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The adaptive filter model of the cerebellar microcircuit has been successfully applied
to biological motor control problems, such as the vestibulo-ocular reflex (VOR), and to
sensory processing problems, such as the adaptive cancelation of reafferent noise. It
has also been successfully applied to problems in robotics, such as adaptive camera
stabilization and sensor noise cancelation. In previous applications to inverse control
problems, the algorithm was applied to the velocity control of a plant dominated by
viscous and elastic elements. Naive application of the adaptive filter model to the
displacement (as opposed to velocity) control of this plant results in unstable learning
and control. To be more generally useful in engineering problems, it is essential to remove
this restriction to enable the stable control of plants of any order. We address this problem
here by developing a biohybrid model reference adaptive control (MRAC) scheme, which
stabilizes the control algorithm for strictly proper plants. We evaluate the performance of
this novel cerebellar-inspired algorithm with MRAC scheme in the experimental control of
a dielectric electroactive polymer, a class of artificial muscle. The results show that the
augmented cerebellar algorithm is able to accurately control the displacement response
of the artificial muscle. The proposed solution not only greatly extends the practical
applicability of the cerebellar-inspired algorithm, but may also shed light on cerebellar
involvement in a wider range of biological control tasks.

Keywords: cerebellum, adaptive control, adaptive filter, electroactive polymer, artificial muscles, soft robotics

1. Introduction

The cerebellum is a region of the brain strongly associated with adaptive control and skilled
movement (Ito, 1984; Dean et al., 2010). Its importance is highlighted by the fact that it contains
up to 80% of all neurons in the human brain (Herculano-Houzel, 2010). These cells are arranged
in a very uniform way into discrete cerebellar microcircuits that are repeated across the cerebellar
cortex (Eccles et al., 1967; Marr, 1969; Albus, 1971). This suggests that there is a single “cerebellar
algorithm,” implemented in the control of many different tasks (Ito, 1984, 2008; Porrill et al.,
2013) where the control function of each individual region of the cerebellum depends both on this
internal algorithm and the architecture in which it is embedded (Lisberger, 1998; Porrill et al., 2013).
Understanding this cerebellar algorithm is a fundamental step toward understanding the biological
computations involved in sensorimotor control. Moreover, in certain respects, the flexibility, grace,
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and complexity of biologically controlled movement are superior
to its robotic counterpart. The cerebellar algorithm is a natural
place to start to investigate the origin of this superiority, with the
aim of improving robotic control.

Cerebellar function has been widely modeled usingmany com-
putational approaches, which can be broadly grouped into the
following categories: (i) descriptive models, focusing on neural
dynamics, often based on compartmental models (Bower and
Beeman, 1994; De Schutter and Bower, 1994; Gleeson et al.,
2007); (ii) look-up tables, such as the cerebellarmodel articulation
computer (CMAC) (Albus, 1971), which are now rarely used in
neuroscience studies; (iii) olivary models, where cerebellar out-
put is driven by inputs from the inferior olive to the Purkinje
cell (Jacobson et al., 2008; Torben-Nielsen et al., 2012); and (iv)
Marr–Albus models (Marr, 1969; Albus, 1971), which include
many variations (Kawato and Gomi, 1992; Schweighofer et al.,
1996; Medina and Mauk, 2000), and in particular, the adaptive
filter model of cerebellar function (Fujita, 1982; Dean et al., 2010).

The adaptive filter model is distinctive because it has been ana-
lyzed in a variety of simulated biological control problems (Dean
et al., 2002; Porrill and Dean, 2007b), sensory processing prob-
lems (Anderson et al., 2012; Dean et al., 2013), and neurorobotic
tasks (Lenz et al., 2009; Anderson et al., 2010). Furthermore, the
adaptive filtermodel in particular is able to represent both forward
and inverse models (Wolpert et al., 1998), and therefore appears
to be able to reconcile different proposed functional roles within a
single computational description (Porrill et al., 2013). The advan-
tages of this model are: (i) it is a simple homogeneous represen-
tation making it easy to implement and analyze; (ii) the learning
rule is biologically plausible; (iii) when used in a biologically
inspired recurrent architecture, it uses the available sensory error
to drive adaptation, rather than the unavailablemotor-error signal
(Porrill et al., 2004; Porrill and Dean, 2007b; Dean et al., 2010);
(iv) the recurrent architecture also leads to increased controller
modularity for MIMO systems, allowing separable controllers to
be designed in task space rather than motor command space
(Porrill et al., 2004; Porrill and Dean, 2007b). These attributes and
wide functional usage suggest that the adaptive filter model is not
only a leading computational description of cerebellar function,
but that analysis of this model is beginning to reveal some of the
origins of the superiority of biologically controlled movement.

One limitation of the adaptive filter model of cerebellum is that
it has, to date, only been applied in the dynamic control context
to problems where mass or inertia are negligible, such as velocity
control in eye movements, i.e., the vestibulo ocular reflex (VOR)
(Dean et al., 2002; Lenz et al., 2009). In linear systems theory,
this type of plant under control (the eye) corresponds to a special
class of system (that has an equal number of poles and zeros). The
cerebellar algorithm is only applicable at present to this special
class, and not to, for instance, position or velocity control in plants
with inertia. These types of plant are of amore general class, which
are known as strictly proper, i.e., they have more poles than zeros.

