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Introduction

The bacterial cell envelope is often enhanced by structures
that contribute to pathogen virulence, such as flagella, fi-
mbriae, and adhesins. Changes in the number or charac-
teristics of any of these cell surface appendages can lead
to altered bacterial behavior, such as attenuation or
increased virulence of pathogenic strains.

The bacterial flagellum is one appendage that is consid-
ered to be an important virulence factor for several
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Abstract

Aeromonas caviae is motile via a polar flagellum in liquid culture, with a lateral
flagella system used for swarming on solid surfaces. The polar flagellum also
has a role in cellular adherence and biofilm formation. The two subunits of the
polar flagellum, FlaA and FlaB, are posttranslationally modified by O-linked
glycosylation with pseudaminic acid on 6-8 serine and threonine residues
within the central region of these proteins. This modification is essential for the
formation of the flagellum. Aeromonas caviae possesses the simplest set of genes
required for bacterial glycosylation currently known, with the putative glycosyl-
transferase, Mafl, being described recently. Here, we investigated the role of the
AHAO0618 gene, which shares homology (37% at the amino acid level) with the
central region of a putative deglycosylation enzyme (HP0518) from the human
pathogen Helicobacter pylori, which also glycosylates its flagellin and is proposed
to be part of a flagellin deglycosylation pathway. Phenotypic analysis of an
AHAO0618 A. caviae mutant revealed increased swimming and swarming motility
compared to the wild-type strain but without any detectable effects on the gly-
cosylation status of the polar flagellins when analyzed by western blot analysis
or mass spectroscopy. Bioinformatic analysis of the protein AHA0618, demon-
strated homology to a family of 1,p-transpeptidases involved in cell wall biology
and peptidoglycan cross-linking (YkuD-like). Scanning electron microscopy
(SEM) and fluorescence microscopy analysis of the wild-type and AHA0618-
mutant A. cavige strains revealed the mutant to be subtly but significantly
shorter than wild-type cells; a phenomenon that could be recovered when either
AHAO0618 or H. pylori HP0518 were introduced. We can therefore conclude that
AHAO0618 does not affect A. caviae behavior by altering polar flagellin glycosyla-
tion levels but is likely to have a role in peptidoglycan processing at the bacte-
rial cell wall, consequently altering cell length and hence influencing motility.

pathogenic microorganisms. This complex nanomachine
not only permits the motility of a wide range of bacteria
but also contributes to colonization of human niches and
in some cases adhesion to target cells (Eaton et al. 1996;
Pratt and Kolter 1998; Rabaan et al. 2001; Giron et al.
2002; Tomich et al. 2002). Bacterial flagella are composed
of a helical filament made up of repeating subunits of
flagellin monomers that extend from the cell surface and
are attached, via the hook, to a rotating basal body span-
ning the cell envelope (Chevance and Hughes 2008). It is
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assembled by means of a dedicated Type III secretion sys-
tem that transports flagella structural proteins through a
central lumen before assembly at the distal tip (Evans
et al. 2014).

In recent years, it has been established that a number
of bacteria can posttranslationally modify their flagellin
protein subunits by the addition of sugars via the O-
glycosylation of serine or threonine residues (Zunk and
Kiefel 2014). These include pathogens such as Aeromonas
(Tabei et al. 2009), Helicobacter (Josenhans et al. 2002;
Schirm et al. 2003), and Campylobacter (Thibault et al.
2001), all of which glycosylate their flagella with nine car-
bon sugars (nonulosonic acids) of the sialic acid family
such as pseudaminic or legionaminic acid (Logan 2006;
Nothaft and Szymanski 2010; Zunk and Kiefel 2014). This
modification is considered essential for the formation of
the flagellum and therefore influences virulence in these
pathogenic species (Josenhans et al. 2002; Goon et al.
2003; Schirm et al. 2003; Tabei et al. 2009; Wilhelms
et al. 2012; Parker et al. 2014). However, the reasons why
some pathogenic bacteria glycosylate their flagella and
why others, such as Escherichia coli and Salmonella spp.,
do not, is currently unknown.

This study focuses on Aeromonas caviae, Sch3, a strain
that possesses the smallest set of glycosylation genes cur-
rently known for pseudaminic acid biosynthesis and its
transfer onto flagellins (Tabei et al. 2009; Parker et al.
2012, 2014). Aeromonas caviae is therefore an ideal model
organism for the study of bacterial glycosylation when
compared to the 20-50 genes found in the glycosylation
islands of Campylobacter species. Aeromonas species are
the cause of wound and enteric infections in humans (Par-
ker and Shaw 2011) and their flagella are important colo-
nization factors. Aeromonas caviae Sch3 is motile in liquid
environments through the use of a single polar flagellum
composed of two flagellin proteins, FlaA and FlaB, that
are O-glycosylated with 6-8 pseudaminic acid (Pse5A-
c7Ac) residues (Rabaan et al. 2001; Tabei et al. 2009).
These Pse5Ac7Ac residues are transferred onto flagellins in
the cytoplasm before their secretion through the flagellar
type III secretion system and polymerization into mature
filaments (Parker et al. 2014). It is likely that the enzymes
responsible for this modification are a novel family of
putative glycosyltransferases, the Maf (motility-associated
factor) proteins, which are encoded by genes located
within flagellar assembly or glycosylation islands in a range
of bacteria (Karlyshev et al. 2002; Schirm et al. 2003;
Canals et al. 2007; Parker et al. 2012). Aeromonas caviae
Sch3 possesses only one Maf protein, whereas some strains
of Campylobacter have seven maf genes whose expression
can be phase variable, potentially allowing Campylobacter
to decorate its flagellins with a variety of pseudaminic acid
or legionaminic acid derivatives during different stages of
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infection (Karlyshev et al. 2002; van Alphen et al. 2008).
In addition, mutational studies carried out by Howard
et al. (2009) demonstrated that altering the glycosylation
of the Campylobacter flagellum changes its surface charge,
subsequently adjusting bacterial behavior (such as ability
to form biofilms and autoagglutinate).

