have indicated that
pole forest occurs on domed, ombrotrophic (i.e. entirely rain-
fed) peatlands [18]. The consequently nutrient-poor, acidic
conditions exclude many species and presumably also lead to
low net primary productivity and, as a result, lower AGB
compared to upland forests. Similar structural characteristics
are seen in the nutrient-poor white sand forests of Amazonia
[60, 61] and on Southeast Asian ombrotrophic peatlands
[41, 62]. Palm swamps, in contrast, have an above-ground
carbon density (100.9 ± 7.7Mg ha−1) that is broadly compar-
able with surrounding terra firme forest (c. 120Mg C ha−1

[52]). The high AGB of the dominant palm species, Mauritia
flexuosa, contributes substantially to the high above-ground
carbon density of the palm swamps. M. flexuosa regularly
grows to heights greater than 30 m, and due to the lack of
lateral growth in the canopy, can achieve high stem densities
(>150 individuals ha−1). Moreover, allometric equations that
have been developed specifically for palms, provide higher
estimates of the biomass of tall, adult Mauritia compared to
previous studies [44].

Table 1. Summary of above- and below-ground carbon stocks in different peatland vegetation types within the PMFB and the mean,
minimum and maximum values of the parameters used to calculate these figures and their corresponding 95% confidence intervals. AGC and
BGC refer to above- and below-ground carbon stocks respectively. Confidence intervals for the carbon stock estimates are based on a
bootstrap resampling and randomized Monte Carlo method.

Peatland eco-
system type

Area
(km2)

Dry bulk
density
(g cm−3)

Peat thick-
ness (cm)

C
conc.
(%) AGC (Pg) BGC (Pg)

Total C
stock (Pg)

Pole forest Mean 3,686 0.084 315 50.5 0.030 0.494 0.524
95% CI ±810 ±0.007 ±26.8 ±1.6 0.009–0.074 0.110–1.131 0.138–1.174
Min — 0.01 90 23.2 — — —

Max — 0.239 660 59.1 — — —

Palm swamp Mean 27,732 0.099 173 44.0 0.263 2.073 2.336
95% CI ±1101 ±0.009 ±23.4 ±2.7 0.138—0.355 0.012—5.738 0.268—5.997
Min — 0.028 0 24.0 — — —

Max — 0.181 540 55.6 — — —

Open peatland Mean 4,181 0.051 265 48.5 — 0.277 0.277
95% CI ±222 ±0.016 ±37.8 ±2.8 — — 0.034—0.974
Min — 0.012 50 27.7 — — —

Max — 0.183 450 56.1 — — —

Total 35 600 — — — 0.293 2.844 3.137
95% CI ±2133 — — — — — 0.440—8.145
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4.2. Sources of uncertainty

The uncertainty associated with our estimate of the total
PMFB peatland carbon stock remains substantial (0.4–8.1 Pg
C), but significantly lower than previous published estimates
(1.7–19.0 Pg C [10]). There is uncertainty associated with
each component of the carbon stock calculation and the
magnitude of uncertainty within each component varies with
vegetation type. Overall, the source of greatest uncertainty is
variation in peat thickness and bulk density (table 3). In palm
swamps, peat thickness provided the greatest uncertainty due
to large variation in peat thickness within and between sites,
while in the pole forests, which consistently grow on thick
peat, bulk density was the most important source of

Figure 4. The three support vector machine supervised classifications of the study area, created from Landsat bands 4, 5 and 7 alone (panel
A), Landsat bands 4, 5 and 7 and PALSAR bands HH, HV and HH/HV (panel B) and finally Landsat bands 4, 5 and 7, PALSAR bands HH,
HV and HH/HV and an SRTM band (Panel C). Colours represent different land cover categories: terra firme and occasionally flooded forest
(dark blue), palm swamp (red), open peatland (pink), pole forest peatland (dark red), river beach and urban areas (white), seasonally flooded
forest (light blue) and open water (black).

Figure 5. The proportion of the classified area that corresponds to the
correct class based on ground reference point (user’s accuracy)
assessment for three SVM classifications using only Landsat (light
grey), Landsat and PALSAR (dark grey) and Landsat, PALSAR and
SRTM (black).
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uncertainty. Systematically increasing these measurements
across all peatland ecosystem types and in all areas across the
basin would provide more reliable estimates. However, the
substantial variation in peat thickness and bulk density
occurring both within and between sites suggests that a high
degree of uncertainty will likely persist regardless of sampling
effort because of the complexity and dynamism of the PMFB
landscape. Our analysis indicates relatively little uncertainty
associated with the estimated peatland area (table 3).
Although this is encouraging, there is an assumption within
these uncertainty estimates that the training and testing
ground reference points provide complete coverage of the
study area, which is not the case. More ground reference
points in data-deficient areas are needed to test the classifi-
cation further. Root biomass is another source of uncertainty

in our analysis: although fine roots form part of the peat
matrix and are incorporated in our BGC estimates, coarse root
biomass is not included in our analysis. Further work on
coarse root volume and biomass is required in these ecosys-
tems to account accurately for this uncertainty.

