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Various systems in nature have a Hamiltonian structure and therefore accurate time 
integrators for those systems are of great practical use. In this paper, a finite element 
method will be explored to derive symplectic time stepping schemes for (non-)autonomous 
systems in a systematic way. The technique used is a variational discontinuous Galerkin 
finite element method in time. This approach provides a unified framework to derive 
known and new symplectic time integrators. An extended analysis for the new time 
integrators will be provided. The analysis shows that a novel third order time integrator 
presented in this paper has excellent dispersion properties. These new time stepping 
schemes are necessary to get accurate and stable simulations of (forced) water waves and 
other non-autonomous variational systems, which we illustrate in our numerical results.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The dynamics of various physical phenomena, such as the movement of pendulums, planets, or water waves can be 
described in a variational framework. The development of variational principles for classical mechanics traces back to Eu-
ler, Lagrange, and Hamilton; an overview of this history can be found in [1,19]. This approach allows to express all the 
dynamics of a system in a single functional – the Lagrangian – which is an action integral. Hamiltonian mechanics is a 
reformulation of Lagrangian mechanics which provides a convenient framework to study the symmetry properties of a sys-
tem. This is expressed by Noether’s theorem which establishes the direct connection between the symmetry properties of 
Hamiltonian systems and conservation laws. When one approximates the system numerically, it is advantageous to preserve 
the Hamiltonian structure also at the discrete level. Given that Hamiltonian systems are abundant in nature, their numerical 
approximation is therefore a topic of significant relevance.

The topic of time integration of Hamiltonian systems has seen a rigorous development during the past decades. This has 
resulted in symplectic time integrators that have been designed to preserve the Hamiltonian structure for an approximated 
system. More information on symplectic integration of Hamiltonian systems can be found in [12] and [16]. According to the 
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review in [20], variational time integrators can be proven to be symplectic by construction under certain conditions. In the 
variational approach, one can derive well-known schemes or new schemes, as reported in [10,17,22,26].

One of the most actively developed numerical methods is the finite element method with time discontinuous basis 
functions. Such a discontinuous Galerkin method in time was studied in [5–7]. In particular, the variational Galerkin fi-
nite element method in time was implemented in [11,20,22]. Integrators for variational principles including forcing were 
developed among others in [20].

The study of the variational time integrators that are discussed in this paper was motivated by our research into numer-
ical discretizations of the equations describing nonlinear water waves, which have a Hamiltonian structure. The Hamiltonian 
structure of nonlinear gravity free surface water waves was shown by Zakharov [29]. In [9] (and [8]), we constructed a 
numerical water wave tank based on a discrete Miles’ variational principle with forcing. The computational method had to 
fulfill a number of requirements in order to perform the simulations of the laboratory experiments presented in [14]. First, 
the experiments with which we compared numerical results run over a long period of time, covering also an extensive spa-
tial domain, which meant that conservation of mass and bounded fluctuations of energy at the discrete level are important. 
Second, in one of the test cases in [9] (also [8]) a focussing wave was created with a wave height five times exceeding the 
ambient, incoming wave height. Therefore numerical stability had to be ensured. Third, a piston wave maker was used in 
the experiments, which gives external forcing to the system and results in a non-autonomous Hamiltonian system. It is non-
trivial to meet all these requirements, in particular in combination with a spatial discretization of the nonlinear potential 
flow water wave equations. We therefore investigate variational time integrators in detail in that paper.

In the construction of variational time integrators we choose to work with a discontinuous Galerkin finite element 
method in time, because it allows additional freedom to develop new symplectic integrators, also for non-autonomous 
Hamiltonian systems. In this method the time domain is split into elements, and in each element the variables are approxi-
mated with polynomial expansions. The discrete variational principle is then obtained by substitution of the approximations 
in the continuum variational principle, provided one calculates the contributions of the delta functions that arise. After 
evaluation of the variational principle by calculating its variations, one obtains the discrete system of equations for the 
variational time integration method.

