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Abstract 10 

Porosity as one of the key properties of sediment mixtures is poorly 11 

understood. Most of the existing porosity predictors based upon grain size 12 

characteristics have been unable to produce satisfying results for fluvial 13 

sediment porosity, due to the lack of consideration of other porosity-14 

controlling factors like grain shape and depositional condition. Considering 15 

this, a stochastic digital packing algorithm was applied in this work, which 16 

provides an innovative way to pack particles of arbitrary shapes and sizes 17 

based on digitization of both particles and packing space. The purpose was 18 

to test the applicability of this packing algorithm in predicting fluvial 19 

sediment porosity by comparing its predictions with outcomes obtained 20 

from laboratory measurements. Laboratory samples examined were two 21 

natural fluvial sediments from the Rhine River and Kall River (Germany), 22 

and commercial glass beads (spheres). All samples were artificially 23 

combined into seven grain size distributions: four unimodal distributions 24 

and three bimodal distributions. Our study demonstrates that apart from 25 

grain size, grain shape also has a clear impact on porosity. The stochastic 26 

digital packing algorithm successfully reproduced the measured variations 27 

in porosity for the three different particle sources. However, the packing 28 

algorithm systematically overpredicted the porosity measured in random 29 
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dense packing conditions, mainly because the random motion of particles 30 

during settling introduced unwanted kinematic sorting and shape effects. 31 

The results suggest that the packing algorithm produces loose packing 32 

structures, and is useful for trend analysis of packing porosity.   33 

Keywords: Porosity; Sediment; Grain shape; Random packing; Rivers 34 

1. Introduction 35 

Porosity prediction of sedimentary deposits is of interest in a fluvial 36 

environment. Previous studies have shown that porosity, as a key structural 37 

property, plays an important role in the morphological, ecological and 38 

geological characteristics of fluvial systems. Morphologically, porosity 39 

governs the initiation of sediment motion and bank collapse (e.g., Wilcock, 40 

1998; Vollmer and Kleinhans, 2007). Ecologically, porosity determines the 41 

interstitial space of the hyporheic zone for aquatic habitats (e.g., Boulton et 42 

al., 1998). Geologically, porosity dominates the exploitable reserve of oil, 43 

gas, and groundwater stored in the voids of fluvial deposits (e.g., Athy, 44 

1930). To date, existing porosity predictors can generally be classified into 45 

two types: (1) empirical predictors; and (2) theoretical predictors. Most 46 

efforts to predict porosity have been empirically driven, to a large extent 47 

based upon median grain size  ହ଴ (e.g., Carling and Reader, 1982; Wu and 48 

Wang, 2006), sorting coefficient ɐ  (e.g., Wooster et al., 2008), or a 49 

combination of different grain size characteristics (e.g., Frings et al., 2011; 50 

Desmond and Weeks, 2014). Theoretical predictors such as geometrical 51 

models (e.g., Ouchiyama and Tanaka, 1984; Suzuki and Oshima, 1985) or 52 

analytical models (e.g., Yu and Standish, 1991; Koltermann and Gorelick, 53 

1995; Esselburn et al., 2011) relate porosity to the full grain size distribution 54 
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of perfect spheres. The performance of these predictors has been 55 

investigated by comparing porosity values measured in situ with those 56 

computed by the predictors (e.g., Frings et al., 2008, 2011). Unfortunately, 57 

these predictors produced unsatisfying results in predicting fluvial sediment 58 

porosity (Frings et al., 2011), probably because such predictors mainly 59 

focused on grain size characteristics, ignoring other porosity-controlling 60 

factors such as depositional environment and grain shape.            61 

Effects of grain shape on porosity have received less attention, due to 62 

the complexity of arbitrary shapes of natural particles. Over the past decade, 63 

