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State of the art realistic simulations of complex atomic processes commonly produce trajectories of
large size, making the development of automated analysis tools very important. A popular approach
aimed at extracting dynamical information consists of projecting these trajectories into optimally
selected reaction coordinates or collective variables. For equilibrium dynamics between any two
boundary states, the committor function also known as the folding probability in protein folding
studies is often considered as the optimal coordinate. To determine it, one selects a functional form
with many parameters and trains it on the trajectories using various criteria. A major problem with
such an approach is that a poor initial choice of the functional form may lead to sub-optimal results.
Here, we describe an approach which allows one to optimize the reaction coordinate without selecting
its functional form and thus avoiding this source of error. C 2015 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported
License. [http://dx.doi.org/10.1063/1.4935180]

I. INTRODUCTION

Realistic simulations of atomistic dynamics of complex
biological processes are becoming increasingly common.
These simulations produce a massive amount of data
(e.g., trajectories). The trajectories alone without proper
analysis, however, do not provide deep insight into the process
dynamics. Interpreting the data and constructing reliable and
meaningful models of the dynamics, taking into account all
important dynamical information from the data, are non-trivial
tasks. The large size of trajectories makes the development of
automated analysis tools very important. Popular approaches
can be roughly divided into three groups: Markov state models
(MSMs),1–5 conformation network analysis,6–8 and the free
energy landscape framework.9–14 The free energy landscape
framework is attractive because it allows one to obtain direct
answers to fundamental questions about the dynamics: in
particular, the shape of the free energy profile (FEP), the
height of the barriers, the structure of the transition states, and
kinetic pre-exponential factors.13,15,16

The free energy landscape approach consists of projecting
the multidimensional trajectories onto so-called reaction coor-
dinates (RCs) or collective variables. The dynamics is then
described as diffusion on a low-dimensional free energy land-
scape, with both diffusion coefficient and free energy being
functions of the coordinates. Examples of such dimensionality
reductions can be found in a wide range of problems from
many different scientific fields: in molecular dynamics simu-
lations,12,15,17–21 order parameters in physics,11,22 physically
based RCs in single molecular experiments,23,24 biomarkers
in medicine,25 analysing the game of chess,26 to name a few.

The reduction of dimensionality from many degrees of
freedom to one (or a few) obviously leads to the loss of

a)s.krivov@leeds.ac.uk

information and making the choice of the proper RC becomes
the critical step. The optimal RC should absorb all the
important kinetics information contained in the other degrees
of freedom, so that they can be neglected. For example, the
optimal RC should correctly partition the whole configuration
space into subsets of conformations based on their dynamical
and energetic characteristics and preserve all consequential
aspects of the dynamics. By contrast, a poor RC does not take
the kinetics into account and may inaccurately capture the
populations, mixing them together, which is reflected in lower
free energy barriers height, masking of intermediate states, or
causing the dynamics to be subdiffusive.11,27,28

In early applications, RCs were selected based on physical
intuition, e.g., number of native contacts, root mean square
deviation (rmsd), and radius of gyration, when applied to
analysing protein folding trajectories. They were selected
like order-parameters, which satisfactory separate the two
states — native and denatured. Despite their physical nature
and simplicity of calculation, such coordinates are usually
not optimal. They satisfactorily partition the configuration
space into major free energy minima; however, they do not
accurately describe important regions such as transition states
and intermediate states.11 Other popular methods for selection
of RC include various variants of principle component analysis
(PCA),21,29,30 diffusion maps,31–33 Isomap,34 sketch-map,20

and full correlation analysis;35 see also recent reviews.36–38

Systematic methods to determine optimal RCs have only
started to be developed recently.36 The folding probability
pfold (or committor) is often considered to be an ideal RC
to describe equilibrium transition dynamics between any two
states.12,18,28,39–48 The committor equals the probability for
the trajectory to reach one state (e.g., the native state in the
analysis of protein folding) before it reaches another (e.g., the
denatured state) starting from any given configuration. It has
been shown that the reaction rate computed based on Kramers

0021-9606/2015/143(18)/184108/12 143, 184108-1 © Author(s) 2015
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equation using the FEP and diffusion coefficient as functions
of this coordinate is exact.28,49,50

The determination of the pfold coordinate is not
straightforward. It can be easily constructed from an accurate
MSM; however, the determination of such MSMs, which
accurately describe the transition state region, is similarly
difficult.28 A number of variational approaches have been
suggested to determine the coordinate, without explicitly
constructing the MSM.12,28,43,48 To this end, a functional
form for the RC containing many parameters is suggested.
For example, for protein folding, one can take a weighted
sum of native and non-native contacts.12,13,27 Then, one
numerically optimizes the weights,12 or the cutoff distances
for contacts13,27 by optimizing a particular functional, so
that in the end, the putative reaction coordinate accurately
approximates pfold. The following optimization functionals
have been suggested: the probability of being on a transition
path,12,45 the likelihood functional,43 the cut profiles,13,27,48

and the total square displacement (TSD).28

While these approaches are very promising, they have a
common problem that it is difficult to suggest an obviously
good functional form for putative RCs. With a poorly chosen
functional form, the resulting RC can be sub-optimal. In
our previous work, we have been able to construct a RC,
which closely approximates pfold only around the transition
states.13,16 While the transition states are the most important
parts of the FEP for the dynamics, it would be useful to be
able to determine the coordinate that accurately approximates
pfold over the entire range.

Usually the functional form is taken as a linear
combination of basis functions.12,13,25,43,48 In particular, this
allows one to solve the optimization problem analytically.25,48

However, such a representation significantly restricts the
flexibility of the RC and, as mentioned above, can lead to
sub-optimal results. As a way to solve a similar problem in the
framework of time-structure based independent components
analysis, Schwantes and Pande suggested the use of the kernel
trick to arrive at non-linear solutions.51 Here, we propose
another solution to this problem. We describe an approach
which allows one to optimize the RC without specifying its
functional form at all.