One surprising finding is that our carbon stock estimate is
c. 50% of the previous best estimate of 6.232 Pg [10], even
with the addition of the AGB component. The disparity
between these estimates is partly due to the difference in
estimates of total peatland area: our more thorough approach
yields an area of 35 600 ± 2133 km2, which is 8258 km2

smaller than the previous estimate of 43 858 km2. The
increased number of peat thickness and bulk density mea-
surements also reduced the carbon stock estimate slightly,
reducing mean peat thickness from 2.48 to 2.39 m and bulk
density from 0.083 to 0.079 g cm−3, although it is encoura-
ging that increasing the number of sites and measurements did
not cause large changes in these values. The process of
constraining peatland carbon stock estimations by three
vegetation types rather than averaging across all individual
sites also contributed to reducing our estimate of overall
carbon stock. The thickest peat deposits under pole forest
account for a small proportion of the total peatland area while
palm swamps, although more extensive, store less carbon per
unit area.

4.3. The role of multiple remote sensing products

We have shown that combining Landsat, ALOS PALSAR
and SRTM products is more effective in distinguishing dif-
ferent ecosystem types in our study area than using any one
product alone. In particular, including PALSAR and SRTM
datasets in our analysis improved our ability to distinguish
between the swamp classes. We recommend the use of this
data fusion approach in the future, though we stress that
spatial uncertainties remain in the map, particularly to the
west of the study area where there are currently few ground
reference points. The bootstrap analysis we performed
allowed these uncertainties to be propagated through to our
carbon estimates.

Table 2. Confusion matrix for the final SVM classification using Landsat, PALSAR and SRTM data showing the number of pixels per class
in both the training data set (used to generate the classification) and test data set (used to assess the accuracy of the classification), how data
from these two independent datasets correspond and where errors of omission and commission are found. Additionally the total number of
ground reference points (GRPs) for each class and the percentage accuracy for each training and test class are shown. Abbreviations refer to
land cover classes; Palm swamps (PSs), open peatlands (OPs), pole forest (PF), seasonally flooded forest (FF), Terra firme/occasionally
flooded forest (TF), urban areas and river beaches (UB) and open water rivers and lakes (RLs).

PS-test OP-test PF-test FF-test TF-test UB-test RL-test Total Total GRPs Accuracy (%)

PS-train 538 0 41 0 103 0 0 682 37 78.9
OP-train 0 425 0 0 0 27 0 452 12 94.0
PF-train 10 0 88 2 10 0 0 110 17 80.0
FF-train 12 1 9 149 2 13 0 186 19 80.1
TF-train 2 0 0 0 1881 3 0 1886 53 99.7
UB-train 0 20 0 0 0 1238 0 1258 47 98.4
RL-train 0 0 0 0 0 0 1042 1042 33 100
Total 562 446 138 151 1996 1281 1042 5616 218 —

Accuracy (%) 95.7 95.3 63.8 98.7 94.2 96.6 100 — — —

Table 3. The relative importance of each input component in
determining carbon stock for each peatland ecosystem type.
Importance is defined on the basis of partial ranked correlation
coefficients between each input variable and the final output (carbon
stock).

Peatland ecosys-
tem type

Component of carbon
stock calculation

Partial rank correla-
tion coefficient
(Spearman’s ρ)

Pole forest Peat depth 0.88
Peatland area 0.25
Dry bulk density 0.89
Carbon concentration 0.56
Above-ground
biomass

0.17

Palm swamps Peat depth 0.94
Peatland area 0.11
Dry bulk density 0.81
Carbon concentration 0.56
Above-ground
biomass

0.38

Open peatlands Peat depth 0.88
Peatland area 0.04
Dry bulk density 0.92
Carbon concentration 0.49
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4.4. Distribution of peatland ecosystem types