In addition to the activity of specific glycosyltransferas-
es, studies in Helicobacter pylori lead to the hypothesis
that the levels or pattern of glycosylation is modulated by
a possible glycosylation/deglycosylation homeostasis path-
way which might act via a putative deglycosylation
enzyme, HP0518 (Asakura et al. 2010). A H. pylori
HP0518 mutant was shown to be hypermotile and had
“superior colonization capabilities” (Asakura et al. 2010).
Furthermore, the H. pylori HP0518 mutant demonstrated
greater amounts of flagellin (FlaA) glycosylation and mass
spectrometry demonstrated increased levels of pseudami-
nic acid on the flagellin (Asakura et al. 2010). However,
recent reports from Sycuro et al. (2013) have indicated
that HP0518 (which they named Csd6) is also involved in
peptidoglycan processing at the cell surface and their
HPO0518 mutant displayed altered cell shape (a “straight
rod” phenotype). Additionally, purified recombinant
HP0518 (Csd6) demonstrated L,p-carboxypeptidase activ-
ity (Sycuro et al. 2013). In light of these studies, we set
out to examine the function of a putative HP0518 homo-
log, named AHAO0618, identified from an in-house anno-
tation of the unpublished A. caviae Sch3 draft genome
sequence (J. G. Shaw, unpubl. data). Our aim was to
investigate whether the AHA0618 gene product might be
involved in a possible deglycosylation step in the A. caviae
flagellin glycosylation pathway that acts to modulate
pseudaminic acid levels on its flagellin and regulate cellu-
lar behavior. Here, we show that mutation of AHA0618
affects A. caviae swimming and swarming motility, but
despite these behavioral changes, flagellin glycosylation
levels do not appear to be altered in this bacterium.

Materials and Methods

Bacterial strains, plasmids, and growth
conditions

Bacterial strains and plasmids used in this study are listed
in Table 1. Escherichia coli strains were grown in Luria—
Bertani (LB) Miller broth and on LB Miller agar, while
Aeromonas strains were grown in brain heart infusion
broth (BHIB) or on Columbia blood agar (Oxoid, Basing-
stoke, UK). Growth of E. coli and Aeromonas strains was
typically carried out at 37°C. Ampicillin (50 ug/mL), nali-
dixic acid (50 pug/mL), kanamycin (50 pug/mL), gentamicin
(25 ug/mL), streptomycin (50 ug/mL), and chlorampheni-
col (25 ug/mL) were added when necessary.
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Table 1. Strains and plasmids used in this study.

R. C. Lowry et al.

Strain or plasmid Genotype and use or description

Source or reference

Escherichia coli strains

DH5a F~ Phi80dlacZ AM15 A(lacZYA-argF)U169 deoR recAT endAT

Invitrogen

hsdR17(rK-mK+) phoA supE44 lambda-thi-1;

used for general cloning
S17-14pir
CC118 Jpir
argE(Am) recAT Jpirt
Aeromonas strains

A. caviae Sch3N Sch, spontaneous Nal’

hsdR pro recA, RP4-2 in chromosome, Km::Tn7 (Tc::Mu) /pir, Tp" Sm"
Aara leu)7697 araD139 AlacX74 galE galK phoA20 thi-1 rspE rpoB(Rf")

de Lorenzo et al. (1990)
Herrero et al. (1990)

Gryllos et al. (2001)

A. caviae JPS04 Sch3N; AHA0618::km" This work

Plasmids
pGEMT-EASY Cloning vector, Amp" Promega
pUC4KIXX Source of Tn5-derived nptll gene, Km" Pharmacia
pKNG101 oriR6K mobRK2 strAB sacBR, 6.8 kb, Sm" Kaniga et al. (1991)
pSRK(Gm) pBBR1MCS-5-derived broad-host-range expression vector Khan et al. (2008)

containing lac promoter and lacl?, lacZ«*, and Gm’"

pSRK_AHA0618
pSRK_HPO518

pSRK(Gm) containing AHA0618 in Ndel/BamH/ site of MCS
pSRK(Gm) containing HP0518 in Ndel/BamH! site of MCS

This work
This work

General DNA methods

Where required, DNA restriction endonucleases, T4 DNA
ligase, and alkaline phosphatase were used as recom-
mended by the suppliers (NEB, New England Biolabs
(United Kingdom), Hitchin, UK).

Generation of AHA0618 disruption mutant

The AHA0618 disruption mutant was created by inser-
tion of the Tn5-derived kanamycin resistance cartridge
(nptll) from pUC4-KIXX (GE Healthcare Life Sciences,
Little Chalfont, UK). For mutation of AHAO0618, the
gene was amplified using Expand High-Fidelity DNA
polymerase (Roche, Burgess Hill, UK) with primers
JLP_32 and JLP_33 to produce a DNA fragment of
0.4 kb, this was subsequently ligated into pGEMT-Easy.
The 1.4-kb Smal-digested kanamycin resistance cartridge
from pUC4-KIXX was inserted into a Smal restriction
site in the middle of the AHA0618 gene. The AHA0618::
km construct was then ligated into the suicide vector
pKNGI101 (Kaniga et al. 1991) and transferred into Aeromo-
nas by conjugation. Conjugal transfer of the recombinant
plasmids from E. coli S17-1A pir to A. caviae Sch3N was
performed on Columbia blood agar for 6-8 h at 37°C. Serial
dilutions of the mating mixture were then plated on LB agar
supplemented with nalidixic acid and kanamycin; the latter
antibiotic was added in order to select for recombination.
Colonies that were kanamycin resistant (Km") and strepto-
mycin sensitive were selected for analysis by polymerase
chain reaction (PCR) to confirm the mutation followed by
phenotypic studies.
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Motility and swarming assays

To assess motility of Aeromonas strains, bacterial colonies
were transferred with a sterile toothpick into the center of
motility agar plates (1% tryptone, 0.5% NaCl, 0.25%
agar). The plates were incubated face up at 25°C for
14-24 h, and motility was assessed by examining the
migration of bacteria through the agar from the center
toward the periphery of the plate.

