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Abstract

The dynamics of complex systems with many degrees of freedom can be analyzed by

projecting it onto one or few coordinates (collective variables). The dynamics is often

described then as diffusion on a free energy landscape associated with the coordinates.

Fep1d is a script for the analysis of such one-dimensional coordinates. The script allows

one to construct conventional and cut-based free energy profiles, to assess the optimality

of a reaction coordinate, to inspect whether the dynamics projected on the coordinate

is diffusive, to transform (re-scale) the reaction coordinate to more convenient ones, and

to compute such quantities as the mean first passage time, the transition path times,

the coordinate dependent diffusion coefficient, etc. Here we describe the implemented

functionality together with the underlying theoretical framework.

Keywords: reaction coordinate, free energy profile, diffusion, cut free energy profile,

dimesionality reduction.
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Introduction

With the growing number of experiments and the steady progress in the simulations of

different biological, physical, chemical processes the rigorous quantitative analysis of the

obtained data becomes all the more important. The complex nature of the processes and

the large size of data sets generated by simulation and experiment make the development of

automated analysis tools very important, practically and conceptually.

One popular method of such a data analysis is the projection of multidimensional coor-

dinate space to a one dimensional reaction coordinate (RC). During such a dimensionality

reduction some information is inevitably lost. The optimal RC should absorb all the im-

portant dynamical information contained in the other degrees of freedom, so they can be

neglected. Then the free energy profile (FEP) constructed along the optimal coordinate

together with the determined diffusion coefficient can give an accurate description of the

system dynamics as diffusion on this free energy surface. Examples of such dimensionality

reduction can be found in different fields: order parameters in physics,1,2 physicaly based re-

action coordinate in single molecular experiments3,4 and molecular dynamics simulations,5–11

biomarkers in medicine,12 chess game.13

In protein folding simulations the following RCs are frequently chosen: the root mean

square distance from the native structure, the number of native contacts, the radius of

gyration. In many cases, however, such coordinates can hide the complexity of the dynam-

ics,2,14 in particular the barriers between states and make the dynamics subdiffusive.15 A

number of methods to construct good, more sophisticated reaction coordinate have been sug-

gested8,16–22 and the analysis of the determined RC becomes as important as the description

of the dynamics.

The following problems/questions often appears and are to be solved during such an

analysis: determination of the associated free energy profile and the diffusion coefficient,

which provide complete description of diffusive dynamics; establishing that the reaction

coordinate is optimal and/or that the dynamics projected on such a coordinate is diffusive,
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rather than sub or super diffusive; transformation of the putative reaction coordinate to

another, more convenient one, for example, to the one with the constant diffusion coefficient;

computation of various properties associated with stochastic dynamics, such as, the mean

first passage time (mfpt), the mean transition path times (mtpt).

While some of the tasks are rather trivial (such as the computation of the conven-

tional histogram free energy profile), other (such as the computation of the cut profile using

transition path segments with different sampling intervals23) are not. Here we describe a

python script fep1d.py, which allows one to readily perform most of the described tasks.

Being a python script, the code can be easily read, adapted and modified to extend the

functionality. Below we provide the summary of the implemented functionality together

with the underlying theoretical framework. The fep1d.py program can be downloaded from

http://sourceforge.net/projects/fep1d/

Fep1d

The command line

The command line contains the list of the data files with the RC time series (the mandatory

arguments), and a list of optional arguments starting with --. For example,

fep1d.py rc1.dat rc2.dat --transformto=natural --hfep=1

will transform two different reaction coordinates rc1 and rc2 to the ”natural” reaction co-

ordinates with the constant diffusion coefficient (optional argument transformto) and will

construct and plot the histogram based free energy profiles (the optional argument hfep)

along the transformed RCs. For a protein folding trajectory these can be the root mean

square distance from the native structure and the number of native contacts reaction coor-

dinates. The command then can be used to compare which of the two putative coordinates

is more optimal or better describes the dynamics: it is the one with the highest profile.

The script, invoked without arguments, lists all the options. The gnuplot library is used
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to plot the graphs. The plots can be saved as postscripts files, or as data files to be plotted

using other software. The transformed coordinates can be saved as well.