A key finding of this study is the strong spatial pattern of the
different peatland ecosystem types. Pole forests are largely
limited to the Northeastern area of the study region close to
the Rio Tigre and are underlain by the thickest, oldest and
probably most ombrotrophic peat deposits [10, 18]. The
correspondence between thick peat and pole forest may be the
result of long term geomorphological stability which has
allowed peat to accumulate above the maximum flood level,
leading to ombrotrophic conditions, low nutrient status and
vegetation succession to pole forest. This explanation is
supported by geological evidence that this region has
experienced a lower frequency of river avulsions and
increased stability since the isolation of the Rio Tigre from
the Rio Pastaza c.8000 years BP [63]. The build-up of peat
above the maximum flood level during the course of its
development in this area is also supported by geochemical
evidence which records a transition from high- to low-nutrient
status through the peat profile [18], consistent with models of
fen to bog transitions in peatlands at high latitudes [64]. Palm
swamps, by contrast, are typically found close to large and
geomorphologically dynamic rivers [15], and minerogenic
intrusions in the peats formed under this vegetation provide
evidence of frequent flooding [18]. We suggest that frequent
fluvial influence has maintained higher nutrient input
throughout their development, up to the present day, and that
in these geomorphologically dynamic settings there has not
been sufficient time for ombrotrophic conditions to develop.
Open peatlands are found primarily close to large and
dynamic rivers [16], and while their depth and nutrient status
vary [17, 18], radiocarbon dating from the two deepest sites
shows they are significantly younger than pole forests [9, 10].
We suggest that open peatlands may represent an early suc-
cessional community in the development of peatland
ecosystems.

Work in progress on the vegetational history of these
peatlands will help to test these hypotheses about potential
landscape controls on the distribution and development of the
different peatland vegetation types. A further vegetation type
that is known to harbour peat is seasonally flooded forest [9].
This peatland ecosystem type was excluded from this analysis
because it is poorly known (only two such sites, locally
known as tahuampa, have been confirmed to hold peat).
Further fieldwork is required to quantify its contribution to the
carbon stock.

4.5. Contribution of PMFB to the tropical peatland carbon pool

In terms of tropical peatlands globally, the peatlands of the
PMFB account for 6.5% of their area and 3.5% of their car-
bon stocks [54]. Whilst these figures are small in comparison
to the deeper and more extensive peatlands of Southeast Asia,
the conservation importance of Peruvian peatlands should not
be dismissed. Southeast Asian peatlands have experienced
decades of destruction, leading to a 50% loss of intact peat
swamp forest [22] and large carbon emissions [65, 66]. At
current rates of destruction they would be lost entirely by

2030 [22]. Peruvian peatlands, on the other hand, remain
almost entirely intact, though they face an increasing range of
threats including degradation by large-scale cutting of palms
for fruit, hydrocarbon extraction, illegal logging, oil palm
plantation expansion, and direct disturbance by proposed rail
and road links from the city of Iquitos to the rest of Peru, as
well as the knock-on consequences of improved access [67–
69]. We therefore suggest that the peatlands of the PMFB
should be a priority for carbon-focussed conservation strate-
gies, because they constitute a large carbon stock, and there is
an opportunity to protect these areas before infrastructure
develops sufficiently for them to be degraded and exploited.

Accurate carbon stock information for tropical peatlands
is required to inform initiatives such as reducing emissions
from deforestation and degradation (REDD+) [70, 71]. To our
knowledge this is the first study in tropical peatlands to
estimate both above- and below-ground components of the
carbon pool at a regional scale. Estimates of below-ground
carbon stocks elsewhere in tropical peatlands have been based
on a small number of individual peatlands [19, 72] or on
historical, continental or national level inventories, which
have little empirical basis and are difficult to verify
[62, 73, 74]. AGB estimates have been developed to assess
the efficacy of remote sensing products and have used limited
ground data [75–77]. We suggest that the method applied
here, using extensive above- and below-ground field data
alongside multiple remote sensing products, is the most
effective way of generating the kind of regional and national
carbon stock inventories required by initiatives such as
REDD+.

5. Conclusions

This investigation provides the most accurate estimates to
date of the carbon stock of an area that is the largest peatland
complex in the Neotropics, and confirms the status of the
PMFB as the most carbon-dense landscape in Amazonia. The
novel approach of combining optical and radar remote sen-
sing with above- and below-ground carbon inventories is
shown to increase the accuracy of regional carbon stock
estimates and is recommended for developing regional carbon
estimates for tropical peatlands globally. The PMFB remains
almost entirely intact, but threats to its persistence are
increasing. If Amazonian peatlands are to continue to act as a
carbon store and avoid the fate of their counterparts in
Southeast Asian, then they must be a conservation and
research priority.
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