The paper is organized as follows. We start with some
theoretical background on the description of the dynamics
with a MSM, the pfold coordinate, and eigenvectors. The
second left eigenvector can be used to approximate the pfold

coordinate in two state systems. Then, we present a variational
principle which can be used to determine pfold and left
eigenvectors without constructing a MSM. The general idea
behind functional form free reaction coordinate optimization
is described. It is followed by a detailed description of the
practical implementation of the approach for the determination
of pfold and the second left eigenvector. The performance of
the approach is illustrated on a few model systems.

II. THEORY

We follow the notation and formalism from Ref. 28.
We assume that the dynamics of a system of interest can
be described as an equilibrium stochastic Markov process

in multidimensional configuration space X⃗ , sampled with
time interval ∆t. In particular, the system trajectory can be
represented as X⃗(k∆t). For molecular dynamics simulations,
where the dynamics at small time intervals is deterministic
rather than stochastic, we assume that the sampling interval
is sufficiently large, so that the system forgets its history
and can be approximated as equilibrium Markov process in
configuration space. We also assume that the configuration
space of the system X⃗ has been discretized and each state is
denoted by integer index i. In this case, the time evolution of
Pi(t), the probability distribution for system to be in state i,
can be described as

Pi(t + ∆t) =

j

Pj i(∆t)Pj(t), (1)

where Pj i(∆t) is the probability of transition from state i to j
after time interval ∆t. The equilibrium probability distribution
is defined as

peq
i =

j

Pi j(∆t)peq
j . (2)

Given a long equilibrium trajectory generated by the Markov
process (Eq. (1)), one can compute the number of transitions
n j i(∆t) from state i to state j. The number of times state i has
been visited,

ni =

j

n j i(∆t) =

j

ni j(∆t), (3)

which is proportional to peq
i . Based on ni and n j i(∆t),

the elements of the transition probability matrix P can be
estimated as28

Pj i(∆t) = n j i(∆t)
ni

. (4)

Given a MSM, pfold between any two boundary nodes A
and B can be determined by solving the following system of
linear equations:52

pfold
i =


j

Pj ip
fold
j , pfold

A
= 0, pfold

B = 1. (5)

In the case when boundary nodes are not known,
approximation of pfold by eigenvectors might be more
convenient since one does not have to pick up the nodes A and
B which should be on different sides of the transition state.
Berezhkovskii and Szabo53 have shown that for a system with
two states and a large free energy barrier, the pfold coordinate
can be approximated around the transition state as

pfold
i ≈ a( v2, i

v1, i
+ b), (6)

where v1, i and v2, i are the components of the first (⃗v1) and
the second (⃗v2) right eigenvectors of the transition matrix P,
respectively. The equation for the right kth eigenvector v⃗k is

λkvk, i =

j

Pi jvk, j, (7)

where λk is the kth highest eigenvalue of the transition matrix
P. The first eigenvalue λ1 is equal to 1 and the first eigenvector
is equal to the vector of equilibrium probabilities, v1, i = peq

i
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(Eq. (2)). The equation for the left kth eigenvector u⃗k can be
written as

λkuk, i =

j

Pj iuk, j . (8)

For equilibrium dynamics with detailed balance Pi jp
eq
j

= Pj ip
eq
i , the left and right eigenvectors are related as

uk, j =
vk, j

peq
j

=
vk, j

v1, j
,

which means, in particular, that u1, j = 1 and

pfold
j ≈ a(u2, j + b), (9)

where a and b are unimportant constants, i.e., the folding
probability is approximated by the second left eigenvector u⃗2.

A. Variational approach

Both the left eigenvectors and the pfold coordinate for the
Markov process can also be obtained by minimizing the TSD
of an equilibrium trajectory projected on a coordinate. Namely,
let xi be a value of a coordinate of state i after projection. Then,
the TSD functional computed over an equilibrium trajectory

i, j

ni j(∆t)(xi − x j)2 (10)

attains minimum, under specific constraints, when x equals
pfold or the left eigenvectors.

Obviously, minimization of the TSD without constraints
leads to the trivial solution where all xi are the same and the
total TSD is zero. If one fixes the position of two boundary
states, for example, xA = 0 and xB = 1, then the minimum of
Eq. (10) is attained when xi = pfold

i .28 Equating the derivative
of the TSD with respect to xm to 0,

d
dxm


i, j

ni j(∆t)(xi − x j)2 = 0, (11)

one obtains

nmxm =

j

n jm(∆t)x j,

which after division by nm and together with Eq. (4) reduces
to Eq. (5).

To obtain the left eigenvectors of the transition matrix,
one minimizes the TSD, while keeping the total square value
of the coordinate normalized

i

nix2
i = 1. (12)

It that case, due to the constraint (Eq. (12)), Eq. (10) is
simplified to

min(2 − 2

i, j

ni j(∆t)xix j). (13)

Using Lagrange multipliers to find the extremum of (half of)
Eq. (13),

d
dxm

[1 −

i, j

ni j(∆t)xix j + λ

i

nix2
i ] = 0, (14)

one obtains 
j

n jm(∆t)x j = λnmxm, (15)

which after division by nm simplifies to Eq. (8). Thus, the
constrained optimum is attained when xm is equal to a left
eigenvector of matrix P.

The variational principles can be used to determine the
pfold and the left eigenvector coordinates without explicitly
constructing the MSM, since the TSD and the constraints
can be computed directly from a reaction coordinate time-
series x(k∆t). In that case, the pfold function is a function
of configuration space pfold(X⃗), rather than a function of
state pfold

i . Analogously, the left eigenvectors become the left
eigenfunction; however, for simplicity, we still refer to them
as eigenvectors. From Eq. (10), it follows that to obtain the
pfold coordinate, one minimizes

min

i, j

ni j(∆t)(xi − x j)2 = min

k

[x(∆t + k∆t) − x(k∆t)]2

(16)

under the constraints that xk ∈A = 0 and xk ∈B = 1, where k ∈ A
and k ∈ B denote the points x(k∆t) that belong to basins A
and B, respectively.