To assess the swarming capabilities of Aeromonas
strains, bacterial colonies were transferred with a sterile
toothpick into the center of swarming agar plates (0.5%
NaCl, 0.6% Difco Nutrient Broth, and 0.6% Eiken agar).
The plates were incubated face up at 37°C for 16 h, and
swarming was assessed by examining the migration of
bacteria across the agar from the center toward the
periphery of the plate (Kirov et al. 2004).

Scanning electron microscopy

Scanning electron microscopy (SEM) samples were pre-
pared by the University of Sheffield Electron Microscopy
Unit (Department of Biomedical Sciences) in a gold sput-
ter coater (Edwards S150b, Crawley, UK). Samples were
analyzed on a Philips XL-20 SEM, Eindhoven, The Neth-
erlands.

Fluorescence microscopy

Fluorescence microscopy samples were prepared from
overnight bacterial cultures in LB broth. Samples were
allowed to dry on L-lysine-coated coverslips, fixed with

© 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
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paraformaldehyde, and then poststained with the thiol-
reactive dye Alexa Fluor 594 (Life Technologies, Paisley,
UK). Residual fluorescent dye was removed by washing
cells with phosphate-buffered saline (PBS) and samples
were mounted onto glass microscope slides with ProLong
Antifade Gold with DAPI (Life Technologies). Samples
were analyzed on a Zeiss Axiovert (Zeiss, Cambridge,
UK) fluorescence microscope at 1000x magnification.

Flagellin purification method

To purify A. caviae polar and lateral flagellins, a flagellar
shearing method, adapted from Wilhelms et al. (2012)
was carried out. Aeromonas strains were grown on large
swarm agar plates (250 mL) overnight at 37°C. The
resulting growth was scraped from the plates with PBS
and flagella were sheared from the cells via the use of a
blender for 10 min. Cells were removed from the suspen-
sion via centrifugation at 8000¢ for 30 min and debris
removed from the supernatant by further centrifugation
at 18,000¢ for 20 min. Flagella were pelleted via centrifu-
gation at 75,000¢ for 1.5 h and resuspended in PBS.

Lipopolysaccharide extraction and analysis

Lipopolysaccharide (LPS) was extracted from Aeromonas
strains using an LPS extraction kit (ChemBio, St Albans,
UK) according to the manufacturer’s instructions. Briefly,
cells from a 10 mL BHIB culture grown for 16 h were
harvested and underwent lysis followed by incubation
with chloroform. The supernatant was collected and the
LPS purified via precipitation and wash steps. LPS sam-
ples were analyzed via Urea-SDS-PAGE (urea-sodium
dodecyl sulfate-polyacrylamide gel electrophoresis) with a
12.5% resolving gel and analyses by silver staining
(Guard-Petter et al. 1995).

SDS-PAGE and immunoblotting

SDS-PAGE and immunoblotting of Aeromonas whole-cell
preparations were carried out as described previously
(Tabei et al. 2009). Briefly, Aeromonas strains were grown
overnight in BHIB at 37°C. Equivalent numbers of cells
were harvested by centrifugation. Cell pellets were boiled
in SDS-PAGE loading buffer for 5 min. Protein samples
were separated on SDS-PAGE gels (12% acrylamide). For
immunoblotting, proteins were transferred onto a
Hybond-C (GE Healthcare) nitrocellulose membrane. Fol-
lowing transfer, membranes were blocked with 5% (w/v)
powdered skimmed milk. For identification of flagellin,
membranes were probed with a polyclonal rabbit antipo-
lar flagellin antibody (1:10,000) that only recognizes gly-
cosylated flagellin or a rat antipolar flagellin antibody

© 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
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(1:1000) that recognizes both glycosylated and unglycosy-
lated flagellin (Parker et al. 2014). A goat anti-rabbit or
goat anti-rat horse radish peroxidase—conjugated second-
ary antibody (1:5000) was used in combination with the
ECL detection system (GE Healthcare) before being
exposed to X-ray film and developed using a Compact
x4 automatic film processor (Xograph Healthcare, Stone-
house, UK).

Statistical analysis

The differences between the wild-type versus mutant
strains and the mutant strains versus complemented
strains were analyzed using GraphPad Prism 5.0 (Graph-
Pad Software, Inc., La Jolla, CA). Data are given as
mean =+ standard error of the mean (SEM). Statistical
significance was compared to the wild-type by t-test or
one-way analysis of variance (ANOVA) (Tukey’s multiple
comparisons test).

Bioinformatic tools

Protein BLAST searches were carried out using the NCBI
BLAST tool (http://blast.ncbi.nlm.nih.gov/Blast.cgi) and
conserve domain searches carried out with the NCBI con-
served domain tool (http://www.ncbi.nlm.nih.gov/Struc-
ture/cdd/wrpsb.cgi) and the Pfam server (http://pfam.
sanger.ac.uk/).

Manual protein alignments were performed using CLU-
STALW (Thompson et al. 1994) (http://embnet.vital-it.ch/
software/ClustalW.html) and displayed using box-shade
(http://embnet.vital-it.ch/software/BOX_form.html).

Protein localization predictions were carried out using
the Cello server (http://cello.life.nctu.edu.tw/).

Accession number

Aeromonas caviae Sch3 AHAO0618 accession number:
HG934767.