Construction of the profiles

Below we denote a time series of reaction coordinate x as x(i∆t), while a point on this

coordinate is denoted simply as x. Note, that while the profiles depend on sampling interval

∆t, we omit this dependence in notation, i.e. we write FC(x) rather than FC(x,∆t).

hfep - the histogram based free energy profile FH(x) along the reaction coordinate x is

calculated in conventional way as FH(x)/kBT = − ln(ZH(x)), where kB is the Boltzmann

constant, T is the temperature, and ZH(x) is the partition function estimated as ZH(x) =

Nx/∆x. Nx is the number of time-series points in bin x and ∆x is the size of the bin which

can be specified as --dx=0.01.

cfep - cut based free energy profile FC(x) is calculated as FC(x)/kBT = − ln(ZC(x)), where

ZC(x) is the corresponding partition function defined as half the total number of transitions

through point x15

ZC(x) = 1/2
∑

i

θ[−(x(i∆t)− x)(x(i∆t+∆t)− x)],

where θ[x] is the Heaviside step function and ∆t is the time interval. The important property

of the FC is its invariance (in contrast to the conventional FH) with respect to an arbitrary

monotonous transformation of the reaction coordinate which makes possible partition of

configuration space in an invariant way.20

cfep1 - the cut based free energy profile FC,1(x) is constructed using generalized partition

function ZC,1(x) which is calculated by summing up the transitions through points x with

weights equal to the length of the transition23

ZC,1(x) = 1/2
∑

i

|x(i∆t)− x(i∆t+∆t)|θ[−(x(i∆t)− x)(x(i∆t+∆t)− x)] (1)
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ZC(x) and ZC,1(x) can be related to ZH(x) and D(x) (the position dependent diffusion

coefficient) as20,22

ZC(x) =
√

D(x)∆t/πZH(x), (2)

and

ZC,1(x) = ∆tD(x)ZH(x). (3)

The relations are derived using the following assumptions. First, the displacements are

Gaussian distributed P (∆x) ∼ exp(−∆x2/2D∆t), i.e., the dynamics is diffusive. Second,

ZH(x) and D(x) are assumed to be approximately constant on the average displacement

distance of
√
2D∆t during ∆t. The assumptions are generally valid for relatively small ∆t

and/or around the transitions states and local minima. Corrections due to a nonzero free

energy gradient are of the second order.13

If the reaction coordinate is rescaled to the natural coordinate,20 defined as the one with

the diffusion coefficient D(x) = 1, then all the three profiles along the rescaled coordinate are

differ only by a constant. However, the cut profile FC(x) is less prone to statistical noise and

hence, is constructed by default by fep1d script. It should also be noted that all the profiles

are reported in dimensionless units as FH(x)/kBT , FC(x)/kBT and FC,1(x)/kBT . Fig. 1

shows two FEPs along an optimized RC constructed for the folding trajectory of FIP35

protein6,21 and transformed to the natural coordinate with the constant diffusion coefficient.

All examples below are given for this coordinate which is denoted as RCFIP35.

Transformations of the RC

The reaction coordinate can be transformed to the one of several coordinate types listed below

by adding argument --transformto=type-of-RC to the command line. The transformation can

be performed ”on-the-fly” (before determining the profiles), or the transformed coordinate

time series can be saved to a file for further analysis.

natural coordinate. A reaction coordinate x with a variable diffusion coefficient can be
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transformed to coordinate y, called the natural coordinate20 by numerically integrating

y = π−1/2

∫ x

−∞

ZH(w)dw/ZC(w)

i.e. that ZC(y) = π−1/2ZH(y), so that D(y) = 1.15 In this case the dynamics is completely

specified by the FEP.

Za coordinate. ZA(x) is the reaction coordinate which measures the relative partition func-

tion of the coordinate segment between -∞ and x

y = ZA(x) =

∫ x

−∞

ZH(w)dw/

∫

∞

−∞

ZH(w)dw

ZA(x) is invariant to coordinate transformation, and can be used to compare different coor-

dinates.15

pfold coordinate. The folding probability (pfold) equals to the probability of the system

being at position x to reach one (boundary) state x1 before it reaches another state x0.
24

Assuming that dynamics is diffusive, the folding probability is computed using partition

functions of cfep and hfep21

y = pfold(x) =

∫ x

x0

Z−2
C (x)ZH(x)dx

∫ x1

x0

Z−2
C (x)ZH(x)dx

(4)

pfoldMSM coordinate. If the assumption that the dynamics is diffusive and ZH(x) is

relatively flat are not valid while the dynamics is Markovian, the transformation to the

pfold coordinate is computed by using a Markov state model. The model is obtained by

clustering the initial reaction coordinate into the bins of size ∆x and computing the transition

probabilities as pji = nji/
∑

j nji, where nji is the number of transitions from bin i to bin j.