Application of the cerebellar algorithm as it stands to strictly
proper systems would lead to instabilities in learning and control
(because the cerebellar filter would have to learn an improper
inverse model of the plant). This means that it cannot deal

naturallywith, for example, robotic systems involving inertia, such
as dynamic control of a robot arm. This constraint severely limits
the practical applicability of the algorithm in domains, such as
robotics, and also raises the important theoretical question of how
the cerebellum handles this type of control problem in biological
systems. The aim of this paper, therefore, is to develop a novel
control scheme where the adaptive filter model can be applied to
the inverse plant control of strictly proper systems. The approach
we take is to augment the cerebellar-inspired controller with a
model reference adaptive control (MRAC) scheme (Landau, 1979;
Kaufman et al., 1998). This approach results in a biohybrid con-
troller, which has the key advantage that it allows us to apply
cerebellar-inspired control to a wide class of engineered systems.
We will discuss at the end of the paper the implications and
relevance of this scheme for biology.

Embodying neural algorithms in physical systems is an impor-
tant method of evaluating their performance in real world con-
ditions (Webb, 2002; Cuperlier et al., 2007; Kaplan, 2008) and
has been widely used to evaluate cerebellar-inspired algorithms
(Miller, 1989; van der Smagt, 1998; Spoelstra et al., 1999; Carrillo
et al., 2008; Lenz et al., 2009; Anderson et al., 2010). In order
to investigate and evaluate the performance of the cerebellar-
adaptive filter model with MRAC scheme, we apply it to the dis-
placement control of a dielectric electroactive polymer (DEAP).
DEAPs emulate some of the desirable properties of naturalmuscle:
they are capable of producing large strains, have a relatively fast
response, and have the potential capacity for self-sensing if an
electrical characteristic of the DEAP (such as the capacitance) can
bemeasured (Bar-Cohen, 2001; Pelrine et al., 2002; Xie et al., 2005;
OHalloran et al., 2008; Assaf et al., 2013; Gisby et al., 2013). They
also present a number of interesting control challenges similar to
those posed by natural muscle; they exhibit non-linear dynamics,
are manufactured with wide tolerances, and are subjected to creep
and time-related aging (Xie et al., 2005). This makes them an
excellent test bed for evaluating and furthering our understanding
of the cerebellar algorithm. In this contribution, we focus on the
performance of the biohybrid algorithmwhen applied to actuators
where the dynamics change over time and between actuators, so
we do not consider self-sensing or non-linear control.

The paper is organized as follows. The cerebellar control algo-
rithm, methods of achieving fast learning, and model reference
adaptive control (MRAC) extensions are presented in first part of
Section 2. Details of the experimental set up, and methods to test
the displacement control of a DEAP are given in second half of
Section 2. The results are presented in Section 3, and a discussion
given in Section 4. Results indicate that the extended cerebellar
control algorithm is able to accurately control the displacement
response of a DEAP over time and that the MRAC extension
provides a technical solution to extending the cerebellar adaptive
filter model to the control of strictly proper plants. This exten-
sion greatly increases the range of applicability of the algorithm
without a substantial increase in design complexity. It therefore
represents an important step forward in investigating its use for
the more complex non-linear and multivariable systems in which
we expect significant advantages of biological control to become
apparent.
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2. Materials and Methods

In this section, the basic adaptive filter model of the cerebellum
is first described. Extensions to this algorithm, which include
using a reference model (MRAC) are then described. The second
part of this section describes how the extended, biohybrid control
algorithm was embodied in the real-time control of a dielectric
electroactive polymer (DEAP) artificial muscle. We provide a
summary of the experimental set-up and the hardware used to
test the algorithm, an estimate of a model describing the DEAP
dynamics with details on how this model is used to inform the
control design, and a summary of the overall control algorithm
embodiment.

2.1. Basic Cerebellar Algorithm
We begin by describing the adaptive filter algorithm that the
repeated cerebellar microcircuit is thought to implement. In this
section, we restrict ourselves to the casewhere the referencemodel
is trivial (M= 1), so that model reference control reduces to tra-
jectory control. The modifications required to support model ref-
erence control will be described in the next section. The cerebellar
microcircuit can be modeled as an adaptive filter (Fujita, 1982;
Dean et al., 2010), as illustrated in Figures 1A,B. In this model,
the Purkinje cell output, zt, is modeled as a weighted combination
of its parallel fiber inputs,

zt =

nw∑
i=1

wi,tpi,t = wT
t pt (1)

where nw is the number of weighted parallel fiber connections, pi,t
represents the ith parallel fiber signal at time t, wi,t is the ith weight
at time t, wt =

(
w1,t, . . . , wnw,t

)T and pt =
(
p1,t, . . . , pnw,t

)T .
The adaptive filter weights, wt, are learnt using the decorrela-

tion learning rule (Sejnowski, 1977), which is identical to the least
mean squares (LMS) rule from adaptive control theory (Widrow
and Stearns, 1985),