From Eq. (13), it follows that to determine the left
eigenvectors, one maximizes

max

i, j

ni j(∆t)xix j = max

k

x(∆t + k∆t)x(k∆t) (17)

under constraint 
i

nix2
i =

k

x2(k∆t) = 1. (18)

To implement such a variational principle in practice, one
needs to explicitly define the RC. To this end, one introduces
a functional form R(X⃗ , α⃗) for the RC, where X⃗ are the
coordinates of the configuration space and α⃗ is a vector of
parameters. In other words, for every snapshot, the functional
R(X⃗(k∆t), α⃗) projects the multidimensional trajectory X⃗(k∆t)
onto reaction coordinate x(k∆t),

x(k∆t) = R(X⃗(k∆t), α⃗). (19)

Then, the parameters αi of the functional form are numerically
optimized to minimize the functionals (Eq. (16) or (17)) under
the corresponding constraints.13,27,48 In the case when the
functional form is a linear combination of basis functions,

R(X⃗(k∆t), α⃗) =

i

αi f i(X⃗(k∆t)), (20)

the optima can be found analytically.25,48 For the pfold

coordinate, one solves the systems of linear equations

Aα⃗ = b. (21)

For the left eigenvectors, one solves the generalized eigenvalue
problem

Cα⃗ = λDα⃗. (22)

In particular, to approximate the second left eigenvector u⃗2,
one takes the second generalized eigenvector α⃗. The derivation
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of the equations and the expressions for A, C, D, and b are
presented in the Appendix.

Once the optimal linear coefficients αi have been found,
the multidimensional trajectory X⃗(k∆t) is projected onto an
optimal coordinate by computing x(k∆t) for every snapshot
(Eqs. (19) and (20)).

Analogous variational approaches for finding the left
eigenvectors have been suggested by other groups.51,54

However, there is an important conceptual difference. In
these works, the eigenvectors are evaluated with the aim
to approximate the transfer operator, which describes the
dynamics without explicitly constructing a MSM. We consider
the left eigenvectors (in particular, the second eigenvector) as
an approximation to the optimal RC x. Once it has been
found, the dynamics of the system is described by the FEP
F(x) together with the diffusion coefficient D(x) constructed
along x.13,28,55

The requirement of the functional form to be a linear
combination of basis functions significantly restricts the
flexibility of the RC and may lead to suboptimal solutions.
We describe a simple idea which allows one to optimize the
RC without selecting any specific functional form.

III. METHOD

A. General idea

In principle, any continuous function of coordinates
(X1, . . . ,Xn) can be approximated with arbitrary precision
in a compact region of configuration space by a polynomial
(e.g., a finite Taylor series),

R(X1, . . . ,Xn) =


i1, ..., in

αi1, ..., inX i1
1 . . . X in

n . (23)

Since the function is linear with respect to the Taylor
coefficients αi1, ..., in, the optimal values of the coefficients
which provide the extremum to quadratic functionals (16)
and (17) under corresponding constraints can be found
analytically. However, the dimensionality of the problem
(i.e., the number of coefficients required) is huge, which
makes such a straightforward approach unrealistic. Instead,
we suggest to optimize this function iteratively. At each
iteration, one considers only a subset of the Taylor terms and
coefficients.

One can imagine different schemes of iterative optimiza-
tion. We found it useful to take the current putative RC as one
of the variables. Namely, at each iteration, we optimize the
coordinate in a recursive way R′ = f (R,Xm), where R is the
RC obtained on the previous step, Xm is a randomly selected
coordinate of the configuration space X⃗ , and f is some fixed
polynomial of small degree, whose optimum can be found
efficiently by solving corresponding Eqs. (21) and (22). Here,
we consider the polynomial

f (x, y) =
n−1
i=0

n−1
j=0

ai jxi y j, (24)

where (in our case) x corresponds to reaction coordinate R
and y corresponds to Xm. After finding the extremum of
the quadratic functional, i.e., finding the optimal values for

ai j, the RC time series is updated R(k∆t) = R′(k∆t) and the
procedure is repeated with updated R(k∆t).

The polynomial f (x, y) has n2 coefficients and,
correspondingly, matrices A, C, and D (Eqs. (21) and (22))
have n4 elements, which means that the computational cost
for each iteration scales with n as O(n4). An optimal value of
n is a compromise between the approximation power, which
grows with n and the computational cost. Here, we used n = 4.

Such a recursive approach to iterative optimization of
RC has a rational explanation. First, a contribution from each
basis function to the RC (Eq. (20)) may depend on where
the system is between the two free energy basins. Consider,
for example, the number of native contacts coordinate for the
description of protein folding dynamics. One may argue that
formation of some native contacts during the early stages of
the folding process may lead to the formation of off-pathway
intermediates and actually hinder the folding process. Thus,
the contribution from each native contact may depend on
the overall progress of the system during folding, and the
best way to measure the progress of folding is the RC itself.
Second, if the function f (R,Xm) is a low-degree polynomial,
then as long as it contains powers of R higher than linear,
it is a simple way to implicitly populate R with Taylor
monomials (X i1

1 . . . X in
n ) of arbitrary degree. An alternative is

to iteratively introduce different monomials in an explicit way
by considering f (R,X i1

1 . . . X in
n ).

One can also consider recursive transformations with
a polynomial of single variable only R′ = g(R), where
g(x) = n−1

i=0 aixi. Since the polynomial depends on a single
variable, one can make it of high degree (20 here) to better
approximate the pfold coordinate. Such iterative optimization
can be considered as complimentary to the above. It does
not use additional information, contained in variables Xm;
however, due to the higher degree of the polynomial, it has
a higher degree of flexibility in transforming the putative
coordinate R. We found alternating use of these two recursive
transformations a good optimization strategy.