Results

Bioinformatic analysis of AHA0618 and the
surrounding genome

Analysis of the A. cavige Sch3 genome sequence (J. G.
Shaw, unpubl. data) revealed the presence of a single
HP0518 homolog named AHA0618. The predicted
amino acid sequence of A. caviae AHA0618 is 37%
identical to the primary amino acid sequence level to
the central region of the putative H. pylori deglycosyla-
tion enzyme HP0518 (Fig. 1A and B). Using the Cello
server  (http://cello.life.nctu.edu.tw/)  the  predicted
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Figure 1. (A) Alignment of the deduced amino acid sequence of Aeromonas caviae Sch3N AHA0618 (accession HG934767) with the central
region of homolog Helicobacter pylori 26695 HP0518 (amino acids 51-200) (Asakura et al. 2010). The alignment was performed using
CLUSTALW (Thompson et al. 1994) and displayed using box shade. (B) Diagrammatic representation of the size of unfolded A. caviae Sch3
AHAO0618 compared to H. pylori 26695 HP0518. (C) Genetic organization of the genes surrounding AHA0618 in the A. caviae Sch3 genome

(J. G. Shaw, unpubl. data).

cellular localization of AHA0618
periplasmic.

When the primary amino acid sequence of AHA0618
was analyzed using both the NCBI conserved domain and
Pfam prediction servers, it was found to be a member of

is cytoplasmic or

the YkuD superfamily of proteins. This family of proteins
contains a putative L,D-transpeptidase catalytic domain,
present in a wide range of bacteria, often alongside pepti-
doglycan-binding domains, although this is not the case
for A. caviae. YkuD, an L,b-transpeptidase, was originally
characterized in Bacillus subtilis and has a highly con-
served catalytic domain containing a histidine/cysteine
motif invariant among members of this superfamily
(Bielnicki et al. 2006). Its role is to influence the cell wall
cross-linking of peptidoglycan and associated anchoring
of the Lpp lipoprotein at the cell wall (Magnet et al
2007), with work by Sanders and Pavelka (2013) demon-
strating that E. coli lacking all of its YkuD homologs dis-
plays altered stress resistance. When aligned with a
number of characterized and predicted members of this
superfamily, AHA0618 and HP0518 were both shown to
contain the conserved residues of the YkuD catalytic
domain (Fig. 2). Although many of the YkuD-type pro-
teins shown in Figure 2 do not contain the complete cat-
alytic tetrad described in Bielnicki et al. (2006), the
conserved histidine/cysteine residues are present in each.
HP0518, however, like many of the other YkuD domain-
containing proteins (e.g., YbiS, ErfK, YcfS of E.coli), is
significantly larger than AHAO0618. These data suggest a
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role for AHA0618 in the correct maintenance of the bac-
terial cell wall.

The genetic context of the AHA0618 gene is intriguing
since it is not associated with either of the two previously
identified loci in A. caviae that contain all known genes
required for flagellar filament assembly and its glycosyla-
tion (Rabaan et al. 2001; Tabei et al. 2009; Parker et al.
2012). Genes flanking AHA0618 encode an oligoendopep-
tidase (M3 family) and an AzIC family protein which is
potentially involved in amino acid transport and metabo-
lism (Fig. 1C). Homologs of the cellulose synthase operon
from Yersinia enterocolitica (Fuchs et al. 2011), thought to
be involved in exopolysaccharide production and genes
encoding nutrient uptake apparatus (such as ABC trans-
port systems), are also close by.

Aeromonas caviae AHA0618 mutant is
hypermotile

To investigate the possible role of AHA0618 in the A. cavi-
ae flagellin glycosylation pathway and to determine its true
role, an insertion mutant was created. A kanamycin resis-
tance cassette was inserted into the AHA0618 gene in the
same transcriptional orientation with the outward reading
promoter in the cassette designed to reduce the occurrence
of any polar effects downstream of the mutation. PCR
using primers specific for AHA0618 and the resistance cas-
sette were used to assess whether construction of the
mutant was successful (Table 2). PCR confirmed both the

© 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
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Figure 2. Alignment of Aeromonas caviae Sch3 AHA0618 (AcAHA0618) and Helicobacter pylori 26695 HPO518 (HpHP0518) with other
members of the YkuD superfamily: Bacillus subtilis (Bs) (accession NP_389287), Aeromonas hydrophila (Ah) (accession AHE48181), Aeromonas
salmonicida (As) (accession WP_021138855), Shewanella oneidensis (So) (accession NP_717783), Plesiomonas shigelloides (Ps) (accession
WP_010864114), and Vibrio cholera (Vc) (accession NP_232564). The conserved histidine and cysteine residues from the his/cys motif in the

predicted YkuD catalytic domain is highlighted.

Table 2. Primers used in this study.

Primer

name Gene/use Sequence 5’ to 3’ (restriction site)

T7 General sequencing of pGEM clones TAATACGACTCACTATA

promoter

SP6 General sequencing of pGEM clones ATTTAGGTGACACTATAG

Kan right Mapping the location and orientation of the Kan cassette TCATTTCGAACCCCAGAGTC

Kan left Mapping the location and orientation of the Kan cassette TGCTCCTGCCGAGAAAGTAT

JLP_32 AHA0618 region for disruption — forward primer (BamHI) GGATCCCCTTGGCAGGGCCTCTGCATGG

JLP_33 AHAO0618 region for disruption — reverse primer (BamHI) GGATCCGGAAGGTGAAGCCATAGAGCAG

JLP_28 A. caviae Sch3N AHA0618 for complementation and overexpression — (Ndel) ATATATATCATATGGTGGTGGTGAAGAAGTC
forward primer

JLP_29 A. caviae Sch3N AHA0618 for complementation and overexpression — (BamHl)
reverse primer TATTATGGATCCTCAGGGCTCGATGATGATGG

JLP_108 H. pylori 26695 HP0518 for complementation and overexpression forward — (Ndel) CATATGAAAAAAATATTACCGGCTCTGTTAATG
primer

JLP_109 H. pylori 26695 HP0518 for complementation and overexpression — (BamHl)

reverse primer
GGATCCCTATTTTTCCATTATAATAGACACTTGATTGTT

location and orientation of the insertion mutation (data
not shown).