the application of computer simulations for the study of granular particle 64 

packings has become more popular, supported by developments in the 65 

computer hardware industry. However, most of the computer simulations 66 

have been limited to simple analytical geometries such as cylinders (Zhang 67 

et al., 2006), disks (Desmond and Weeks, 2009), ellipsoids (Donev et al., 68 

2007; Zhou et al., 2011) and spherocylinders (Abreu et al., 2003; Williams 69 

and Philipse, 2003; Zhao et al., 2012). The major reason is the practical 70 

difficulty of representing and handling irregular shapes using vector-based 71 

approaches. Traditional ways to construct an irregular particle require the 72 

user to place spherical elements within a meshed polyhedral body (e.g., 73 

Wang et al., 2007; Matsushima et al., 2009; Ferellec and McDowell, 2010; 74 

Fukuoka et al., 2013), which consumes high computational costs with large 75 

numbers of components (spheres) involved (Hubbard, 1996; Song et al., 76 

2006). Although techniques using 3D polyhedral (Latham et al., 2001) or 77 

continuous superquadric functions (Williams and Pentland, 1992; Lu et al., 78 

2012) provide a straightforward way to generate irregular particle shapes, 79 
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complex contact-detection algorithms are needed, leading to deterioration in 80 

simulation speed as particle complexity increases (Johnson et al., 2004).      81 

In order to overcome these difficulties, a stochastic digital packing 82 

algorithm was developed (Jia and Williams, 2001). The packing algorithm 83 

is distinguished from the traditional vector-based packing models by 84 

digitization of both particles and packing space, allowing for a much easier 85 

and computationally efficient way to pack particles of irregular shapes with 86 

no more than an ordinary PC. These advantages make it attractive to create 87 

packings of complex fluvial deposits, and to study the grain shape effects on 88 

porosity. Applications of this stochastic digital packing algorithm have 89 

proven to provide relatively accurate porosity predictions for both fine 90 

powders (Jia et al., 2007) and large spheres (Caulkin et al., 2006, 2007) in 91 

the fields of material science and engineering chemistry. Nevertheless, the 92 

packing algorithm has not yet been used for generating packings of fluvial 93 

deposits. Therefore, the primary purpose of this work was to test the 94 

applicability of the stochastic digital packing algorithm in predicting fluvial 95 

sediment porosities. In this study, we focused on fluvial gravel mixtures and 96 

did so by comparing the predicted porosities with those obtained from 97 

laboratory measurements.       98 

2. Materials and methods 99 

2.1. Particle acquisition and analysis 100 

The particles employed for this study came from three different sources: 101 

(1) fluvial gravels from the Rhine River (Germany), (2) fluvial gravels from 102 

the Kall River (Germany), and (3) commercial glass beads. The Rhine 103 

sediments were collected from the channel bed between the barrage of 104 

http://dict.youdao.com/w/applicability/
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Iffezheim and the German-Dutch border between July 2008 and April 2011. 105 

Quartz is the dominant lithology. The Kall sediments were collected from 106 

the channel bed near the river mouth in June 2014. Slate is the dominant 107 

lithology.        108 

After acquisition, the fluvial sediments were carefully cleaned by 109 

flushing with fresh water, dried in an oven at 105 °C for 48 h and sieved 110 

into seven size fractions: 2.8-4 mm, 4-5.6 mm, 5.6-8 mm, 8-11.2 mm, 11.2-111 

16 mm, 16-22.4 mm, 22.4-31.5 mm. Subsequently, these fractions were 112 

combined into seven grain size distributions: four unimodal ones with 113 

logarithmic standard deviations (ıĳ) of 0.00, 0.32, 0.49 and 0.71, and three 114 

bimodal ones, with the finer mode, making up either k=30, k=50 or k=70 115 

percent of the distribution (Fig. 1). The glass beads with seven size fractions 116 

of 3, 4, 6, 8, 11, 16 and 22 mm were also combined into the same 117 

distributions as above.   118 

For the fluvial sediments, nine representative particles were chosen 119 

based on visual judgments from each of the seven sieve fractions, and 120 

digitized (Fig. 2) using a nonmedical X-ray computed tomography (CT) 121 

scanner. Shape analysis was done according to the classic Zingg diagram 122 

(Zingg, 1935), which categorizes particle shape into sphere, disc, blade and 123 

rod categories on the basis of the elongation ratio (b/a) and flatness ratio 124 

(c/b), where a, b and c are the long, intermediate and short orthogonal axes 125 

respectively of the smallest volume imaginary box that can contain the 126 

particle (Blott and Pye, 2008). It can be seen in Figure 3 that most of the 127 

Rhine sediments locate within the sphere area while the Kall sediments are 128 

dominated by disks and blades. According to Krumbein’s (1941) equation 129 
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(1), the intercept sphericity (ȥ) for each selected particle was calculated, 130 

with an average intercept sphericity of 0.74 gained for the Rhine sediments 131 

and 0.55 for the Kall sediments.        132 

߰ ൌ ට௕כ௖௔మయ           ሺͳሻ                                                     133 