ẇt = −γetpt (2)

where γ is a gain that affects the learning rate and et is the error
signal, where for the basic inverse plant control problem described
in Figure 1C, the error signal is defined as

et = rt − xt, (3)

where rt is a reference signal and xt is the plant output.
The parallel fiber signals, pt, are derived from the mossy-fiber

inputs to the cerebellum, ut, after processing by the granule cell
layer. Here, the granule cell layer is represented by a bank of time-
invariant basis filters, where the filter outputs gi,t are orthonormal-
ized by a fixed matrix Q ∈ Rnw×nw in order to increase the rate
of learning (Figure 1B),

pt = Qgt, (4)

where gt =
(
g1,t, . . . , gnw,t

)T
. In this investigation, we model

the dynamics of the granule cell layer basis filters as a finite

FIGURE 1 | Simplified cerebellar microcircuit as an adaptive filter.
(A) Schematic of the basic cerebellar microcircuit. A mossy-fiber input
signal is distributed over many granule cells whose axons form parallel
fibers that synapse on Purkinje cells. The climbing fiber signals are
assumed to carry error information and act as a teaching signal for the
synaptic weights. (B) Interpretation of the cerebellar microcircuit as an
adaptive filter. Processing by the granule cells is modeled as a bank of

time-invariant linear filters, Gi, followed by a fast learning transformation
using a fixed matrix, Q. The Purkinje cell output takes a weighted sum of
the inputs, pi, where the weights are adjusted using the decorrelation
learning rule. (C) Model of VOR control, using the recurrent architecture,
C represents the adaptive cerebellar filter, B is a fixed brainstem filter, and
P the oculomotor plant. (D) Cerebellar control architecture with reference
model M.
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number, nw, of time-invariant second order linear filters, each of
the form

T 2
i g̈i,t + 2Tiġi,t + gi,t = ut, i = 1, . . . , nw (5)

where ut is a common mossy-fiber input driving all granule cell
basis filters, Ti is the time constant of the ith basis filter and
the dynamics of each filter are set to be critically damped (often
referred to as an alpha function). The choice of alpha functions is
not critical but does simplify the design because only the single
parameter, Ti, must be chosen to define each filter. The choice of
alpha functions is also similar to the spectral timing representa-
tion suggested by Bullock et al. (1994). Here we choose Ti values
to be log-spaced, motivated by coarse coding of time in biological
systems, in which signals with larger delay are more dispersed
in time, allowing a compact representation of phenomena on
both fast and slow time-scales. This biologically inspired basis set
provides a computationally efficient low-dimensional basis, which
has been shown to outperform conventional basis filters (such
as Laguerre bases) on problems involving multiple time scales
(Porrill et al., 2009).

The transformation matrix,Q, that is used in online processing
is designed offline by estimating the brainstem output when there
is no cerebellar contribution (z= 0) and filtering this brainstem
output through the bank of cerebellar alpha filters to give the filter
outputs, gt, when there is no learning. Samples of g t are combined
into a data matrix Γ ∈ Rnw×nt , where nt is the number of data
samples (note that for a long batch nt > nw),

Γ = [g1, g2, . . . , gnt
] (6)

Using an economy, or thin, singular value decomposition,
which retains only the non-zero singular values (Golub and Van
Loan, 2012), Γ is expressed as a matrix product

Γ = UΣVT (7)

where the matrices U ∈ Rnw × nw and V ∈ Rnt×nw have
orthonormal columns and the matrix Σ ∈ Rnw×nw is diagonal
(the diagonal elements are the singular values of the data matrix
Γ). Here, we assume that Γ is full rank, so that it has nw non-zero
singular values, this will usually be the case for numerical data.
However, very small singular values can often be omitted from
the decomposition above without losing accuracy, sometimes
greatly reducing the size of the transformed bases. An appropriate
transformation matrix for fast learning is then given by

Q = Σ−1UT (8)

where the term UT orthogonalizes the signals, so that they trans-
mit independent information, and Σ−1 normalizes the signals, so
that they have equal power. Orthonormalization of filter inputs in
this way is commonly used to speed up learning in adaptive signal
processing (Haykin, 2001) – the relevance of this orthonormaliza-
tion procedure to the biological processing in the granule cell layer
is considered in the discussion.

The control function of each cerebellar microcircuit also
depends on the particular architecture, which it is embedded in.

Here, we consider motor plant compensation, as implemented by
the vestibular ocular reflex (VOR). A control scheme based on the
VOR is shown in Figure 1C. The brainstem B is an approximate
feedforward controller of the plant P and the cerebellar adaptive
filter C fine tunes this control. The inclusion of a brainstem ele-
ment is suggested by the observation that the cerebellar pathway
is never solely responsible for a behavior, lesions of the cerebellum
lead to loss of speed or skill rather than loss of function. In
engineering applications, this limits the amount of gain that needs
to be stored in the cerebellar component and allows the use of the
recurrent connectivity shown in Figure 1. It also supplies a site
for learning transfer, a powerful feature of biological systems (not
included in the simulations presented here), in which learning
in the cerebellar component can be transferred to the brainstem
component over time (Porrill and Dean, 2007a).