A crucial part of the discontinuous finite element method is the numerical flux arising from the before-mentioned delta 
functions. It has to be introduced to establish a connection between the time elements since in each element only a local 
polynomial approximation is used. We study a specially chosen numerical flux, somewhat inspired by the one explored in 
[24] and [25], which in turn was based on the theory of non-conservative products developed in [4] and [28]. The flux is 
also implemented in the numerical discretization for the nonlinear potential flow water wave equations, discussed in [8,9]
and gives excellent results.

Combining the discrete variational principle with the derived numerical flux, we obtain a unified approach to construct 
time integrators for (non-)autonomous Hamiltonian systems. We have derived both well-known and novel symplectic time 
stepping schemes of first, second and third order accuracy. An extensive analysis for the discretizations is provided, including 
a linear stability analysis and an investigation of the symplectic nature of the schemes. The novel third order scheme we 
have developed is shown to have improved dispersion properties. Furthermore, within this approach we derive and test 
time stepping schemes for non-autonomous Hamiltonian systems, such as forced and damped oscillators. We study the 
approximation of forcing and damping terms considering the discrete versions of certain integrals.

In [10], a unified discontinuous Galerkin framework for time integration is given using weighted residuals for general 
nonlinear ordinary differential equations. New examples are given of two (implicit) symplectic Runge–Kutta methods, sat-
isfying the symplectic condition by construction. Our work is complementary as we derive discrete variational principles 
by staying within the variational framework, which variation subsequently yields the nonlinear algebraic set of equations 
to be solved. While our schemes are always variational by construction, the symplectic and stability conditions need to 
be verified. These conditions can be met depending on the choice of quadrature we use and the choice of the free pa-
rameter(s) in the jump conditions. This complements Zhao and Wei’s work [10], also because we developed our stable, 
variational and symplectic integrators for applications to water wave problems, since these can then be expressed as space 
and time discrete variational principles [9,27]. Extensions of the research presented here are found in Bokhove and Kalo-
girou [3].

The outline of this paper is as follows. In Section 2 we introduce the dynamics of a Hamiltonian system with one degree 
of freedom. Next, Section 3 introduces the variational discontinuous Galerkin method. Here we obtain second order time 
stepping schemes, which can be formulated in the form of well-known symplectic schemes. In Section 4 a novel time 
integrator of third order accuracy in time is derived and analyzed. We analyze its linear stability and symplectic conditions. 
In Section 5 we present numerical results for non-autonomous systems by extending the well-known symplectic schemes 
we derived in this complementary variational framework. Our novel third order time integrator is used to simulate nonlinear 
water waves in Section 6. Conclusions are drawn in Sec. 7. More details on the analysis of the time integration methods are 
presented in two appendices.
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2. Dynamics of a Hamiltonian system with one degree of freedom

The dynamics of a Hamiltonian system with one degree of freedom is embedded in the Lagrangian functional

L(p,q) :=
T∫

0

(
p

dq

dt
− H(p,q)

)
dt, (1)

where p(t) is the momentum, q(t) the coordinate, and H(p, q) the energy or Hamiltonian. The variational principle for the 
system is δL := δpL + δqL = 0, where δpL and δqL are the functional derivatives with respect to p and q. The functional 
derivatives are defined as

δL = lim
ε→0

1

ε

(
L

(
p + εδp,q + εδq

) −L
(

p,q
))

. (2)

Consider the variation of the Lagrangian functional (1)

δL(p,q) =
T∫

0

(dq

dt
δp + p

dδq

dt
− ∂ H

∂ p
δp − ∂ H

∂q
δq

)
dt = 0. (3)

After integration by parts of (3), using the end point conditions δq(0) = δq(T ) = 0, and the arbitrariness of the variations, 
the dynamics of a Hamiltonian system emerges as follows:

δp : dq

dt
− ∂ H

∂ p
= 0 and δq : dp

dt
+ ∂ H

∂q
= 0, (4)

with initial conditions p(t = 0) = p0 and q(t = 0) = q0.