B. Practical implementation — The pfold coordinate

Here, we describe a particular implementation of the
general idea presented above for the determination of the
pfold reaction coordinate. Namely, given a long equilibrium
multidimensional trajectory X⃗(k∆t) and two boundary states
A and B, we determine the value of pfold for every snapshot
of the trajectory, i.e., R(k∆t) = pfold(X⃗(k∆t)).

1. Initialization

The two states A and B can be specified by providing an
initial seed RC time series rc0(k∆t) and two thresholds, so
that all points with rc0(k∆t) < rcA or rc0(k∆t) > rcB belong
to state A or B, respectively, and are assigned R(k∆t ∈ A)
= xA = 0 or R(k∆t ∈ B) = xB = 1. These boundary points are
not modified during the iterative optimization procedure. The
RC time series is initialized by re-scaling the seed RC as

R(k∆t) = rc0(k∆t) − rcA
rcB − rcA

. (25)
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2. Iterations

At every iteration, the putative reaction coordinate
R(k∆t) is optimized by using information contained in
a single variable time-series y(k∆t) obtained from the
multidimensional trajectory X⃗(k∆t). As y(k∆t), one can
take a randomly selected component of the multidimensional
trajectory y(k∆t) = Xm(k∆t). For analysis of protein folding
dynamics, one would rather take an internal degree of
freedom, which is invariant to translations and rotations.
In particular, one can use the distance time-series rml(k∆t)
between a randomly selected pair of atoms m and l or time-
series cos(φ(k∆t)) or sin(φ(k∆t)), where φ is a dihedral angle.

The putative coordinate is improved by finding the
minimum of the TSD,

min

k

[R′(k∆t + ∆t) − R′(k∆t)]2, (26)

where R′(k∆t) = f (R(k∆t), y(k∆t)) is represented by the poly-
nomial in Eq. (24). The optimal coefficients of the polynomial
are found by solving Eq. (21). It may happen that during the
initial stage of optimization for some snapshots, one may have
R(k∆t) < 0 or R(k∆t) > 1. It should not pose a problem as
eventually all the values of R(k∆t) will be in the range [0,1].

3. Termination criteria

To stop the iterative improvement, a number of criteria
can be suggested. They are based on the observation that
if the putative coordinate R is equal to the pfold coordinate,
then the partition function ZC,1(R,∆t) of the generalized cut
profile FC,1(R,∆t), computed using transition paths, is position
and sampling interval independent and equals the number of
transition from A to B,28

ZC,1(R,∆t) = NAB. (27)

The partition function ZC,1(x,∆t) (at point x) is calculated as
half the sum of the distances for those trajectory steps that go
through the point x,28

ZC,1(x,∆t) = 1
2

′
k

|x(k∆t) − x(k∆t + ∆t)|, (28)

where the prime sign over the sum indicates here that the sum
is taken over such k and x is between x(k∆t) and x(k∆t + ∆t).

For example, one can stop optimization, when the mean
deviation of ZC,1(R,∆t) from NAB reaches a minimum. It is
the most stringent criterion and can also be used for testing
whether a putative RC is indeed optimal (which is discussed
in Subsection III B 4).

To avoid computation of the cut profile, one can integrate
ZC,1(R,∆t) along R and obtain another criterion28 1

0
ZC,1(R,∆t)dR =

1
2


k

[R(k∆t + ∆t) − R(k∆t)]2 = NAB,

(29)

namely, to stop iterations when half the TSD computed along
the trajectory is less than or equal to the number NAB of
transitions from one state to the other. In the regime of very
good sampling, when statistical errors are small and there is

no over-fitting, the two criteria are equivalent. The minimum
of the TSD is attained when the RC equals the pfold coordinate
(Eq. (16)).

The optimization can also be terminated after a predefined
number of iterations. That can be useful if the theoretical lower
bound of the TSD (Eq. (29)) cannot be reached because of
statistical fluctuations.

4. Testing reaction coordinate optimality

Whether a putative coordinate is optimal (i.e., whether it
accurately approximates pfold) can be tested by using a recently
suggested criterion.28 It states that for such a coordinate, the
cut-based profiles

FC,1(R,∆t) = −kBT ln ZC,1(R,∆t) (30)

computed from an ensemble of transition path segments are
position R and sampling interval ∆t independent.28 Here, the
time interval ∆t = 1,2,4, . . . is measured in integer numbers
of the trajectory steps. Constancy of the profiles FC,1(R,∆t)
implies also that the mean first passage time (mfpt) computed
using Kramer’s equation for diffusion over FEP F(R) with
position dependent diffusion coefficient D(R) is equal to the
mfpt computed directly from the trajectories, i.e., it means
that the FEP accurately describes the kinetics.28 If the profile
FC,1(R,∆t) is getting higher with increasing ∆t, it means that
consecutive displacements are negatively correlated and the
dynamics is sub-diffusive.28

The criterion is implemented in the fep1d.py script56 and
works briefly as follows. To analyze an arbitrary coordinate
(z), the coordinate is first transformed to pfold(z). To this
end, the original coordinate time-series is discretized and
a Markov state model is constructed by computing the
transition matrix with sampling interval∆t = 1 (Eq. (4)). Thus,
the pfold(z) coordinate is determined (Eq. (5)) and denoted
as pfoldMSM(z). Then, profiles FC,1(pfoldMSM(z),∆t) are
computed along the pfoldMSM(z) coordinate using transition
path segments for a sequence of sampling intervals ∆t
= 1,2, . . . ,216. FC,1(pfoldMSM(z),∆t) computed for ∆t = 1
is position independent by construction. For the optimal
coordinate, all constructed FC,1(pfoldMSM(z),∆t) should be
constant and equal to FC,1(pfoldMSM(z),∆t = 1). Below we
use the fep1d.py script for transformations of RCs to more
convenient ones as well as for construction of profiles and
testing RC optimality.