Exact plant compensation is achieved when the desired cere-
bellar filter is

C∗(s) = B−1(s)−P(s) =
∑

wi
∗QijGj(s) (9)

where the above equation is given in the Laplace domain and s
is the Laplace variable, C∗(s) is the transfer function of the ideal
cerebellar filter andwe assume synapticweights,wi

∗, can be found
to satisfy the above equation for the range of P(s) and B−1(s)
under consideration. This assumption requires the basis functions
Gi(s) to be sufficiently complete for the given control task. Here,
the alpha basis filters in the Laplace-domain are

Gi(s) =
1

(Tis+ 1)2
, i = 1, . . . , nw. (10)

Plant compensation is achieved using a combination of a fixed
feedforward brainstem controller B(s), and a recurrently con-
nected adaptive element C(s) (as indicated by dotted lines in
Figure 1C),

K(s) =
B(s)

1−C(s)B(s)
(11)

When the cerebellar controller is optimal, the overall optimal
controller, K∗(s) will equal the inverse of the plant and is given as

K∗(s) =
B(s)

1−C∗(s)B(s)
= P−1(s) (12)

The cerebellar filter C(s) is embedded in a recurrent loop.
Recurrent connectivity is a characteristic feature of the cerebellum
(Kelly and Strick, 2003), possibly because in this architecture,
output error is a suitable training signal and no prior model of the
inverse plant is required (Porrill and Dean, 2007b). The ability to
use sensory errors directly as teaching signals greatly simplifies the
design of adaptive systems, since it places the focus of design on
connectivity (which varies from problem to problem) rather than
the learning algorithm,which is the same for each problem (Porrill
et al., 2013). This feature may account for the very large range
of tasks in which the cerebellum is implicated, and for the flat,
homogeneous structure of cerebellar control. It contrasts greatly
with the multi-component, task-based approach so characteristic
of conventional control design.
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2.2. Biohybrid Adaptive Control Scheme
If the cerebellar-inspired algorithm is to be generally useful it
must be applicable to the strictly proper plants found in many
robotic applications. For strictly proper plants, the inverse com-
pensator has an improper transfer function, which is difficult to
realize in practice, since it requires differentiators, gives noisy
high frequency performance, and can lead to instabilities in the
learning rule.

The need to control strictly proper plants is also a feature of
many biological motor systems. For example, models of the trans-
fer function of the oculomotor plant usually have one more pole
than zeros, so the plant is strictly proper. In some applications,
such as eye stabilization by the VOR, we know that the biological
system controls velocity rather than position (Dean et al., 2002);
this ensures that the overall plant is proper (since the transfer
function for velocity gains a factor of s and has an equal number of
poles and zeros). Our previous work on the adaptive filter model
of the cerebellum in the specific context of the VOR (Dean et al.,
2002; Porrill et al., 2004; Porrill and Dean, 2007a) used velocity
control methods. The oculomotor system can control position
directly, but it does so using a special class of fast eye movements
known as saccades. It may be that all biological control of strictly
proper plants works like this, by supplementing direct control
of higher derivatives of position with specialized solutions for
achieving partial control of lower derivatives, but at present, we
do not have sufficient evidence from biology to propose a strictly
biomimetic solution to the problem.

In the absence of specific information as to how biological
systems solve this problem, we propose a biohybrid approach
in which we incorporate a reference model scheme (Figure 1D)
into the cerebellar learning algorithm. This approach is known as
model reference adaptive control (MRAC) (Landau, 1979; Kauf-
man et al., 1998), and is commonly used to define the desired
closed loop performance in engineered systems. The behavior of
the controlled plant matches that of the reference modelM, which
specifies a realistic response for the controlled plant; the use of
a reference model also ensures that the estimated controller is
proper (Sastry and Bodson, 1989). When a reference model is
used, the ideal controller becomes

K∗(s) =
B(s)

1−C∗(s)B(s)
= M(s)P(s)−1 (13)

the ideal cerebellar filter is then

C∗(s) = B−1(s)−M−1(s)P(s) (14)

MRAC is a technical solution, which enables the cerebellar
algorithm to function independently of the plant order. MRAC
can be applied to the control of general plants of the form,

P(s) =

m∏
i=1

s+ bi

n∏
j=1

s+ aj

(15)

where P(s) is the laplace transform model of a plant with m zeros
and n poles and n≥m. The corresponding reference model is,

M(s) =
1

(τs+ 1)m−n (16)

whereM(s) specifies the desired response of the controlled system,
τ is a constant, and (m− n) the reference model order. The time
constant, τ , can be chosen, so the response rolls-off at frequencies
above the operating range of the plant; so the overall response is
not affected much (Kaufman et al., 1998). If the reference model
order (m− n) is large, for improved numerical robustness, the
reference model can be implemented as a cascade of first order
filters (Proakis and Manolakis, 1988; Anderson et al., 2010),

M(s) =

m−n∏
i=1

(
1

τs+ 1

)
(17)

Model reference control attempts to minimize the difference
between actual output and reference model output

et = yt − xt (18)

[replacing equation (3)]. The learning rule, which minimizes the
mean squared performance error (e2), is then

ẇt = −γetp̄t (19)

which has a similar form to the learning rule in equation (2), but
uses the reference model error defined above, while the parallel
fiber signals p̄t =

(
p̄1,t, . . . , p̄nw,t

)T , where p̄i,t = Mt ∗ pi,t and
Mt is the reference model in the time domain.