2.2. Laboratory porosity measurements 134 

The water displacement method (Bear, 1972) was used for porosity 135 

measurements. The experimental procedure was as follows: firstly, a plastic 136 

cylinder with an inner diameter of 104 mm was partially filled with a known 137 

volume of water ܸ௪ larger than the expected pore volume of the particles to 138 

be added. Then, particles of 3 kg mass were added into the cylinder in small 139 

well-mixed portions, together with gently tapping the side of the cylinder in 140 

order to dislodge trapped air bubbles and obtain a stable, dense packing. The 141 

final water level was visually read to obtain the whole accumulated volume 142 

௔ܸ ( ௔ܸ = ௪ܸ + ܸ ௦, where ܸ௦ is the volume of the solid fraction). The jagged 143 

surface of the particle packing caused by the wide range of sizes and shapes 144 

was then smoothed by hand and the total volume of the particle packing ௧ܸ 145 

(including pores) was obtained through reading the height of the particle 146 

packing. Eventually, the porosity was computed as ݊ ൌ ௣ܸ ௧ܸΤ , where ܸ௣ 147 

(ൌ ௧ܸ െ ሺ ௔ܸ െ ௪ܸ)) is the pore volume of the particle packing.       148 

In total, 42 laboratory porosity experiments were performed as a basis 149 

for the validation of the stochastic digital packing algorithm: 14 experiments 150 

with the sub-spherical Rhine sediments (7 distributions, each two times), 14 151 

experiments with low-sphericity Kall sediments (again 7×2) and 14 152 

experiments with the spherical glass beads (again 7×2).                 153 
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2.3. Porosity simulation 154 

The stochastic digital packing algorithm of Jia and Williams (2001) is 155 

designed to pack particles of arbitrary sizes and shapes in a confined space 156 

of arbitrary geometry. In this packing algorithm, every element is digitized: 157 

each particle as a coherent collection of voxels, the packing space (in a 158 

container) as a lattice grid, and the movements take place in units of grid 159 

cells. During the simulation, the movements of particles, both translational 160 

and rotational, are random. In 3D, there are 26 possible translational 161 

directions: 6 orthogonal and 20 diagonal. The diagonal moves are treated as 162 

a combination of two orthogonal moves. To ensure particles settle while still 163 

make use of every available space, a rebounding probability is used. An 164 

upward movement (which may be an orthogonal move or part of a diagonal 165 

move) is only realized with this probability. After translation, a trial rotation 166 

follows, and it is accepted if the rotation does not result in overlaps. 167 

Compared with vector-based approaches and for complex shapes, this 168 

digital approach is advantageous in several respects. First, there is no 169 

conversion or parameterization required, since objects digitized by modern 170 

imaging devices, such as X-ray tomography (e.g., Richard et al., 2003) or 171 

nuclear magnetic resonance imaging (e.g., Kleinhans et al., 2008), are 172 

already in the digital volumetric format required by the packing algorithm. 173 

Secondly, collision and overlap detection (normally the most 174 

computationally expensive part of packing simulations) is much easier to 175 

implement as computer code, and usually faster to execute for complex 176 

shapes. Thirdly, the number of voxels used to represent objects, and hence 177 

to a large extent the simulation runtime, does not necessarily increase with 178 
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shape complexity. The reverse is also true: it does not necessarily reduce 179 

with shape simplification either. Further details on the stochastic digital 180 

packing algorithm can be found elsewhere (Jia and Williams, 2001; Caulkin 181 

et al., 2006, 2007).       182 

In order to produce porosity results comparable to those aforementioned 183 

measurements, simulation conditions need to be set up to resemble the 184 

laboratory experiments, with respect to the packing space, the particle 185 

mixtures and the packing process. The digital objects (i.e., packing space 186 

and particles) were prepared with DigiUtility, which is a bundled tool for 187 

viewing, manipulating and preparing digital files for this packing algorithm. 188 