C. Practical implementation — The left eigenvectors

Here, we describe a particular implementation of the
approach for the determination of the left eigenvectors.
Namely, given a long equilibrium multidimensional trajectory
X⃗(k∆t), we find the projection of the trajectory on the left
eigenvector with the second highest eigenvalue (u⃗2), i.e., the
value of u2(k∆t) for every snapshot of trajectory.

1. Initialization

As a seed coordinate, one can take a randomly
selected component of the multidimensional trajectory R(k∆t)
= y(k∆t).
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2. Iterations

At every iteration, the putative second left eigenvector is
optimized by using information contained in a single variable
time-series y(k∆t) obtained from the multidimensional
trajectory X⃗(k∆t). The putative eigenvector is updated by
finding the maximum of

max

k

R′(k∆t + ∆t)R′(k∆t) (31)

under the constraint 
k

R′(k∆t)2 = 1, (32)

where R′(k∆t) = f (R(k∆t), y(k∆t)) is represented by the
polynomial in Eq. (24). The optimal parameters αi of the
polynomial are found by solving the generalized eigenvalue
problem Eq. (22). Namely, one is interested in the eigenvector
αi, corresponding to the second highest eigenvalue.

3. Termination criterion

There is no criterion analogous to that for the pfold

coordinate above. The optimization was terminated after a
specified number of iterations.

IV. ILLUSTRATIVE EXAMPLES

To illustrate the approach, we apply the method to
two model systems — a low dimensional and a high
dimensional one. We use them to discuss two types of
statistical errors. The first one is independent of the underlying
dimensionality of the configuration space and presents even
in one-dimensional systems. This is due to limited sampling
of the resulting one-dimensional optimal RC. In particular,
limited sampling affects the accuracy of the determined FEPs,
and consequently, the optimality criterion, i.e., FC,1(x) profile
along the coordinate x = pfold, is not exactly constant but
fluctuates around the true value. These errors should decrease
with increasing total number of transition events.

The second type is associated with the infamous curse of
dimensionality. With increasing dimensionality, the volume
of the configuration space grows exponentially and one may
not expect good coverage of all the configuration spaces with
a trajectory of realistic length. One outcome of such poor
coverage could be over-fitting during optimization.28 A longer
trajectory will cover more parts of the configuration space;
however, to cover the entire space, the trajectory should be of
unrealistically long length.

A. A low dimensional model system

Consider a system, where two states A and B are
connected by two parallel one-dimensional pathways.28 The
configuration space of the system is described by index
i = 1 or i = 2 which denotes the pathway and by continuous
variable x, denoting the position along the pathway 0 < x < 1.
The corresponding terminal nodes of the pathways are
considered to be identical: (x = 0, i = 1) = (x = 0, i = 2) = A

and (x = 1, i = 1) = (x = 1, i = 2) = B. Each pathway has a
barrier described by the potential

U(i, x) = 2 exp[−9(3x − i)2].
The trajectory was generated by simulating Metropolis
Monte Carlo (MC) dynamics for 108 steps at dimensionless
temperature kBT = 1.0 with diffusion coefficient D(x)
= 0.0001. The coordinates were saved every 10 steps, resulting
in the trajectory of 107 steps with 1294 transitions in both
directions. It is clear that the trajectory covers the entire
configuration space, so there are no statistical errors of the
second type.

As a seed (sub-optimal) reaction coordinate R, we take
position x. To test the optimality of the seed RC, we apply
the criterion described in Sec. III; namely, we construct
cut profiles FC,1(x,∆t) at different sampling intervals ∆t
= 1,2, . . . ,216 and check whether they are constant. Figure 1(a)
shows that the profile changes significantly with respect to
x and ∆t. In particular, it changes from FC,1(x) ≈ −6.85 at
∆t = 1 to FC,1(x) ≈ −6.46 at ∆t = 65 536, i.e., it suggests
the kinetics which are faster by factor of exp(0.4) ≈ 1.5
compared to the actual kinetics and it confirms that the seed
RC is sub-optimal.

The seed coordinate is iteratively optimized using the
described approach. Briefly, a new R′ is sought in the form
R′ = f (R,Xm) given by the polynomial in Eq. (24). As the
coordinate Xm, we randomly select one of the variables of
the configuration space: either i or x. States A and B were
defined using the seed coordinate with thresholds rcA = 0.01
and rcB = 0.99. The coefficients αi of the polynomial are
found by minimizing the TSD,

min

k

(R′(∆t + k∆t) − R′(k∆t))2,

for details see the Appendix (Eqs. (A1) and (A2)). The RC
time series is updated R(k∆t) = R′(k∆t) and the procedure is
repeated.

After 20 iterations, the termination criteria (Eq. (29))
were satisfied: the TSD/2 has dropped to 640.331 (NAB

= 647). Continuing optimization for further 1000 iterations
only lowered the TSD/2 to 640.306, indicating that long
optimization without a stopping criterion does not lead to
over-fitting. Figure 1(b) shows the application of the optimality
criterion to the optimized coordinate. As one can see that the
profiles are almost constant with respect to x and ∆t, meaning
that the optimized coordinate closely approximates pfold.

B. A high dimensional model system

Here, we consider a model system with high dimensional
configuration space (X⃗), which cannot be covered by a
trajectory of realistic length. In order to be able to verify
the final optimized coordinate, we chose a system for which
the optimal coordinate is known. Specifically, we consider
isotropic diffusion in n-dimensional space (here n = 50) with
radially symmetric potential energy U(r). An optimal RC for
the diffusion towards the center for such systems is radius
r =
n

i=1 X2
i with the FEP constructed along r being
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FIG. 1. The optimality criterion applied to the seed (panel (a)) and optimized (panel (b)) RCs. (a) FC,1 gets higher with ∆t increasing, indicating that the seed
coordinate is sub-optimal. (b) FC,1 are approximately constant, indicating that the optimized coordinate closely approximates pfold.