2.3. Experimental Setup
In order to investigate and evaluate the cerebellar control scheme
with reference model, the scheme was embodied in a real-time
control machine for displacement tracking control of a single
DEAP actuator. In the experiment, a small spherical mass was
loaded on a DEAP and the cerebellar algorithm controlled the
vertical displacement of the DEAP. The control scheme had to
track a band-limited white noise displacement reference signal.
A summary of the experimental set up is given in Figure 2 and
details of the experiment are provided below.

The biohybrid control algorithm (Table 1) was implemented
in LabVIEW and from there embodied in a CompactRio (CRIO-
9014,National Instruments) platform,with inputmoduleNI-9144
(National Instruments) and output module NI-9264 (National
Instruments) used in combination with a host laptop computer.
LabVIEWwas run on the host laptop computer, with communica-
tion between the host laptop and CompactRio (CRio) carried out
using the LabVIEW shared variable engine (Figure 2C). This real-
time setup enabled accurate timing of control inputs and outputs.
In all experiments, all signals were sampled simultaneously with a
sampling frequency of 50Hz.

Regarding design parameters of the cerebellar filter C, five
basis functions were used (nw = 5), four of these were alpha func-
tions (Gi) with log-spaced time constants between T1 = 0.02 and
T4 = 0.5 [see equation (10)] and one a constant filter implement-
ing a bias term. These bases were chosen as they represent the
range of time-scales expected to be required for DEAP plant com-
pensation in a relatively compact way. A fixed matrix, estimated
using SVD, was used to decorrelate and normalize parallel fiber
signals to speed up learning. The learning rateβwas chosen to give
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A

C

B

D

FIGURE 2 | Summary of experimental set up. (A) A laser sensor is used to measure the vertical displacement of a mass on a circular DEAP. (B) DEAP actuator
stretched on a circular Perspex frame supporting a spherical load. (C) Equipment used during experiments. (D) Control system and connectivity for real-time
cerebellar control experiments.

TABLE 1 | Biohybrid adaptive control algorithm.

Biohybrid algorithm For each time step, k

1 yk =M(q)rk Filter input signal through reference model M

2 gi,k =Gi(q)uk−1 Filter motor command through bank of i alpha
basis filters

3 pk =Qgk Orthonormalize parallel fiber signals via SVD for
fast learning

4 zk = wT
k pk Adaptive filter output

5 vk =B(q)(rk + zk) Filter input signal and adaptive filter output through
brainstem B

6 uk = vk +bd Add discrete offset onto brainstem output to give
motor command

7 write uk to CRio output Motor command used to drive DEAP actuator

8 read xk from CRio input Measure DEAP displacement using laser
displacement sensor

9 ek = xk − yk Error calculation

10 p̄k = M(q)pk Filter parallel fiber signal through reference model

11 wk+1 = wk − βekp̄k Update adaptive filter weights (where β=γdt)

This extended cerebellar algorithm with reference model corresponds to the architecture
given in Figure 1D. Discrete-time filters are used in the implementation, where M(q) is the
discrete version of the continuous filter M(s) calculated using zero-order-hold and q is the
shift operator (quk = uk+ 1).

robust and stable learning on a time scale, which allowed tracking
of variations in model parameters and a value of β= 4 was used
in control experiments. The fixed matrixQ [see equation (8)] was
calculated offline by estimating the brainstem output when there
was no cerebellar contribution (z= 0). This brainstem output
signal was then filtered through the bank of cerebellar alpha filters
to give amatrix of filter output signals when there is no learning,Γ.
An economy sized singular value decomposition was performed

on the filter outputs (Γ) using the MATLAB function svd with
“econ” option. This decomposition was then used to estimate Q
as detailed in Section 2.1.

TheDEAP actuators were comprised a thin, passive elastomeric
film, sandwiched between two compliant electrodes. In response
to an applied voltage, the electrodes squeeze the film in the thick-
ness direction, resulting in biaxial expansion. In order to constrain
the controlled variable to one degree of freedom, a spherical
load was placed at the center of a circular DEAP and its motion
in the vertical plane (i.e., vertical displacement) was measured
(Figures 2A,B).

The DEAPs were made of acrylic elastomer (3M VHB 4905)
with an initial thickness of 0.5mm. A conductive layer of carbon
grease (MG chemicals) constitutes the capacitor plates. The elas-
tomer was pre-stretched biaxially by 350% (where 100% was the
unstretched length) prior to being fixed on a rigid Perspex frame
with inner and outer diameters of 80 and 120mm, respectively.
The electrodes were brushed on both sides of the VHB membrane
as circles with a diameter of approximately 35mm. The load used
during experiments was a sphere weighing 3 g.

A laser displacement sensor (Keyence LK-G152, repeatability –
0.02mm) was used to measure the vertical movement of the mass
sitting on a circular DEAP (Figure 2A). This signal was supplied
to the input module of the CRio (Figure 2C). From the output
module of the CRio, voltages were passed through a potentiome-
ter (HA-151A HD Hokuto Denko) and amplified (EMCO F-121
high voltage module) with a ratio of 15V:12 kV and applied to
the DEAP.