In DigiUtility, a cylinder (packing space) with solid boundary was built with 189 

the size of 104 mm in diameter, and 300 mm in height, which is slightly 190 

higher than the largest real packing heights (about 250 mm) to ensure all the 191 

particles would drop into it. The particle mixtures (i.e., number of particles 192 

in each of the fractions) employed in these simulations were derived on a 193 

weight-to-weight basis. For glass beads, the numbers of particles in each 194 

fraction were determined as the ratio of the real mass of each fraction to the 195 

single particle mass (density of 2500 kg/m3 used for glass beads). The 196 

regular spherical shapes with different sizes were directly created in digital 197 

formats using DigiUtility. In the case of the fluvial sediments, we used nine 198 

digitized typical particles to represent each fraction and repeated them as 199 

many times as needed to make up the feedstock according to the required 200 

grain size distributions. The density of fluvial gravels was set to 2650 kg/m3. 201 

Resolution of 0.5 mm/voxel for the digital objects was assigned as it offers 202 
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relatively precise representation of the real particles in both dimension and 203 

shape, and also limits the computational cost to a feasible amount.  204 

Having the digital objects created, a range of options and parameters 205 

was set to mimic the packing process. The source was set to “rain-dropping” 206 

mode to let the particles randomly drop from a circular area above the 207 

cylinder. In addition to the translational movements, particles were also 208 

allowed to rotate randomly during the simulation. Optimized values of the 209 

parameters (rebounding probability, addition rate and number of time steps) 210 

that control the generated packing structures were chosen such as to create 211 

the densest possible packings. By doing so, simulation conditions (Table 1) 212 

matched the experimental setups as close as possible. Finally, the porosity 213 

of the digital packings was determined as the ratio of the number of empty 214 

voxels to the total number of voxels within the corresponding packing space. 215 

Porosity was calculated for the lower 90% of the mixture to exclude effects 216 

of surface irregularities. Each simulation was also done twice and 42 217 

simulations were achieved in total. 218 

3. Results  219 

3.1. Measured porosity 220 

The porosity measured in the laboratory experiments is shown in Figure 221 

4. For the unimodal particle mixtures, porosity decreases with increasing 222 

logarithmic standard deviations, while the bimodal particle mixtures 223 

generally have lower porosity than the unimodal mixtures. This variation in 224 

porosity reflects the mixing effect between small and large particles.    225 

Porosity comparisons between the three different particle sources show 226 

the low-spherical Kall sediments and the spherical glass beads produced 227 
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higher porosity than the sub-spherical Rhine sediments, which confirms that 228 

there is a decrease and then increase in porosity as particle shape varies 229 

from spherical to platy (Tickell and Hiatt, 1938; Zou and Yu, 1996). On the 230 

other hand, in the case of the bimodal particle mixtures, different tendencies 231 

toward the porosity are appreciable (Fig. 4B), suggesting grain shape exerts 232 

a quite complicated influence on porosity, not merely in variation of amount 233 

but in variation of trend.    234 

It should be noted that the dense sediment deposits packed by hand in 235 

the laboratory experiments are not fully representative of natural situations 236 

where grain arrangement is determined by depositional conditions, such as 237 

flow impact (with near-bed turbulence playing an important role) and burial 238 

depth (compaction mechanism). This topic is beyond the current effort. 239 

Nonetheless, based on the comparisons between field measurements of 240 

porosity in the River Rhine (28 measurements on the channel bed and 18 241 

measurements on the river banks, focusing on subsurface sediments) and 242 

measurements in the laboratory (Frings et al., 2011), it was found that in 243 

most cases (59%), the difference between is less than 0.03 (Fig. 5), with an 244 

average porosity of 0.24 obtained ex situ and 0.22 in situ.  245 

3.2. Algorithm behavior  246 

The behavior of the stochastic digital packing algorithm is presented in 247 

Figure 6. In order to validate the packing algorithm, comparisons were made 248 

between the measured and simulated porosity outcomes. Figure 7 clearly 249 

shows that the packing algorithm successfully captures the measured 250 

variation in porosity due to grain size distributions for each particle source. 251 

While the packing algorithm also seems to be able to mimic the measured 252 
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variation due to grain shape for a given grain size distribution, providing 253 

that the glass beads (spheres) are not taken into account (Fig. 8).   254 

However, nearly all simulated porosities were systematically 255 

overestimated compared to the experimental measurements. To easily 256 

recognize these discrepancies, relative errors between the measured and 257 

simulated porosities were calculated (Table 2). The average relative error is 258 