The folding probabilities then can be determined by solving the system of equations13

yi = pfold(xi) =
∑

j

pjipfold(xj), (5)
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with the boundary conditions pfold(x0) = 0, pfold(x1) = 1.

For pfold and pfoldMSM transformations x0 and x1 should be specified as --x0=value-

of-x0 and --x1=value-of-x1. These values usually correspond to the positions of the minima

of the FEP. Optimal value of ∆x used for reaction coordinate discretization to construct a

Markov state model should be choosen neither too small (leads to a very large model with

poor statistics) nor too large (leads to a very coarse-grained model).

Optimality of the RC

Diffusivity of the dynamics. It is often assumed that dynamics along a putative co-

ordinate is diffusive. In this case the free energy profile F (x) determined as a function of

the RC gives the equilibrium probabilities p(x) ≈ exp (−F (x)/kBT ) and together with the

position dependent diffusion coefficient D(x) can provide a quantitative description of the

dynamics as a diffusion on the free energy surface. However, dynamics is diffusive when

projected on an optimal reaction coordinate and is sub-diffusive when projected on a sub-

optimal coordinate.23 In the latter case the dynamics should be described by a generalized

Langevin equation with a memory kernel, indicating non-Markovian dynamics. An accurate

determination of the kernel is a highly non-trivial task.25

Fep1d can be used to test the diffusivity of the dynamics along a putative RC. Diffu-

sive dynamics is characterized by the mean square displacement growing linearly with time

⟨∆x2(∆t)⟩ = 2D∆t ∼ ∆t2α, where D is the diffusion coefficient and α = 0.5. For sub-

diffusive dynamics α < 0.5. The coordinate dependent exponent α(x) can be determined

from the distance between two cut profiles FC(x,∆t) computed at two different sampling

intervals ∆t1 and ∆t2
15 as

α(x) = 1 +
FC(x,∆t1)/kBT − FC(x,∆t2)/kBT

ln∆t1 − ln∆t2
.

Fig. 2 shows FC(x) and calculated α(x) along the RCFIP35. α(x) is equal 0.5 around the
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both barriers that indicates diffusive dynamics in these regions.

Test of the RC optimality with the Bayesian criterion. A Bayesian criterion has

been suggested to quantify the quality of an RC by calculating the probability P (TP |x) of

being on the transition path (TP)8,26

p(TP |X) = p(X|TP )p(TP )/peq(X),

where p(X|TP ) is the probability density of X on the TPs, p(TP ) is the fraction of time

spent on the TPs, and peq(X) is the equilibrium probability density at point X of con-

figuration space. For diffusive dynamics, the maximum of p(TP |X) = 0.5 is attained at

the points of the stochastic separatrix pfold(X) = 0.5.26 For a good reaction coordinate

x = R(X), p(TP |x) should have a single sharp and high peak, collapsing the transition

states with high values of p(TP |X) into a single value of x.8 The stochastic separatrix is

a reasonable definition of the transition state ensemble for the systems with one dominant

barrier. For more complex systems, e.g., systems with two approximately equal barriers,21

where pfold(X) = 0.5 describes an intermediate state, rather than transitions states, the

criterion is not a sufficient condition of optimality and a different criteria should be used. To

calculate P (TP |x) the argument ptpx should be added to command line together with the

positions of the boundaries x0 and x1 and the bin size ∆x. Fig. 3 (A) shows that when the

P (TP |x) criteria applied to both transition states, it indicates that neither of the transition

states are optimal. However, it shows that the first transition state is optimal, if P (TP |x)

is computed just around a single TS (Fig. 3 B).

The FC,1(x,∆t)=const test of RC optimality. To test the optimality of a putative

RC for more complex systems (i.e., with more than one barrier) another criterion has been

suggested recently.23 The criterion assesses whether a putative reaction coordinate accurately

approximates the pfold coordinate (which is considered to be an optimal coordinate23,27,28).
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It states that for such a coordinate, the cut-based free energy profile FC,1(x,∆t), computed

from an ensemble of transition path segments, is x and ∆t independent.

The function testoptimality first transforms the reaction coordinate (the time series) x

to the pfold coordinate, by invoking the pfoldMSM internal function (Eq. 5). Then cut

profiles FC,1 along this coordinate are constructed at different sampling time intervals ∆t=1,

2, 4, 8, 16, ... using the transition paths.23 Fig. 4 shows cfep1 profiles constructed along

pfoldMSM(RCFIP35) with different ∆t. All the profiles are relatively parallel lines with small

fluctuations converging to the limiting profile, which means that chosen RC is close to the

pfold coordinate, however is still slightly sub-optimal.21,23

Diffusion coefficient and other quantities

Fep1d allows one to compute the diffusion coefficient according to Eq. 2 or according to Eq.