We found that theDEAPs respondednon-linearly over their full
range of operation. In this investigation, we focused only on linear
control over a sub-region of the DEAP dynamics, which allowed
us to evaluate the MRAC scheme while retaining the power of
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linear systems analysis. Inputs to the DEAP were constrained
to be small, so the response could be approximated as linear.
This was done by limiting the displacement reference signal. The
reference signal was low-pass filtered white noise with frequency
range 0–1Hz, and the amplitude constrained to 0.2–1. In total, the
control experiment was repeated three times, with three separate
DEAP actuators.

2.4. Model-Based Design of Brainstem and
Reference Model Components
The cerebellar control scheme requires the a priori specification
of the brainstem component, B and the reference model, M
(Figure 2D). This section details how a simplemodel of the DEAP
dynamics is estimated from input–output experiments, and how
this model is used to inform design of the brainstem model B and
reference model M.

The displacement responses of the DEAPs were modeled using
a non-linear dynamic model with Hammerstein structure (static
non-linear element followed by a linear dynamic element). This
formofmodel was used as it is a simple, plausibleway of accurately
representing the DEAP dynamics. The response was modeled as

aẋ+ x =

{
bu+ c, if u < e

bu+ c+ d(u− e)2, otherwise
(20)

where x is the vertical displacement of the DEAP, u the voltage
input (prior to amplification), and a, b, c, d, and e are the model
parameters. The response is modeled as linear up to a point,
then non-linear after this point. Model parameters were esti-
mated by fitting the model to input–output data. In input–output
experiments, the voltage input u was colored noise, containing
frequencies between 0 and 1Hz and ranging from 1.1 to 3.75V.
The algorithm used to estimate the model parameters was the
trust region reflectivemethod (this was implemented inMATLAB
using the lsqnonlin function). Parameter estimates were initial-
ized by setting e= 1 and using least squares. The dynamics of the
DEAPs and their change over-time were measured by recording
the displacement response to an applied voltage over a 30-min
period. Initial model parameters were estimated by fitting to the
first minute of data.

The linear response can also be described as a transfer function
with one pole and no zeros, with a discrete offset (c/b) added to
the input u,

P(s) =
b

as+ 1
. (21)

A reference model (M) with the following form was used to
ensure stability

M(s) =
1

τs+ 1
(22)

where τ = 0.1. A time constant of 0.1 s was used as this ensures
that the controlled system responds reasonably quickly without
causing stability problems (see section 2.2). The reference model
is first order as the DEAP model has one pole and no zeros (see
section 2.2).

Plant compensation is provided by a combination of a fixed
brainstem controller B and adaptive cerebellar filter C [see equa-
tion (13)]. The fixed brainstem provides approximate feedforward

TABLE 2 |Estimatedmodel parameters [equation (20)] for six different DEAP
actuators.

Actuator a b c d e VAF (%)

1 0.085 0.317 −0.196 0.788 2.320 95.0
2 0.068 0.225 −0.266 0.651 2.476 97.9
3 0.103 0.304 −0.318 1.242 2.517 97.8
4 0.094 0.511 −0.745 1.950 2.631 98.8
5 0.093 0.348 −0.327 1.023 2.552 98.5
6 0.077 −0.013 0.222 0.532 1.970 96.6

control for the plant B and the adaptive cerebellar filter is used to
fine tune this control and adapt to changes in the plant dynamics.
The brainstem controller was designed to provide perfect com-
pensation for an approximate plant P̂, and is described using the
following transfer function

B(s) = P̂−1(s)M(s) =
aos+ 1

bo(τs+ 1)
(23)

a discrete term (bd =− co/bo) is added to the brainstem output.
The parameters ao, bo, co were based on the average parameters
from plant models of six different DEAPs (ao = 0.087, bo = 0.28,
co =− 0.27 – averages from Table 2). Therefore, the brainstem
controller provides compensation for the average DEAP model.

2.5. Summary of DEAP Experiments
The DEAP actuators are not constructed to tight tolerances and
are subjected to considerable variation in characteristics. To inves-
tigate the range of variation, we identified plant characteristics
for six different DEAP actuators (actuators 1–6). The parameters
of the fixed brainstem element were then estimated using the
averaged parameter values. The fixed approximate feedforward
controller is thus based on average manufacturing characteristics,
and is not supposed to be designed separately for each actua-
tor. The recurrently connected adaptive cerebellar filter was then
applied to the control of two of the actuators used to estimate the
fixed element (1 and 4) and to a third actuator not used in this
estimate (actuator 7).

3. Results

This section presents results from applying the adaptive filter
algorithm with MRAC extension to the displacement control of a
DEAP actuator in one degree of freedom. We first present results
on the open loop dynamics of the actuator, including estimated
model parameters for six different DEAPs, which are used to
design B and M for control. Results on the control performance
of the extended cerebellar algorithm are then provided; the algo-
rithms ability to control the DEAP to track a desired displacement
signal over time is evaluated.