F(r) = U(r) − (n − 1)kT ln(r).
Potential energy along r is given by

U(r) = 4 exp[−(r − 4)2] + 4 exp[−(r − 6)2] + 49kT ln(r),
where an infinite wall is placed at r = 10. The potential energy
is chosen so that the FEP has two large basins with a small
intermediate. The trajectory was generated by simulating MC
dynamics for 106 steps with a diffusion coefficient along each
axis D(Xi) = 1. It is clear that such a trajectory cannot cover
the configuration space densely enough; since just to visit
all possible regions with different combinations of coordinate
signs, one needs 250 ∼ 1015 points.

As a seed sub-optimal reaction coordinate, ξ =


i |Xi |
is taken. To visualize the difference between F(r) and F(ξ)
(i.e., the FEPs as functions of the optimal and suboptimal
RCs), we proceed as follows. ξ and r are first transformed
to ZA(ξ) and ZA(r) coordinates, which measure the relative
partition function of the coordinate segment between −∞ and
ξ or between −∞ and r , respectively,

ZA(x) =
 x

−∞
ZH(w)dw/

 ∞

−∞
ZH(w)dw.

ZA is invariant to the coordinate transformation, meaning that
transition states and intermediate states should have the same
positions along ZA and can be used to compare different
coordinates.27 Then, we construct cut based FEPs FC(ZA(ξ))
and FC(ZA(r)) along the transformed RCs. A cut profile FC(x)
along an arbitrary coordinate x is calculated as

FC(x)/kBT = − ln(ZC(x)), (33)

where ZC(x) is the corresponding partition function defined
as half the total number of transitions through point x and
is also invariant to reaction coordinate transformation.27 This
means that if ξ and r are equivalent (e.g., are connected by
a monotonous transformation ξ = f (r)), the profiles should
coincide FC(ZA(ξ)) = FC(ZA(r)). Figure 2(a) shows that
FC(ZA(ξ)) (green line) is lower than FC(ZA(r)) (red line).
Note that the positions of the transition states along ZA

coincide. Figure 2(c) shows the application of the optimality
criterion to the seed RC. The profiles FC,1(ξ,∆t) increase with
the time interval changing from ∆t = 1 to ∆t = 216. Though
the difference between the first and the last profiles as well as
the difference between FC(ZA(ξ)) and FC(ZA(r)) (Figure 2(a))

is only around 0.05kBT , we show that the ξ coordinate can be
further improved.

The seed coordinate is iteratively optimized using the
described approach. To this end, a new R′ is sought in the
form R′ = f (R,Xm) given by the polynomial in Eq. (24) by
minimizing Eq. (26) (see the Appendix). As the coordinate
Xm, we randomly select one of the variables xi of configuration
space. The boundary nodes are defined by ξ < ξA = 10.9 and
ξ > ξB = 48.5, which are the positions of the minima on FC(ξ)
(Figure 2(b)). The coordinate is iteratively optimized until the
TSD-based stopping criterion (Eq. (29)) is satisfied. After
9100 iterations, the termination criterion was satisfied: the
TSD/2 has dropped to 988.9 (NAB = 989). The optimized
reaction coordinate is denoted as Ropt. The cut profile
FC(ZA(Ropt)) constructed along Ropt transformed to the ZA

coordinate approximates FC(ZA(r)) very closely (Figure 2(a)).
Figure 2(d) shows the application of the optimality criterion
to Ropt. The cut profiles FC,1(Ropt,∆t) just fluctuate around the
limiting value, meaning that Ropt closely approximates pfold as
well as the analytical optimal coordinate r . Continuation of
the optimization to 100 000 iterations in total insignificantly
decreased the TSD/2 to 986.5. The cut profiles for both
optimized coordinates (Figure 2(a) — pink and blue lines) are
virtually indistinguishable.

The results allow us to emphasize the following. Even
though the difference between the profiles along the optimal
r and seed (sub-optimal) ξ coordinates is very small
(Figure 2(a)), the proposed approach was able to improve
the seed coordinate further and makes it the optimal one
(Figures 2(c) and 2(d)), meaning that the approach is very
sensitive. Since further optimization to 100 000 iterations in
total does not lead to over-optimization or over-fitting, it
means that the approach is robust.

To further test the robustness of the algorithm and the
obtained results, the following experiments were performed.
Five more trajectories of the same length with different random
seed values were simulated. The results of their optimization
and analysis are very similar to those above, with the only
difference being that for some of the trajectories, the TSD/2
could not reach the lower bound of NAB and the optimization
had to be terminated after a specified number of iterations. We
remind the reader that this is due to statistical fluctuations; the
lower bound of TSD/2 is exactly equal to NAB only in the limit
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FIG. 2. (a) Cut based FEPs FC as functions of the following RCs: analytical optimal r =


iX
2
i (red line); sub-optimal ξ =


i |Xi | (green line); putative

optimal coordinate Ropt optimized until the TSD based termination criterion has been satisfied (blue line) and that optimized for 100 000 iterations (pink line).
The coordinates are rescaled to the ZA coordinate to facilitate comparison. The plot shows the profiles around the transition states, while the inset shows the
entire landscape. (b) Cut based FEP FC(ξ) along the seed coordinate. (c) Optimality criterion applied to the seed reaction coordinate ξ. (d) Optimality criterion
applied to the optimized coordinate Ropt (blue line on panel (a)).

of infinite statistics. Additionally, instead of using Eq. (25),
the seed coordinate was initialized to a constant value of 0.5
(the boundary nodes have corresponding values of 0 or 1).
The results were the same as above.

C. Over-fitting of the under-sampled systems

Here, we illustrate the performance of the algorithm in
the case where a system has not been sufficiently sampled.
We consider the first 10 000 steps of the trajectory of the
high-dimensional system from the previous example. After
20 000 optimization steps, the TSD/2 has converged to 1.294,
while the number of transitions is 11, which is an indication
of severe over-fitting. The optimality criterion (not shown)
confirms this by showing that the cut profiles decrease with
increasing sampling interval.