3. Variational discontinuous Galerkin time discretization of a Hamiltonian system

3.1. Discrete functional

The accurate numerical approximation of equations (4) is a well-developed subject of research. Geometric integrators 
target the preservation of system properties at the discrete level and symplectic integrators ensure that the approximated 
system is also Hamiltonian [12]. We start to approximate the Lagrangian (1) rather than approximating equations (4).

To approximate the functional (1) for a single-degree-of-freedom system in time, we first divide the time domain [0, T ]
into N finite time intervals In = (tn, tn+1), n = 0, . . . , N − 1, with length �t = tn+1 − tn . Each time interval In has a constant 
length and is related to a reference domain Î = (−1, 1) through the mapping Fn , defined as

Fn : Î → In : τ �→ t = 1

2

(
tn(1 − τ ) + tn+1(1 + τ )

)
. (5)

Second, functions (p, q) are approximated element-wise with a polynomial expansion. In every element basis functions are 
continuous, but could be discontinuous across element boundaries. The finite element space is defined as

V τ := {vτ | vτ ∈ L2([0, T ]), vτ
∣∣

In
∈ P s(In), ∀In, n = 0, · · · , N − 1}, (6)

where P s is the space of polynomials of degree s. Each variable in finite element In is now approximated as pτ ∈ V τ , 
qτ ∈ V τ and represented in a time slab (tn, tn+1) as

pτ = piϕ i, qτ = qiψ i, (7)

with basis functions ϕ i , ψ i , which do not necessarily have to coincide, and expansion coefficients pi , qi . We will in par-
ticular consider Lagrange and Bernstein polynomials. Also, the Einstein summation convention will be used, which implies 
summation over repeating indices.

In order to account for the discontinuities at the element boundary we introduce the right and left traces of a variable 
d(t) at time tn as

dn,+ := lim
ε↓0

d(tn + ε) and dn,− := lim
ε↓0

d(tn − ε), (8)

respectively. At time level tn the following jump [[·]] and average { {·} }βα operators can then be defined

[[d]]
∣∣∣
tn

= dn,− − dn,+ and {{d}}βα
∣∣∣
tn

= αdn,− + βdn,+, (9)
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Fig. 1. Piecewise linear approximation in time.

where α, β are arbitrary real numbers with α + β = 1 and α, β ≥ 0. The discrete functional for the Hamiltonian system 
(1) is now obtained after introducing polynomial approximations of p and q into the functional and splitting of the time 
integral into a summation over time intervals

Lτ (pτ ,qτ ) :=
N−1∑
n=0

tn+1∫
tn

(
pτ dqτ

dt
− H(pτ ,qτ )

)
dt −

N−1∑
n=−1

[[qτ ]]{{pτ }}βα
∣∣∣
tn+1

. (10)

The last term in (10) comes as a numerical flux.1 The flux is required to establish a connection between the time element 
boundaries, as we use discontinuous basis functions.

There is still some freedom in the definition of the discrete Lagrangian (10). In the first place we need to specify 
the polynomial order of the basis functions. As in general it is not possible or desirable to compute the integral of the 
Hamiltonian analytically, we also have to choose a quadrature rule [20]. In [13] it is proven that the order of the quadrature 
rule will give an upper bound for the attainable order of the time integration scheme. Finally, the choice of the weight α in 
the flux term also leaves some freedom to derive and optimize different time integration methods.

The derivation of a time integration scheme is now performed as follows. We choose a polynomial approximation of 
order s. To obtain a scheme of order s + 1 we should take a quadrature rule with an order of accuracy that is at least s + 1
[13]. After the scheme is derived, a linear stability analysis will be performed to find appropriate weights α in the flux term. 
For our novel scheme further analysis is done to show that the scheme is symplectic.

3.2. Second order variational time discretization: Störmer–Verlet

We have rederived and reinterpreted the symplectic Euler scheme as a genuine discontinuous Galerkin scheme with 
piecewise constant polynomials for p and q, in each time slab, as well as the (modified) midpoint scheme using a discon-
tinuous Galerkin scheme in which p and q are expanded using quadratic polynomials and both evaluated at the mid-points 
pn+1/2 and qn+1/2 of the integration interval only (see, [8]).