3.1. Open Loop Dynamics of Dielectric
Electroactive Polymer
A colored noise voltage was applied to the DEAPs over a 30-min
period (Figure 3A), the corresponding displacement response
of the DEAP actuator was found to change over time as shown
in Figure 3B despite the input being similar over time. Model
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A

B

C D

FIGURE 3 | Dynamic response and dynamic modeling of DEAP actuator.
(A) Voltage input prior to amplification. (B) Vertical displacement response of a
mass on a circular DEAP during 30min of actuation. (C) Measured ( ) and

modeled ( ) vertical displacement for one actuator in the time domain.
(D) Measured ( ) and modeled ( ) vertical displacement for one actuator.
The range of response that can be modeled as linear is shaded.

parameters, estimated as described in section 2.4, were obtained
for six different actuators (Table 2). The variance accounted for
(VAF)metric is also given for each actuator fit, this is a measure of
themodel fit quality to the observed data (VAF≈ 100% implies the
model fit is good). Themodel provides a reasonable description of
the DEAP dynamics (Figures 3C,D) and demonstrates that total
displacement response is non-linear but can be approximated as
linear over a sub-region of the response. The region where the dis-
placement response can be approximated as linear is highlighted
in gray (Figure 3D).

3.2. Real-Time Experimental Control
The cerebellar algorithm, with a fixed SVD-based parallel fiber
optimization, was applied to the real-time control of a DEAP.
The experimental results for one DEAP (“actuator 7”) that was
manufactured to be similar, but a different actuator from the
six used to estimate the brainstem model for one displacement
tracking test are given in Figure 4. In this example, adaptation
of the cerebellar weights (learning) started after 120 s from initial
weights of zero, andwas stopped after 1,320 s (indicated by vertical
lines on Figures 4D,E). Before learning, the errors are large and
during learning, the cerebellar weights adjust to minimize the
errors. After learning is turned off, the weights no longer adapt

to compensate for changes in the DEAP dynamics and the errors
in displacement tracking gradually creep up.

Results from three different actuators are given in Figure 5.
Two of these were actuators used in the estimate of the brainstem
model, and the other a different actuator (see also Figure 4). For
each DEAP, the weights adjust to minimize errors in the displace-
ment tracking. Errors in tracking the displacement response for
actuator 4 are slightly larger. The average applied voltages (prior
to amplification) at the end of learning were 2.4, 2.9, and 2.3V for
actuators 1, 4, and 7, respectively. Inputs to actuator 4 are larger
than those to the other actuators and above the range for which
the behavior can be approximated as linear. The increased errors
in tracking the displacement response for actuator 4 are likely to
be caused by the actuator operating in its non-linear region during
experiments.

The adaptation of the controller K is analyzed here in terms
of the time–frequency response, by plotting the variation in
time of the magnitude, |K|, and phase, ∠K (this is essentially
the Bode plot of K, re-evaluated at each time-step to show its
dynamic evolution). These time–frequency response plots pro-
vide a more interpretable way of how change in adaptive filter
weights (Figures 6A–C) affects the evolution through time of the
overall controller K. Each controller has the same initialization
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A B C

D

E

FIGURE 4 | Experimental adaptive control of DEAP (“actuator 7”) using
cerebellar-inspired control. Cerebellar weights are initially set to zero and the
brainstem is an approximate fixed compensator. The vertical lines in
(D,E) indicate when learning starts and stops. (A) Desired ( ) and actual ( )

displacement of DEAP before learning. (B) Desired ( ) and actual ( )
displacement response of DEAP during learning. (C) Desired ( ) and actual
( ) displacement response of DEAP after cerebellar learning has been stopped.
(D) Estimated adaptive filter weights. (E) Windowed RMS errors during learning.

(i.e., same brainstem and cerebellar filter weights initialized to
zero) and shows a similar evolution over time in both the gain
and phase responses. The frequency response reveals that the
controller moves through a region of high gain in the early period
of adaptation before converging to a smaller magnitude of gain,
which is not obvious from the evolution of the adaptive filter
weights.

4. Discussion

4.1. Control Algorithm Performance
The results demonstrated that the cerebellar algorithm with
MRAC extension was able to accurately control the displacement

of a type of artificial muscle, a DEAP actuator, in one degree of
freedom. The results demonstrated stable learning and control
performance across a set of three actuators. The dynamics of the
DEAP actuators varied considerably across actuators and over
time, likely to be due to manufacturing tolerances, creep, aging,
and trauma. Despite these challenges, good control performance
was achieved using the cerebellar algorithm without any initial
tuning to the specific behavior of each actuator.

Prior to this investigation, we have shown that the cerebellar
algorithm is able to control a system where the plant has equal
poles and zeros by applying it to velocity control of an oculomotor
plant (VOR) (Dean et al., 2002; Lenz et al., 2009). In this contri-
bution, we have demonstrated that the algorithm can be extended
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A

C

B

FIGURE 5 | Experimental adaptive control of different DEAPs using
cerebellar-inspired control. Vertical lines indicate when learning starts.
(A) Learned weights when controlling actuator 1 (see Table 2).

(B) Learned weights when controlling actuator 4 (see Table 2). (C) RMS
errors over time during experiment for actuator 1 ( ), actuator 4 ( ),
and actuator 7 ( ).

to deal with displacement control of a strictly proper plant using
MRAC. TheMRAC-extended algorithm greatly increases the pos-
sible applications of the cerebellar algorithm for tasks in robotic
control. In particular, the scheme opens up the possibility of
controlling the force or impedance response in limb movements.