To test the effect of the AHA0618 gene disruption on
A. caviae motility,
performed using semisolid agar (0.25% w/v) alongside
the A. caviae wild-type strain (Sch3N). The AHA0618
mutant displayed increased motility compared to the

swimming motility assays were

wild-type strain, with an average motility halo radius of
13.6 mm for the wild type, compared to 20.8 mm for the
mutant, an increase in 1.5-fold (P < 0.0001) (Fig. 3A and
B). The AHA0618 mutant was also found to be hypermo-
tile on swarming agar when compared to the wild-type
strain, although swarming motility could not be quanti-
fied appropriately due to irregular colony formation
(Fig. 3C). The hypermotility observed on swarming agar

© 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

suggests that AHA0618 may have a wider role than solely
effecting polar flagella-mediated motility.

To test whether the AHA0618 mutant could be comple-
mented and thus discount any polar effects on the genes
downstream, AHA0618 was expressed in the IPTG-inducible
vector, pSRK (Gm") (Table 1) and introduced into the
mutant via conjugation. Motility was reduced to almost
wild-type levels when the swimming motility of the comple-
mented strain was assayed on semisolid agar (0.25% w/v)
(Fig. 4A) and this reduction in motility was found to be statisti-
cally significant (Fig. 4B). Overexpression studies were also
carried out where AHA0618 was introduced into wild-type
A. caviae; no differences in motility between the overexpression
strain and wild-type A. caviae were detected indicating there was
no negative dominance of this gene (Fig. S1).
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Figure 3. (A) Analysis of Aeromonas caviae AHA0618-mutant
motility (AHA0678) compared to A. caviae Sch3N (wild type [WT]).
Swimming motility assays were carried out on 0.25% semisolid agar.
(B) The radius of each motility halo was measured and average
measurements for the motility of A. caviae Sch3N (WT) and the
AHA0618 mutant (AHA0618) are presented here (n = 8) + the
standard error of the mean. A paired t-test carried out on the two
datasets generated a P < 0.0001. (C) Analysis of A. caviae AHA0618
mutant (AHA0678) swarming motility compared to A. caviae Sch3N
(WT). Swarming assays were carried out on 0.6% swarming agar.

Glycosylation analysis of flagellin in
AHA0618 mutant and overexpression strains
reveal no differences compared to the wild
type

Given the homology of AHA0618 to the HP0518 protein
and their similar motility phenotypes, we hypothesized
that AHA0618 could be having a similar role in A. caviae
by potentially acting as a glycosylation modulator during
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the polar flagellin glycosylation pathway. We therefore
investigated the potential presence of elevated levels of
glycosylation on the AHA0618-mutant flagellins. To test
whether AHA0618 has an effect on the glycosylation sta-
tus of the polar flagellins FlaA/B, western blot analysis
was carried out on whole-cell samples of wild-type A.
caviae and the AHA0618 mutant (Fig. 5A). Samples were
probed with an anti-FlaA/B(+Pse) antibody that recog-
nizes only the glycosylated polar flagellins (Tabei et al.
2009; Parker et al. 2012) and an anti-FlaA/B antibody
that recognizes both glycosylated and unglycosylated fla-
gellin (Parker et al. 2014). A mafl mutant (overexpressing
the polar flagellin gene flaA) was used as a negative con-
trol when probed with the anti-FlaA/B(+Pse) antibody.
The mafl gene encodes a putative pseudaminyltransferase
responsible for transfer of activated pseudaminic acid on
to flagellin monomers and the mutant, therefore only
produces unglycosylated flagellins (Parker et al. 2012).
Using our methods, unglycosylated FlaA/B cannot be
detected in a mafl-mutant whole-cell preparation as the
levels are too low, however, unglycosylated flagellin can
be detected with an anti-FlaA/B antibody in a mafl-
mutant strain where flaA is overexpressed from the multi-
copy plasmid pSRK. This reveals a decrease in size of the
unglycosylated flagellins when compared to their glycosy-
lated counterparts (Fig. 5A). A size shift was not observed
between wild-type and AHA0618-mutant flagellins when
probing with either antibody; glycosylation is thus
thought to be unchanged in these strains, despite the
hypermotility seen in the AHA0618 mutant. In addition,
when mass spectrometry analysis of flagellins was carried
out, identical glycopeptide patterns were observed for
both the wild type and mutant; we therefore believe
AHAO0618-mutant flagellin glycosylation to be comparable
to the wild type (data not shown).

Glycosylation status of the complemented AHA0618-
mutant strain and the wild-type overexpressing AHA0618
were also investigated by western blot analysis (Fig. 5B
and C, respectively); again the flagellins appeared at an
identical size when compared to the original strains.

AHA0618 homolog, H. pylori HP0518, can
complement the motility phenotype of
AHAO0618 A. caviae mutant

Since the related HP0518 gene from H. pylori was shown
to be a potential flagellin deglycosylase enzyme (Asakura
et al. 2010), we tested the effect of expressing HP0518 in
A. caviae to see if this was the case when expressed in A.
caviae, that is, did the extra domains in HP0518 encode
this function. HP0518 from H. pylori 26695 was cloned
into the IPTG-inducible vector pSRK (Gm), similar to
AHAO0618, and introduced into the A. caviae AHA0618

© 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
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Figure 4. (A) Complementation analysis of pSRK_AHA0618 in an Aeromonas caviae AHA0618 mutant. Swimming motility assays were carried
out on 0.25% semisolid agar for A. caviae Sch3N (WT), the AHA0618 mutant (AHA0618), the mutant containing empty pSRK(Gm) (AHA-pSRK)

and the mutant containing pSRK_AHA0618 (AHA0618 pAHAO0618).

(B) The radius of each motility halo was measured and average

measurements are presented here (n = 5) + the standard error of the mean. A one-way ANOVA, with a Tukey's multiple comparison test, was
carried out on the datasets. ns, not significant; *P = 0.01-0.05; **P = 0.001-0.009; ***P = 0.0001-0.0009.

mutant via conjugation. Analysis of swimming motility
data from the resulting A. cavige strain revealed that
HP0518 was able to complement the increased-motility
phenotype of the A. caviae AHA0618 mutant and reduce
motility to slightly below that of the wild-type strain
(Fig 6A and B). However, western blot analysis of whole-
cell samples of the AHA0618-mutant strain expressing
HP0518 compared to the AHA0618-mutant alone, using
the same antibodies as above, revealed no size differences
between the flagellins (Fig. 6C), indicating that, at least in
A. caviae, these two genes do not affect flagellin glycosyla-
tion levels.