The time-series of the determined optimal coordinate (for
the first 10 000 steps) show interesting behavior (Figure 3(a)):
it either equals to 0 or 1, or linearly interpolates between
the two, so that the snapshots are placed equidistantly.
Such an “optimal” coordinate clearly provides an inaccurate
description of the dynamics. During each trajectory segment,
the system either stays at a boundary or moves with a constant
velocity to the opposite boundary. The time-series of the
optimal coordinate, determined from the entire trajectory
(Figure 3(b)), shows expected behavior, corresponding to
stochastic motion back and forth along the coordinate.

This result due to over-fitting can be explained as follows.
To find the optimal coordinate, we minimize


k[x(k∆t

+ ∆t) − x(k∆t)]2, under the corresponding constraint. During
every iteration, we select the optimal parameters of the
polynomial, which update x(k∆t), so that the functional yields
a smaller value. When a trajectory is relatively short and there
are not enough points to densely populate the configuration
space, one can assume that all the points of the trajectory
X⃗(k∆t) have very different coordinates, so that a polynomial
even with a small degree can be used to separate them
significantly. In other words, one can assume that during
optimization of under-sampled configuration space, one can
change the position of every point x(k∆t) independently. In
this case, the minimum of the functional can be easily found.
Each segment of the trajectory which starts and ends at the
boundary points can be considered independently because
positions of the boundary points are fixed to 0 and 1. If
a trajectory segment starts and ends at 0, then the optimal
positions of all its points are x(k∆t) = 0; if a trajectory segment
starts and ends at 1, then all the x(k∆t) = 1; if a trajectory
segment starts and ends at different boundary points, then all
the intermediate x(k∆t) are positioned equidistantly between
0 and 1.

If, on the contrary, the configuration space has been well
sampled, i.e., the neighboring regions of most points are
densely populated by other points, which are transformed by
the polynomials in a similar way, then one cannot consider
these points as independent. In other words, one seeks an
optimal position not for every single point, but rather for
clusters of points, i.e., one optimizes the positions of an
implicitly constructed MSM. The effective size of the clusters
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FIG. 3. The time-series of the determined optimal coordinates. (a) Optimization using the first 10 000 steps of the trajectory, which leads to over-fitting. (b)
Optimization using the entire trajectory.

is controlled implicitly by the flexibility of the polynomial.
The higher degree and more variables the polynomial has,
the more independent nearby points shall be. That is why
in the proposed iterative optimization method, only a two
dimensional subspace of the entire configuration space is
considered at every iteration, namely, that consisting of R and
y .

D. Iterative optimization of the left eigenvectors

In this section, we illustrate the optimization procedure
of finding the second highest left eigenvector. We apply it to
the MC trajectory from the high-dimensional model system
considered above. We remind the reader that for this type
of optimization, there is no need to choose a specific seed
coordinate that defines or separates the two boundary states;
for example, any variable Xi of configuration space can serve
as initial R coordinate.

The optimization iteratively increased the second
eigenvalue. The optimized RC (the second eigenvector) is
denoted as u⃗2. After 600 iterations, the FEP along the
corresponding second eigenvector u⃗2, transformed to the
ZA coordinate, describes the free energy barrier of interest
(Figure 4(a)). However, the barrier of FC(ZA(u⃗2)) (green line)
is slightly lower than that of FC(ZA(r)) (red line). One may
expect that further optimization can make u⃗2 closer to r or
pfold and correspondingly make the barrier higher. However,
optimization for another 200 iterations, while increasing the
second eigenvalue, did not improve the free energy barrier and
made it even lower (Figure 4(a) — blue line). Fig. 4(b) shows
projections of the trajectory on both second eigenvectors. In
the time-series projected on u⃗2, optimized for 800 iterations,
one can see a high peak at around t = 1.138 · 105, which
is absent in the other time-series. It shows that during the
additional 200 iterations, the optimization procedure detected
a region of configuration space that has been visited very
briefly and only once. For the optimization procedure, this
means that this region has a high free energy barrier and a
high eigenvalue.

It points to the fact that such an eigenvector optimization
algorithm possesses quite a generic instability. The optimiza-
tion procedure tries to find the eigenvector corresponding to
the highest eigenvalue. However, the latter is not necessarily

the eigenvector of interest. For example, in analyzing a protein
folding simulation trajectory with many folding-unfolding
transitions and a single trans-cis transition of a dihedral
angle, the latter has a higher free energy barrier to which the
optimization procedure shall eventually converge. The case
considered here is that for a high dimensional system, many
parts of the configuration space are visited only once, so their
effective free energy barrier will be higher than the barrier of
interest, which has been sampled many times.

Summarizing the straightforward optimization of the left
eigenvectors for multidimensional systems is complicated
by an inherent instability, when the optimization at some
point runs away from the free energy barrier of interest. In
contrast, the optimization of the pfold coordinate is free of
such a shortcoming but it needs a seed coordinate for defining
boundary nodes A and B. Finding such a coordinate or defining
such nodes is not always straightforward. One possibility is to
use an initially optimized eigenvector as the seed coordinates
to start the pfold optimization.

V. CONCLUDING DISCUSSION

A popular approach to reaction coordinate optimization
is to select a functional form with many parameters
approximating the coordinate and to train it on the trajectories
using various criteria. In the end, one finds optimal values
of the parameters such that the functional form provides best
approximation to the pfold coordinate. A drawback of such an
approach is that it is not trivial to select a functional form that
can accurately approximate the optimal coordinate. A poorly
chosen functional form can lead to suboptimal results.