3 by adding arguments --D=1 or --D=2, correspondingly.

The mean first passage time can be estimated (a) from the trajectory by estimating the

mean waiting time between the transitions and (b) with the Kramer’s equation21,29

mfpt =

∫ x1

x0

eβFH(x)/D(x)dx

∫ x1

x

e−βFH(y)dy,

where β = 1/kBT . The mean transition pass times mtpt is estimated by direct counting

from trajectories. For computing these quantities the only argument --mfpt=1 should be

added.

The plots of folding probability as a function of the reaction coordinate, estimated using

either Eq. 4 or Eq. 5, can by obtained by using command line arguments --pfold=1 or

--pfoldMSM=1.
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Conclusion

The popular approaches to analyze the results of atomistic simulations can be roughly divided

into Markov state models (MSMs),31 conformation network analysis30 and the free-energy

landscape framework.2 In the former, trajectory snapshots are combined into microstates

or clusters using a variety of clustering algorithms. Construction of such a model, which

accurately describes the dynamics encoded by the trajectory is a very difficult problem and

a number of software packages are being developed for its solution.32,33 Once such a model

has been constructed, the properties of the dynamics are inferred by analyzing the model. In

particular, one can determine the free energy basins (metastable states), transition states,

pathways.2,30,31,34 The pfold optimal coordinate between any two boundary nodes can be

easily determined, and hence such properties as the cut profiles and diffusion coefficient.

In particular, the popular wordom program provides such a workflow.33 In our experience,

such an approach works very well for relatively small systems (e.g., peptides with up to

15-20 residues in length).2,20,35 For larger systems, it appears that construction of a good

quality Markov state model, which accurately describes the dynamics of a system, is much

more difficult due to the infamous ”curse of dimensionality”; especially in the transition

state regions, where the sampling is limited. Because of that, it is difficult to determine,

for example, the major properties of the folding dynamics - the folding free-energy barriers

and the pre-exponential factor, the structure of the transition states (TS), the transition

path times and the diffusion coefficient. The free energy profiles as functions of optimal

reaction coordinates constitute an alternative framework, which allows one to determine

these properties in relatively straightforward manner.

Fep1d is a simple tool for the analysis of such reaction coordinates and the projected

dynamics. Via command line options Fep1d allows one to determine free energy and cut

based free energy profiles; to transform a putative reaction coordinate to another, more

convenient one, for example, to the one with the constant diffusion coefficient; to compute

various properties associated with stochastic dynamics, such as, diffusion coefficient, the

10



mean first passage times, the mean transition path times. However, the unique functionality

of the script is the ability to assess the optimality of a putative reaction coordinate and to

inspect whether the dynamics projected on such a coordinate is diffusive, rather than sub

or super diffusive. Being a python script, the code can be easily read, adapted and modified

to extend the functionality. We hope that it will make a rigorous analysis of increasingly

available large amount of complex data less involved.
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Figure captions
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Figure 1: Free energy profiles FC(x) (red solid line) and FH(x) (green dashed line) determined
for an optimized RCFIP35 constructed for the folding trajectory of FIP35 protein using
command fep1d.py rc.dat --transformto=natural --hfep=1.
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Figure 2: FC(x) (red solid line) and α(x) (green dashed line) determined for the RCFIP35.
To calculate α(x), the command line should contain --alpha= [∆t1,∆t2]. Here, by the time
steps ∆t1 and ∆t2 we mean integer numbers referred to the steps of the trajectory: fep1d.py
rc.dat --alpha=[1,8]
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Figure 3: A) P (TP |x) calculated for the RCFIP35 (green dashed lines). The command line
is fep1d rc.dat --ptpx=1 --x0=47 --x1=8.2 --dx=1.0 with x0 and x1, corresponding to the
minima of the denatured state (D) and the native state (N); B) P (TP |x) calculated with x0

and x1 taken in the intermediate state (I) and the native (N) state, correspondingly.
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Figure 4: Testoptimality of RCFIP35. FC,1 are shown for different sampling intervals ∆t = 1
(red line at the bottom),2, ...,216 (magenta line at the top). The command line is fep1d
rc.dat --testoptimality=1 --x0=8.2 --x1=47. For function testoptimality the positions of x0

and x1 should be given from left to right.
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