29.4% for the Rhine sediments, 21.7% for the Kall sediments and 6.6% for 259 

the glass beads, indicating that the packing algorithm predicted relatively 260 

higher porosities when it comes to fluvial sediments with irregular shapes. 261 

Figure 9 shows the comparison between these discrepancies over the seven 262 

grain size distributions. For the unimodal particle mixtures, the 263 

discrepancies are growing as logarithmic standard deviation increases (Fig. 264 

9A). For the bimodal particle mixtures, with the finer mode increasing from 265 

30% to 70%, the discrepancies for fluvial sediments decrease while the 266 

discrepancies for glass beads increase (Fig. 9B).     267 

4. Discussion   268 

      The purpose of determining the porosities of the samples was twofold: 269 

first, to point out that apart from grain size, grain shape also has a clear 270 

impact on porosity (shown in section 3.1), and second, to serve as a basis of 271 

comparison for the porosities predicted from the stochastic digital packing 272 

algorithm. It is shown in section 3.2 that although the packing algorithm is 273 

able to follow the experimental trend, systematic overestimation of the 274 

porosity is noticeable, especially for the fluvial sediments. The remarkable 275 

discrepancies between can be caused by (1) measurement inaccuracies, 276 

and/or (2) simulation inaccuracies.  277 
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4.1. Measurement inaccuracies       278 

      For the laboratory measurements, the reading errors related to the water 279 

levels and packing heights dominate the accuracy of outputs. The water 280 

levels were visually read to obtain the whole accumulated volumes  ୟ with 281 

a deviation of about 1 mm, and readings of the packing heights for gaining 282 

the total volume of particle packing  ୲ (including pores) were achieved with 283 

an accuracy of ~3 mm. These inevitable reading errors can lead to the 284 

absolute error of the porosity to be ~0.01 for the measurements. However, 285 

measured inaccuracies are small compared to the apparent differences 286 

between the measured and simulated porosities, particularly for fluvial 287 

sediments. 288 

4.2. Simulation inaccuracies 289 

4.2.1. Digitization inaccuracy  290 

As can be seen in Figure 10, the arrangements of particles leave 291 

unexpected pore spaces. One reason for this may be the digitization errors of 292 

digital objects represented at a resolution of 0.5 mm/voxel. The effect can 293 

be supported by the fact that the porosity of 0.355 simulated for glass beads 294 

is less than the limit of 0.36 in a random dense packing of spheres (Scott, 295 

1960; Allen, 1985; Yu and Standish, 1991; Weltje and Alberts, 2011). This 296 

is probably because the spherical shape of glass beads is not perfectly 297 

described at such a resolution (0.9% digitization error), causing a reduction 298 

of porosity. Korte and Brouwers (2013) also observed the same effects in 299 

the simulation of packing 3D digitalized spheres under different resolutions. 300 

For this reason, a test for the ID 5 case (Table 2) was carried out with a 301 

higher resolution of 0.25 mm/voxel to decrease the digitized errors, 302 
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especially for smaller particles. This gave a slightly lower porosity of 0.37 303 

instead of 0.38 at 0.5 mm/voxel resolution, indicating that effects of 304 

digitization errors are not too significant when compared to the 305 

discrepancies between measured and simulated porosities.  306 

Another error arises from the strict non-overlap requirement in the 307 

algorithm. Imagine two large objects side by side. If for any reason, there is 308 

a voxel protruded from either of the objects, this single voxel can stop the 309 

two objects from coming closer, thus leaving a large gap. In reality or in 310 

DigiDEM simulations, where forces instead of probabilities are used to 311 

determine in which direction and by how much each object moves in the 312 

next time step, this would not have happened.            313 

4.2.2. Process control parameters 314 

Another cause of simulation inaccuracy is the settings of process control 315 

parameters that affect the simulated packing structures, which are 316 

rebounding probability, addition rate and number of time steps. We did a 317 

sensitivity analysis to define the effects of these parameters on porosity. 318 

This was done by running a number of simulations in which one of the 319 

parameters was varied while keeping the others constant. To perform these 320 

simulations, 750 spherical particles (6.4 mm in diameter) and a cylinder 321 

(64mm in both diameter and height) were used. Resolution was set to 0.4 322 

mm/voxel, giving a slight difference (൏1% digitization error) between the 323 

digital volumes and real volumes.  324 

Rebounding probability, designed to allow particles to move upwards, 325 

provides a non-physical way to generate vertical vibrations. The original 326 

intention of having a rebounding probability is to make it possible for 327 
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particles to escape from their cramped places and continue to explore more 328 