HPO0518 was also overexpressed in wild-type A. caviae.
In contrast to the A. caviae AHA0618 overexpression

© 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

studies, motility assays revealed that HP0518 overexpres-
sed in the wild-type strain reduced its motility by 26.5%
compared to the wild type containing the empty vector
(P =0.0001) (Fig. 7A and B). Whole-cell samples of
wild-type A. caviae expressing HP0518 were then probed
with both antibodies specific for FlaA/B and flagellins
were compared to wild-type A. caviae samples. Again, no
differences in flagellin size were observed (Fig. 7C).

Analysis of A. caviae AHA0618-mutant
cellular envelope

In addition to its flagellins FlaA/B, A. caviae also modifies
the LPS O-antigen with pseudaminic acid (Tabei et al.
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Figure 5. Western blot analysis of whole-cell protein preparations from Aeromonas caviae with a rabbit anti-polar flagellin antibody [«-FlaA/B
(+pse)] (1:10,000) that recognizes only glycosylated flagellin and a rat antipolar flagellin antibody [x-FlaA/B] (1:1000) that recognizes both
glycosylated and unglycosylated flagellin. (A) Lane 1, A. caviae Sch3N (WT); lane 2, mafl mutant containing pSRK_flaA (maf1 pflaA); lane 3,
AHA0618 mutant (AHA0618). (B) Lane 1, A. caviae AHA0618 mutant (AHA0618); lane 2, AHA0618 mutant containing empty pSRK (AHA0618
pSRK); lane 3, AHA0618 mutant containing pSRK_AHA0618 (AHA0618 pAHA0618). (C) Lane 1, A. caviae Sch3N (WT); lane 2, Sch3N containing
empty pSRK (WT pSRK); lane 3, Sch3N containing pSRK_AHA0618 (WT pAHA0618). Whole-cell proteins were obtained from bacteria grown

overnight at 37°C in brain heart infusion broth (BHIB).

2009). Mutations in genes of the pseudaminic acid bio-
synthetic pathway (flmA, flmB, neuA, flmD, neuB) lead to
the loss of the sugar on the LPS O-antigen and therefore
the LPS profiles of these mutants differ significantly to
the wild type (Tabei et al. 2009; Parker et al. 2012). If
AHAO0618 was altering the LPS O-antigen glycosylation
levels, this could lead to a change in bacterial cell surface
charge and therefore effect how A. caviae interacts with
its environment (and may help to explain why we see
increased motility in the AHA0618 mutant). LPS was
extracted from wild-type and the AHA0618-mutant
strains using a method described previously in Parker
et al. (2012). However, the LPS profiles were found to be
identical (Fig. S2), indicating that AHA0618 does not
affect the levels of LPS O-antigen glycosylation.

The AHA0618 mutant displays altered cell
length

A recent study by Sycuro et al. (2013) carried out cell
morphology studies on H. pylori with mutations in genes
encoding peptidoglycan modification enzymes. This inves-
tigation highlighted HP0518 (known as Csd6 in this
study) as having r,D-carboxypeptidase activity and a
mutant exhibited “straight rod morphology” as compared
to the helical morphology of wild-type Helicobacter. Gross
cell morphology of A. caviae wild-type and AHA0618-
mutant strains was investigated by SEM, where no drastic
change in cell shape was detected; however, a small differ-
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ence in size between strains was observed (Fig. 8A). This
initial observation was supplemented using a higher
throughput method of fluorescence microscopy of surface
labeled cells (Alexa Fluor 594) and a subtle but significant
difference in cell length was observed. In these studies,
the AHA0618 A. caviae mutant displayed a 14% decrease
in length compared to the mean of the wild type; these
changes were proven to be statistically significant with a
t-test when a total of 80 cell lengths were measured from
four fields of view per strain during fluorescence micros-
copy (P < 0.0001) (Fig. 8B).

Additionally, when complemented with the AHA0618
(pSRK_AHA0618) or HP0518 (pSRK_HPO0518) genes, the
average cell length measurements of AHA0618-mutant
strains showed a significant increase compared to AHA0618
containing the empty vector (pSRK) (Fig. 8B). As varia-
tions in average cell lengths were subtle, the frequency dis-
tribution of cell length measurements was analyzed
between strains to see if the means masked details of the
spread of cell length in these strains (Fig. 9). The AHA0618
mutant displayed the smallest minimum cell length of
0.77 um and was more frequently measured at the lower
end of the frequency distribution scale, presenting a shift of
the cell population length to the left (with a mode measure-
ment of 1.2 yum) when compared to the wild type (mode
length of 1.5 um) (Fig. 9). Frequency distribution of mea-
surements taken from the AHA0618 mutant containing
either pSRK_AHA0618 or pSRK_HP0518 showed a shift to
the right compared to the AHA0618 mutant, displaying a

© 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
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Figure 6. Analysis of pSRK_HPO578 expression in an Aeromonas caviae AHA0618 mutant. (A) Motility assays were carried out on 0.25%
semisolid agar for A. caviae Sch3N (WT), the AHA0678 mutant (AHA0618), the mutant containing empty pSRK(Gm) (AHA0618 pSRK) and the
mutant containing pSRK_HPO518 (AHA0618 pHPO518). (B) The radius of each motility halo was measured and average measurements are
presented here (n = 5) + the standard error of the mean. A one-way ANOVA, with a Tukey’s multiple comparison test, was carried out on the
datasets. ns = not significant; **P = 0.001-0.009; ***P = 0.0001-0.0009; ****P > 0.0001. (C) Western blot analysis of whole-cell protein
preparations from A. caviae with a rabbit antipolar flagellin antibody [x-FlaA/B(+pse)] (1:10,000) that recognizes only glycosylated flagellin and a
rat antipolar flagellin antibody [«-FlaA/B] (1:1000) that recognizes both glycosylated and unglycosylated flagellin. Lane 1, A. caviae AHA0618
mutant (AHA0618); lane 2, AHA0618 mutant containing empty pSRK(Gm) (AHA06178 pSRK); lane 3, AHA0618 mutant containing pSRK_HP0518

(AHA0618 pHP0518). Whole-cell proteins were obtained from bacteria grown overnight at 37°C in brain heart infusion broth (BHIB).

similar pattern of cell lengths to the wild type, with both
being most frequently measured at 1.5 pum (Fig. 9).