We have suggested a nonparametric or functional form
free approach which allows one to optimize the reaction coor-
dinate without selecting its functional form. Instead of find-
ing a function that approximates the optimal coordinate, the
approach determines the value of the coordinate for every
snapshot of the trajectory. In particular, given a long multidi-
mensional equilibrium trajectory X⃗(k∆t), the algorithm deter-
mines the value of the pfold coordinate for every snapshot
of the trajectory pfold(k∆t), i.e., it projects the multidimen-
sional trajectory onto the optimal coordinate. The approach
consists of recursive iterative optimization of the coordinate.
At every iteration, the coordinate is improved by considering
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FIG. 4. (a) Cut based FEPs FC as functions of the following RCs: analytical optimal r =


iX
2
i (red line); the second left eigenvector u⃗2 optimized for 600

iterations (green line) and for 800 iterations (blue). The coordinates were rescaled to the ZA coordinate to facilitate comparison. The plot shows the profiles
around the transition states, while the inset shows the entire landscape. (b) The time-series of the trajectory projected on the left eigenvectors (colored as on
panel (a)). The inset enlarges the part of the trajectory that contains the peak.

a small degree polynomial of two variables — the coordi-
nate itself and a randomly selected variable of configuration
space.

The approach was successfully tested on a simple one-
dimensional system and on a complex multidimensional
system, where complete sampling of the configuration space
is impractical. In the latter case, the approach demonstrated its
sensitivity and robustness. It has improved a seed sub-optimal
coordinate to the optimal one, even though the seed coordinate
was already quite good; the difference between the free energy
profiles constructed along the seed coordinate and the optimal
analytical coordinate is of just 0.05kT . Further optimization
for 100 000 iterations in total did not lead to over-fitting. The
optimality criterion confirmed that the determined coordinate
closely approximates pfold over the entire range, not just
around the transition states.

The application of a variant of the approach to find
the left eigenvectors to the high dimensional system has
shown that the problem of optimizing the left eigenvectors
possesses an inherent instability. The approach can find an
eigenvector with the highest eigenvalue, but this eigenvector is
not necessarily an eigenvector of interest. The left eigenvector
coordinate determined by the approach at the early stage of
optimization, however, can serve as seed coordinate to start
the pfold optimization, especially in cases where the boundary
nodes are not straightforward to define.

The next step is to apply the approach for rigorous
analysis of the dynamics from state of the art protein folding
simulations15,57 and dynamics in other types of Big Data.58
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APPENDIX: DERIVATION OF EQS. 21 AND 22

Here, we derive equations for the vector of coefficients
α⃗ that provide optimum to the optimization functionals
(Eqs. (16) and (17)) under different constrains. In the first
case, one minimizes (Eq. (16))

min

k

[x(∆t + k∆t) − x(k∆t)]2

under the constraint that the positions of the boundary states
are fixed, where x(k∆t) = i αi f i(X⃗(k∆t)) if the point does
not belong to the boundary states and x(k∆t) = 0 or x(k∆t) = 1
if the point belongs to state A or B, respectively.

The sum over k can be broken down into four sums:
k ∈ K1 when both points x(k∆t) and x(∆t + k∆t) do not
belong to the boundary states

k ∈K1

[

i

αi f i(X⃗(∆t + k∆t)) −

i

αi f i(X⃗(k∆t))]2,

k ∈ K2 when the other point belongs to the boundary state A
(xA = 0) 

k ∈K2

[

i

αi f i(X⃗(k∆t))]2,

k ∈ K3 when the other point belongs to the boundary state B
(xB = 1) 

k ∈K3

[1 −

i

αi f i(X⃗(k∆t))]2,

and k ∈ K4 when both points belong to the different boundary
states 

k ∈K4

[1 − 0]2.

Opening the brackets, the entire sum can be written as


i, j

αiα j


k ∈K1

[ f i(X⃗(∆t + k∆t)) − f i(X⃗(k∆t))][ f j(X⃗(∆t + k∆t)) − f j(X⃗(k∆t))] +

i, j

αiα j


k ∈K2

f i(X⃗(k∆t)) f j(X⃗(k∆t))

+

i, j

αiα j


k ∈K3

f i(X⃗(k∆t)) f j(X⃗(k∆t)) − 2

i

αi


k ∈K3

f i(X⃗(k∆t)) +

k ∈K3

1 +

k ∈K4

1 =

i, j

αiα jAi j − 2

i

αibi + c,

(A1)
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where the elements of matrix A and vector b are

Ai j =

k ∈K1

[ f i(X⃗(∆t + k∆t)) − f i(X⃗(k∆t))][ f j(X⃗(∆t + k∆t)) − f j(X⃗(k∆t))] +


k ∈K2+K3

f i(X⃗(k∆t)) f j(X⃗(k∆t)),

bi =

k ∈K3

f i(X⃗(k∆t)),

c =


k ∈K3+K4

1. (A2)

Taking the derivative of Eq. (A1) with respect to αm and
equating it to 0,

d
dαm

(

i, j

αiα jAi j − 2

i

αibi + c) = 0,

one obtains the system of linear equations for α coefficients
which provide the minimum of the quadratic functional
(Eq. (A1))

Aα⃗ = b.

For the eigenvalue problem, one maximizes (Eq. (17))
k

x(∆t + k∆t)x(k∆t)

=

k

[

i

αi f i(X⃗(∆t + k∆t))

j

α j f j(X⃗(k∆t))]

=

i, j

αiα j


k

f i(X⃗(∆t + k∆t)) f j(X⃗(k∆t))

=

i, j

αiα jCi j (A3)

under constraint (Eq. (18))
k

x(k∆t)x(k∆t) =

i, j

αiα j


k

f i(X⃗(k∆t)) f j(X⃗(k∆t))

=

i, j

αiα jDi j = 1, (A4)

where

Ci j =

k

f i(X⃗(∆t + k∆t)) f j(X⃗(k∆t)),

Di j =

k

f i(X⃗(k∆t)) f j(X⃗(k∆t)).

Using the Lagrange multipliers, one finds that the optimal
vector α⃗ is the solution of the generalized eigenvalue problem
Eq. (22)

Cα⃗ = λDα⃗.
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