suitable space to fit in, thereby simulating sediment compaction. The 329 

rebounding probability can be set between 0 and 1. A value of 0 means no 330 

rebounding and hence no vertical vibration applied. A value of 1 means 331 

particles having the same probability to move up or down, and hence kept 332 

suspended. To investigate its effects on porosity, seven rebounding 333 

probabilities varying from 0.1 to 0.7 were tested, while the addition rate and 334 

number of time steps remained the same (Table 3). The sensitivity analysis 335 

shows that bulk porosities vary parabolically as a function of the rebounding 336 

probability (Fig. 11A). The lowest porosity values appear at rebounding 337 

probabilities of 0.3-0.5, while lower and higher rebounding probabilities 338 

give higher porosities.  339 

Addition rate controls the speed of introduction of particles into the 340 

packing space. Simulations with seven fixed addition rates were performed 341 

with the same sets of rebounding probability, and number of time steps 342 

(Table 4). Slower addition rates tend to generate denser packing structures, 343 

with bulk porosities decreasing from 0.46 to 0.42 (Fig. 11B). This effect is 344 

because with slower addition rates, particles have more time to find a better 345 

fitting position before being locked-in by new additions, resulting in denser 346 

packing structures.  347 

In the packing algorithm, three types of time steps are defined: normal 348 

time steps, extra time steps and wind up time steps. Normal time steps are 349 

those during which particles drop into the packing space. They are closely 350 

related to the addition rate. For example, if the addition rate is chosen such 351 

that one particle drops down every 10 time steps, 1000 normal time steps 352 
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are needed to introduce 100 particles into the packing space. In the case that 353 

a previously introduced particle still remains on top of the container, the 354 

next particle might be prevented from being introduced. In this instance, the 355 

next particle has to “wait” and extra time steps are needed to finish the 356 

packing. Wind up time steps are time steps at the end of a simulation during 357 

which no more particles are added and the rebounding probability is set to 358 

zero. These time steps enable the whole packing structure to consolidate. 359 

During the sensitivity analysis, only the effect of wind up time steps on 360 

porosity was assessed, since the effect of normal and extra time steps is 361 

directly related to the addition rate. The number of wind up time steps was 362 

varied between 0 and 32000 (Table 5), and shows no systematic effect on 363 

porosity (Fig. 11C).  364 

The sensitivity analysis confirms that the settings we chose for the 365 

validation of the stochastic digital packing algorithm (Table 1) result in the 366 

densest possible packings. This shows that the overestimation of porosity by 367 

this packing algorithm cannot be solved by choosing different settings for 368 

the simulations.  369 

4.2.3. Random walk-based algorithm 370 

The reasons why the simulations failed to yield random dense packing 371 

structures can be explored in the random walk-based packing algorithm, by 372 

which the translational and rotational movements of particles during the 373 

simulation are completely random. Looking at the cross sections of the 374 

digital packings (Fig. 10) closely, the mixing of the particles is not uniform 375 

as smaller particles are more likely to concentrate at the bottom layer, 376 

particularly for the bimodal distributions with percentage of small particles 377 
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increasing from 30% up to 70%. The phenomenon can be interpreted by 378 

kinematic sorting (i.e., segregation) effects. This is because particles kept 379 

moving randomly throughout the simulation, thus giving more chances for 380 

smaller particles to move through the pore spaces between larger particles 381 

and reach the bottom layer. Observations from Figure 10 also suggest that 382 

shape effects strongly affect the simulated packing structures of fluvial 383 

sediments compared to the packings of glass beads. Because of random 384 

rotational motions during the simulation, the arrangements of particles with 385 

irregular shapes lead to create larger voids, especially between larger 386 

particles. For the simulations of glass beads, shape effects are 387 

inconsequential because the rotation of a sphere has no impact on particle 388 

packing. Therefore, kinematic sorting can fully explain the growing 389 

discrepancy trend for glass beads over the seven grain size distributions, 390 

while shape effects are the dominant reason that causes the porosity to be 391 

significantly overestimated for fluvial sediments (Fig. 9).   392 

5. Conclusions     393 

The applicability of a stochastic digital packing algorithm in predicting 394 

porosity of fluvial gravel deposits was validated. The conclusions are 395 

summarized as follows: (1) Apart from grain size, grain shape has a clear 396 

impact on porosity. (2) The packing algorithm provides an innovative way 397 

to simulate fluvial sediment mixtures with arbitrary shapes. (3) The packing 398 

algorithm correctly reflects the mixing effect on porosity for unimodal 399 

particle mixtures and also reproduces the differences in porosity for bimodal 400 