4.2. Cerebellar Control
Biological systems have evolved successful control solutions that
are robust, flexible, and applicable to a wide range of tasks. These
control algorithms must learn in situ to adapt to any changes
in the system and function during the learning process. Bioin-
spired control strategies may provide solutions to improve robotic
control, especially within unstructured, complex, changing envi-
ronments, and systems. An important step toward understanding
the biological basis for motor control is an understanding of the
algorithm implemented by the cerebellum. The uniformity of the
cerebellarmicrocircuit suggests that a generic cerebellar algorithm
is implemented in the control of many different tasks (Ito, 1984,
2008; Porrill et al., 2013). This leads to the idea of a “cerebellar
chip,” where the function of each chip depends both on an internal
algorithm and the external connections. The adaptive filter model
is a plausible candidate for the internal algorithm [see Dean et al.
(2010) for details] and here we propose a way of extending the
algorithm to handle the control of strictly proper plants. This
extension increases the potential applications of the cerebellar
algorithm to robotic control.

Although the control scheme that we propose is biohybrid
rather than biomimetic, it is interesting to consider whether
the model reference approach could actually be implemented in

biological systems. Only two substantive changes to the standard
adaptive filter algorithm are required. The first is that errors in
trajectory control must be calculated relative to the model output
and not the reference trajectory. In fact, our knowledge of how
exactly trajectories are specified in biological motor control, for
example, the skeletomotor system, is so sparse that this question
cannot yet be answered. The second change is that the learning
rule requires a processed version of the parallel fiber signal. Such
a processing stage is provided by the synaptic learning rule in
which parallel fiber signals are filtered by an eligibility trace with
a transfer function, which is approximately an alpha function as
in equation (10) with τ ≈ 100ms. If this matched the reference
model order and time constants, it would supply two extra zeros,
allowing control of plants with two more poles than zeros. An
alternative and more general algorithm can also be designed in
which it is the error signal rather than the parallel fiber signal,
which is subjected to processing. At present, there is no clear
biological evidence to favor either hypothesis.

4.3. Non-Linear Control
Here, we have focused on linear control over a sub-region of
the DEAP dynamics. However, the dynamics of the DEAPs were
non-linear over their full range of operation. Muscles also exhibit
non-linearities and therefore the biological neuromuscular con-
trol system must also overcome non-linearities. The presented
cerebellar algorithm could be extended to control non-linear
systems by using a non-linear adaptive cerebellar filter, which
includes non-linear basis, or by including an approximate plant
linearization stage in the brainstem. Both of these methods fit
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A

B

C

FIGURE 6 | Time-frequency response analysis of the cerebellar-
brainstem controller K in terms of magnitude |K| (left) and phase
∠∠∠K (right). The evolution over time of the controller magnitude and phase

shows how the adaptation of the cerebellar filter affects the controller dynamics
over the time course of the DEAP experiments. Vertical white lines indicate when
learning starts. (A) Actuator 1, (B) Actuator 4, (C) Actuator 7.

well in the framework of the presented algorithm. The non-linear
nature of DEAPs makes them a natural candidate for evaluating
future non-linear cerebellar control algorithms.

4.4. Fast Learning
A fast learning transformation was used in the embodiment of
the cerebellar algorithm in DEAP control to increase the rate
of learning. For the given DEAP control task, this was achieved
using an orthonormalization matrix, estimated from batch SVD
decomposition of the expected motor command. It is pertinent to
question whether such an orthonormalization procedure might
occur in biology, in the cerebellum. If it were to do so, the
orthonormalization of the input signal would likely occur in
granular layer processing. The importance of the granular layer is
highlighted by the fact that it contains the majority of the neurons
in the brain (Herculano-Houzel, 2010). The granule layer has a
recurrent architecture in which Golgi cells inhibit the granule
cells (Figure 7). It has previously been suggested that plasticity in
the granular network allows optimal bases to be learnt over time
by a process of decorrelation via recurrent inhibition (Coenen
et al., 2001). Interestingly, this inhibitory recurrent architecture
also bears some resemblance to machine learning algorithms
that perform a process of signal orthogonalization (Oja, 1989;
Kung et al., 1994). Whether a similar process could occur in the

FIGURE 7 | Simplified granular layer of the cerebellum showing the
recurrent connectivity between Golgi and granule cells. The input from
Golgi cells to granule cells is inhibitory. Golgi cells also receive a number of
inputs from mossy fibers directly (not shown).

granular layer of the cerebellum is an interesting area for future
investigation.

5. Summary

The aim of this paper was to extend the adaptive filter model
of the cerebellum to the control of strictly proper plants.
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This was achieved by augmenting the existing algorithm with a
model reference adaptive control (MRAC) scheme. The perfor-
mance of the biohybrid algorithm was evaluated by embodying
it in the displacement control of an artificial muscle actuator, a
dielectric electroactive polymer (DEAP). These DEAP actuators
provide a good test of the algorithms performance as their dynam-
ics vary over time and between actuators, meaning the controller
must adapt to compensate for these variations. Results show that
the extended cerebellar algorithm is able to accurately control the

displacement response of several different DEAP actuators over
time, and that MRAC provides a technical solution to extending
the adaptive filter model to the control of strictly proper plants.
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