Helicobacter pylori naturally has a helical cell morphol-
ogy, whereas A. caviae is a straight rod. Consequently,
differences in cell morphology caused by AHA0618 dis-
ruption may be far more subtle than a csd6 H. pylori dis-
ruption mutant. Here, cell length appears to be inversely
correlated with observed bacterial motility of A. caviae
strains analyzed.

Due to the differences in cell lengths observed, muro-
peptide analysis was carried out in triplicate on wild-type
and AHA0618-mutant A. caviae peptidoglycan. These ini-
tial studies showed no differences in the muropeptide
profiles between these two strains (data not shown).

Discussion

In this study, we identified and examined the function of
the AHA0618 gene from Aeromonas caviae, a homolog of

© 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

a H. pylori putative flagellin deglycosylation enzyme
encoding gene, HP0518, that was hypothesized to partici-
pate in modulation of flagellin glycosylation in H. pylori
(Asakura et al. 2010). A null mutant of the A. caviae
AHA0618 gene displays a hypermotile swimming and
swarming phenotype similar to that of a H. pylori HP0518
mutant, which suggested that AHA0618 may also be
affecting flagellin glycosylation levels, adding a new level
of complexity to this posttranslational modification path-
way. Although the biological role of flagellin glycosylation
is unknown, it is tempting to speculate that this modifica-
tion could aid interactions with the bacterial environment
and would potentially be beneficial if bacteria were capable
of altering or at least maintaining the correct levels of gly-
cosylation in response to environmental signals.

Despite an AHA0618 A. caviae mutant displaying a
similar hypermotile phenotype to a H. pylori HP0518
mutant, further analysis of the A. caviae-mutant flagellins
suggests the glycosylation status to be indistinguishable
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Figure 7. Analysis of pSRK_HP0518 expression in an Aeromonas caviae Sch3N. (A) Motility assays were carried out on 0.25% semisolid agar for
A. caviae Sch3N (WT), Sch3N containing empty pSRK(Gm) (WT pSRK) and Sch3N containing pSRK_HPO518 (WT + HP0518). (B) The radius of
each motility halo was measured and average measurements for the motility are presented here (n = 10) £ the standard error of the mean. A
one-way ANOVA, with a Tukey's multiple comparison test, was carried out on the datasets. **P = 0.001-0.009; ***P = 0.0001-0.0009;
*xikp > 0.0001. (C) Western blot analysis of whole-cell protein preparations from A. caviae with a rabbit antipolar flagellin antibody [x-FlaA/B
(+pse)] (1:10,000) that recognizes only glycosylated flagellin and a rat antipolar flagellin antibody [x-FlaA/B] (1:1000) that recognizes both
glycosylated and unglycosylated flagellin. Lane 1, A. caviae Sch3N (WT); lane 2, Sch3N containing empty pSRK(Gm) (WT pSRK); lane 3, Sch3N
containing pSRK_HP0518 (Sch3N pHP0O518). Whole-cell proteins were obtained from bacteria grown at 37°C in brain heart infusion broth (BHIB).

from the wild type and that AHA0618 did not play a role
in flagellin glycosylation in A. caviae. Furthermore,
AHAO0618 does not seem to affect the glycosylation status
of the LPS O-antigen of A. caviae, indicating that the
hypermotility of the mutant is unlikely to be due to
altered cell surface characteristics from elevated glycosyla-
tion levels in the LPS.

To further examine the role of these genes from both
organisms, we transplanted the HP0518 gene into A. cavi-
ae and showed that it reduces the hypermotility pheno-
type in the same way as providing the AHA0618 gene in
multicopy. However, in contrast to the AHA0618 gene,
heterologous expression of HP0518 in wild-type A. caviae
reduces motility, having a dominant negative effect. This
suggests that while AHA0618 and HP0518 function simi-
larly in A. caviae, there may be subtle differences in func-
tion possibly defined by the extra domains, of unknown
function, contained within HP0518. Having discounted
the mechanism of the motility phenotype being due to
differences in glycosylation, we were drawn toward the
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recent work by Sycuro et al. (2013), indicating that
HP0518 (referred to as csd6) has 1,p-carboxypeptidase
activity and a H. pylori cds6 mutant showed a drastic dif-
ference in cell morphology (straight rod in comparison to
helical wild type). We therefore set out to examine if the
AHAO0618 could be functioning in a similar fashion, that
is, in cell morphology due to peptidoglycan modification
or cell wall architecture maintenance. This indeed appears
to be the case since microscopy analysis of the A. caviae
AHAO0618 mutant suggested a subtle difference in cell
length compared the wild type and also demonstrated
that the AHA(0618-mutant strain expressing either
AHA0618 or HP0518 displayed overall longer cell lengths
compared to the mutant. Bioinformatics analysis which
reveals homology of AHA0618 with proteins shown to be
involved in peptidoglycan cross-linking and lipopeptide
anchoring at the bacterial cell wall (YkuD superfamily)
(Bielnicki et al. 2006) and also possesses the conserved
cysteine and histidine residues found in 1,p-transpeptidas-
es of the YkuD superfamily of proteins (along with the