particle mixtures. However, in all cases, the packing algorithm 401 

systematically overestimates porosity mainly due to the unwanted kinematic 402 
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sorting effects as well as shape effects introduced by the random motion of 403 

particles. (4) The packing algorithm is useful for trend analysis of packing 404 

porosity; but for a quantitative match a more rigorous model such as 405 

Discrete Element Method (DEM) where particle motion is physics-based 406 

may be needed.    407 
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Figure captions 547 

Fig. 1. Four unimodal (A, B, C, D) and three bimodal (E, F, G) grain size 548 

distributions used for the porosity measurements and simulations. 549 

Fig. 2. Nine representative digitized particles in the 22.4-31.5 mm fraction 550 

of (A) Rhine sediments, and (B) Kall sediments, represented at a resolution 551 

of 0.5 mm/voxel.  552 

Fig. 3. Shape properties of (A) Rhine sediments, and (B) Kall sediments in 553 

the Zingg classification. (n = 9×7 = 63) 554 

Fig. 4. Measured porosity for the Rhine sediments, Kall sediments and glass 555 

beads over the four unimodal distributions represented by logarithmic 556 

standard deviation (A) and three bimodal distributions represented by 557 

percentage of fine mode (B). 558 

Fig. 5. Porosity difference between field measurements and laboratory 559 

measurements, based on the porosity data set provided by Frings et al. 560 

(2011). The study area was the 520 km long river reach between the barrage 561 

of Iffezheim (Rhine kilometer 334) and the German-Dutch border (Rhine 562 

kilometer 865).  563 

Fig. 6. Generated digital packings for (A) Rhine sediments, (B) Kall 564 

sediments, and (C) glass beads. From left to right, the packings represent the 565 

four unimodal distributions (1, 3, 5, 7 fractions), and three bimodal 566 

distributions (30%, 50%, 70% proportion of fine mode).  567 

Fig. 7. Comparison of model predictions with experimental data for each 568 

particle source over the four unimodal distributions (A, C, E) and three 569 

bimodal distributions (B, D, F).  570 
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Fig. 8. Comparison of model predictions with experimental data between 571 

the three different particle sources (i.e., the spherical glass beads, the sub-572 

spherical Rhine sediments and the low-spherical Kall sediments) for a given 573 

grain size distribution. A to G represents the four unimodal distributions (1, 574 

3, 5, 7 fractions), and three bimodal distributions (30%, 50%, 70% 575 

percentage of fine mode).  576 

Fig. 9. Comparisons between relative errors over the four unimodal 577 

distributions (A), and three bimodal distributions (B).   578 

Fig. 10. Cross section images of the generated digital packings for (A) 579 

Rhine sediments, (B) Kall sediments, and (C) glass beads. From left to right, 580 

the packings represent the four unimodal distributions (1, 3, 5, 7 fractions), 581 

and three bimodal distributions (30%, 50%, 70% percentage of fine mode).    582 

Fig. 11. Sensitivity analysis of process control parameters on porosity, 583 

including (A) Rebounding probability, (B) Addition rate, and (C) Windup 584 

timesteps. Each simulation was conducted three times and the error bar 585 

shows 95% confidence interval for the simulated porosities.   586 
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Table 1. Set-up conditions applied in simulations 

Parameters Values 

Resolution  0.5 mm/voxel 

Container diameter 104 mm 

Dropping height 300 mm 

Sediment density 2650 kg/m3 

Glass density 2500 kg/m3  

Adding source Rain-dropping mode 

Rotation Complete random 

Rebounding probability 0.35 

Addition rate  1 particle/every 50 timesteps 

Windup timestesps 2000  

    
588 

Table 2. Porosity outcomes attained from laboratory measurements and simulations (a, standard deviation; b, 

ID Description of grain size distribution 
Laboratory Measurements  

1# 2# Mean SDa  

1 

Rhine 

sediments 

Unimodal 

distributions 

1 Fraction 0.370 0.372 0.371 0.001 
 

2 3 Fractions 0.359 0.353 0.356 0.003 
 

3 5 Fractions 0.346 0.342 0.344 0.002 
 

4 7 Fractions 0.317 0.313 0.315 0.002 
 

5 
Bimodal 

distributions 

30%b  0.272 0.267 0.270 0.003 
 

6 50%b 0.284 0.294 0.289 0.005 
 

7 70%b 0.300 0.297 0.299 0.002 
 

8 

Kall 

sediments 

Unimodal 

distributions 

1 Fraction 0.383 0.380 0.382 0.002 
 

9 3 Fractions 0.385 0.380 0.383 0.003 
 

10 5 Fractions 0.368 0.364 0.366 0.002 
 

11 7 Fractions 0.331 0.324 0.328 0.004 
 

12 
Bimodal 

distributions 

30%b  0.325 0.315 0.320 0.005 
 

13 50%b 0.316 0.317 0.317 0.001 
 

14 70%b 0.314 0.312 0.313 0.001 
 

15 

Glass 

beads 

Unimodal 

distributions 

1 Fraction 0.365 0.362 0.364 0.002 
 

16 3 Fractions 0.383 0.377 0.380 0.003 
 

17 5 Fractions 0.368 0.368 0.368 0.000 
 

18 7 Fractions 0.353 0.344 0.349 0.005 
 

19 
Bimodal 

distributions 

30%b  0.317 0.314 0.316 0.002 
 

20 50%b 0.314 0.310 0.312 0.002 
 

21 70%b 0.330 0.324 0.327 0.003  
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Table 3. Simulated porosity with varied rebounding probabilities (a, standard deviation) 
  

ID 
Rebounding 
 Probability 

Addition Rate 
Extra  

Timesteps 
Windup  

Timesteps 

Simulated porosity 

Amount 
Every   

Timesteps 
Normal 

Timesteps 
1# 2# 3# Mean SD

1 0.1 1 10 7500 0 500 0.437 0.440 0.441 0.439 0.
2 0.2 1 10 7500 0 500 0.433 0.436 0.436 0.435 0.
3 0.3 1 10 7500 0 500 0.434 0.429 0.432 0.432 0.
4 0.4 1 10 7500 0 500 0.434 0.429 0.430 0.431 0.
5 0.5 1 10 7500 0 500 0.434 0.438 0.434 0.435 0.
6 0.6 1 10 7500 0 500 0.433 0.433 0.438 0.435 0.
7 0.7 1 10 7500 0 500 0.446 0.447 0.443 0.445 0.
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Table 4. Simulated porosity with varied addition rates (a, standard deviation) 
  

ID 
Rebounding 
 Probability 

Addition Rate 
Extra  

Timesteps 
Windup  

Timesteps 

Simulated porosity 

Amount 
Every   

Timesteps 
Normal 

Timesteps 
1# 2# 3# Mean SD

1 0.25 1 2 1500 0 500 0.460 0.463 0.457 0.460 0.
2 0.25 1 5 3750 0 500 0.446 0.448 0.441 0.445 0.
3 0.25 1 10 7500 0 500 0.434 0.432 0.434 0.433 0.
4 0.25 1 20 15000 0 500 0.424 0.427 0.428 0.427 0.
5 0.25 1 30 22500 0 500 0.423 0.421 0.422 0.422 0.
6 0.25 1 40 30000 0 500 0.421 0.421 0.420 0.421 0.
7 0.25 1 50 37500 0 500 0.420 0.420 0.421 0.420 0.
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Table 5. Simulated porosity with varied windup timesteps (a, standard deviation) 
  

ID 
Rebounding 
 Probability 

Addition Rate 
Extra  

Timesteps 
Windup  

Timesteps 

Simulated porosity 

Amount 
Every   

Timesteps 
Normal 

Timesteps 
1# 2# 3# Mean SD

1 0.25 1 10 7500 500 0 0.434 0.435 0.437 0.435 0.
2 0.25 1 10 7500 500 1000 0.432 0.432 0.434 0.433 0.
3 0.25 1 10 7500 500 2000 0.434 0.431 0.433 0.433 0.
4 0.25 1 10 7500 500 4000 0.435 0.432 0.435 0.434 0.
5 0.25 1 10 7500 500 8000 0.432 0.434 0.432 0.432 0.
6 0.25 1 10 7500 500 16000 0.434 0.433 0.436 0.435 0.
7 0.25 1 10 7500 500 32000 0.431 0.432 0.430 0.431 0.
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