© 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
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Figure 8. (A) Scanning electron microscopy of: (i) Aeromonas caviae Sch3N (WT) and (i) A. caviae AHA0618 mutant (AHA0618-), at 8000x
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(AHA0618- pAHA0618 and AHA0618- pHPO518). Bacterial cell lengths were measured from four fields of view at 100x magnification and
average cell lengths are presented here (n = 80) + the standard error of the mean. A Tukey’s multiple analysis test was carried out to assess the

significance of the data. ****P < 0.0001, **P = 0.001-0.009.

original YkuD characterized from B. subtilis) reinforcing
that AHA0618 is likely to play a role in peptidoglycan
modification. However, preliminary analysis of the muro-
peptide profiles of wild-type A. caviae and the AHA0618
mutant found no variations between the strains, although
very subtle differences can take much experimental opti-
mization and complex further analysis. Furthermore,
AHAO0618 seems to encode a much smaller protein than
H. pylori HP0518, or other YkuD domain containing pro-
teins from other bacteria, such as E. coli, possibly indicat-
ing differences in function that might explain the
contradicting findings relating to this protein. For exam-
ple, bifunctional penicillin-binding proteins have previ-
ously been described in a number of bacteria that contain
transpeptidase and glycosyltransferase domains (reviewed
in Sauvage et al. [2008]); it is therefore possible that
HPO0518 has a dual role, possessing both a carboxypepti-
dase domain and a domain with deglycosylation activity.
However, domain BLAST searches carried out with the
HPO0518 protein sequence did not identify any other puta-
tive functioning protein domains currently known.

© 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

The link between bacterial cell morphology and motility
through various media has been recognized previously. The
helical shape of H. pylori may help the gastric pathogen when
in its specific niche, as straight rod mutants, such as a H.
pylori csd4 mutant (where csd4 encodes a zinc metallopro-
tease with carboxypeptidase activity) displayed diminished
directional motility compared to the naturally helical wild
type through gel-like media (Sycuro et al. 2012, 2013). This
mutant also displayed colonization defects in a mouse
model (Sycuro et al. 2012). Studies in the Gram-positive
bacterium, Bacillus cereus, also identified a putative cell wall
peptidase, CwpFM; a mutant was found to have differences
in cell morphology and motility compared to the wild-type
strain (Tran et al. 2010). Mutant cells of this particular pep-
tidase were found to be larger and less able to separate effi-
ciently during cell division, creating bacterial chains. Bacillus
cereus cwpFM mutants were therefore less motile than wild-
type B. cereus (Tran et al. 2010) which further demonstrates
that modifying peptidoglycan cross-linking at the cell wall
can alter bacterial cell morphology, motility, and therefore
bacterial behavior. Furthermore, recent work by Frirdich
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Figure 9. Frequency distribution of fluorescence microscopy cell
length measurements (please refer to Fig. 8B for details).

et al. (2014) described a peptidoglycan 1,p-carboxypeptidase
(Pgp2) that influences Campylobacter jejuni helical mor-
phology, motility, and biofilm formation as when deleted,
C. jejuni elicited straight rod cell morphology (similar to the
csd6/HP0518 H. pylori strain; Sycuro et al. 2013).

One other phenotype displayed by peptidoglycan remod-
eling enzymes is their requirement to form gaps in the cell
wall for the flagellar complex to assemble, although we have
no evidence for this here (Scheurwater and Burrows 2011).
Therefore, it is also possible that although we observe an
effect on cell size, mutation of AHA0618 may enhance the
ability of the mutant flagella to form or rotate. For example,
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Roure et al. (2012) demonstrated that while H. pylori
lacking MItD (a lytic transglycosylase) assemble flagella, they
are nonmotile as they can no longer cleave the peptidoglycan
backbone appropriately, resulting in flagella that are unable
to rotate. The authors hypothesized this mutation may be
affecting MotB peptidoglycan binding, potentially affecting
torque generation (Roujeinikova 2008; Roure et al. 2012).
However, deletions in peptidoglycan remodeling enzymes
that enhance bacterial motility have not yet been reported
and it is therefore likely that hypermotility of the A. caviae
mutant seen here is due to bacterial size/morphology.

Taking all of our data, and that of others, into account,
we seem to be have highlighted a link between bacterial
size/morphology and velocity. This might be explained by
differences in cell shape or length conferring changes in
resistance (or drag) of the bacterial cell body moving
through the aqueous environment that might thus alter the
speed of swimming. In the case of Aeromonas, it is tempting
to speculate that due to the physics of bacterial motility,
larger cells move more slowly in solution and smaller cells
more quickly with the wild-type cell length being tuned to
its environment and modulated by auxiliary proteins such
as AHA0618 to ensure optimal motility.

Although initial studies have shown no difference in
muropeptide profiles between our two strains, our study
demonstrates that the HP0518 homolog (Asakura et al.
2010); AHA0618 is not altering the glycosylation levels of
A. caviae polar flagellins and is not effecting motility via
these means. Therefore, our data support the role of these
YkuD-family proteins in bacterial cell shape development
where even the subtlest of changes to bacterial cell mor-
phology may have an effect on bacterial motility and
behavior.
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Supporting Information

Additional Supporting Information may be found in the
online version of this article:

Figure S1. (A)  Overexpression  analysis  of
pSRK_AHAO0618 in an Aeromonas caviae Sch3N. Swim-
ming motility assays were carried out on 0.25% semisolid
agar for A. caviae Sch3N containing empty pSRK(Gm)
(WT pSRK) and Sch3N containing pSRK_AHA0618 (WT
PAHAO0618). Strains were not compared to A. caviae
Sch3N due to the severe reduction in motility from addi-
tion of both empty and AHA0618 containing plasmids.
(B) The radius of each motility halo was measured and
average measurements are presented here (n = 10) =+ the
standard deviation. A paired t-test comparing the two
datasets generated a P-value of 0.214.

Figure S2. Analysis of lipopolysaccharide (LPS) isolated
from Aeromonas caviae Sch3N (WT) and an AHA0618
mutant (AHA0618-). LPS was extracted from bacteria
grown at 37°C in BHIB, analyzed by SDS-PAGE (12%),
and silver stained.
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