Next we show how this can be done for a scheme of second order accuracy because we use an extension of the resulting 
Störmer–Verlet scheme for the non-autonomous systems considered in §5. To obtain a second order time integrator we 
need to choose linear basis functions in the polynomial expansions. Various options for the approximation of the variables 
and integrals are possible. Since we want to derive the known Störmer–Verlet scheme in our new approach, we take the 
trapezoidal rule for p and the midpoint rule for q, yielding

tn+1∫
tn

H(pτ ,qτ )dt = �t

2

(
H(pn,+,qn+1/2) + H(pn+1,−,qn+1/2)

)
, (11)

where the expansion coefficient qn+1/2 is the value in the middle of the time interval. We approximate the variables in each 
time element In as

pτ = tn+1 − t

�t
pn,+ + t − tn

�t
pn+1,−, (12a)

qτ = 2(t − tn)

�t
qn+1/2 + tn + tn+1 − 2t

�t
qn,+, (12b)

see Fig. 1. Introducing (11)–(12) in the discrete functional (10), we obtain

1 For alternative derivations and further background on this type of numerical flux, see Appendix C in [9] and [3,24,25].
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Fig. 2. Piecewise linear approximation in time.

Lτ (pτ ,qτ , t) =
N−1∑
n=0

(
(pn,+ + pn+1,−)(qn+1/2 − qn,+) − �t

2

(
H(pn,+,qn+1/2) + H(pn+1,−,qn+1/2)

))

−
N−1∑

n=−1

(2qn+1/2 − qn,+ − qn+1,+)(αpn+1,− + βpn+1,+). (13)

Applying the variational principle δLτ = 0, using the arbitrariness of the variations and end-point conditions δ(2q−1/2 −
q−1,+) := δq0,− = 0, δp0,− = 0, δqN,+ = 0, δpN,+ = 0, we obtain the following variational time integrator

δqn,+ : (β − 1)pn,+ + (α − 1)pn+1,− + βpn+1,+ + αpn,− = 0, (14a)

δpn,+ : qn+1/2 = qn,+ + β(2qn−1/2 − qn−1,+ − qn,+) + �t

2

∂ H(pn,+,qn+1/2)

∂ pn,+ , (14b)

δqn+1/2 : 2βpn+1,+ + (2α − 1)pn+1,− = pn,+

− �t

2

(∂ H(pn,+,qn+1/2)

∂qn+1/2
+ ∂ H(pn+1,−,qn+1/2)

∂qn+1/2

)
, (14c)

δpn+1,− : qn+1/2 − α(2qn+1/2 − qn,+ − qn+1,+) = qn,+ + �t

2

∂ H(pn+1,−,qn+1/2)

∂ pn+1,− . (14d)

In Appendix B we show that this scheme is stable for weights α ∈ [0.5, 1] and coincides under this choice with the well-
known second order Störmer–Verlet time integrator. It is interesting to note that we start with two discontinuous variables, 
but at the end there is no jump in p at the time levels tn , n = 0, . . . , N anymore. Moreover, the presence of a jump in the q
variable does not result in a scheme different from the classical one (see Appendix B).

An adjoint Störmer–Verlet scheme can be obtained via a swapped linear approximation of the variables in each ele-
ment In

qτ = tn+1 − t

�t
qn,+ + t − tn

�t
qn+1,−, (15a)

pτ = 2(t − tn)

�t
pn+1/2 + tn + tn+1 − 2t

�t
pn,+, (15b)

see Fig. 2, and a trapezoidal rule for q and a midpoint rule for p

tn+1∫
tn

H(pτ ,qτ )dt = �t

2

(
H(pn+1/2,qn,+) + H(pn+1/2,qn+1,−)

)
. (16)

Analogously to the previous case, it can be shown that this weighted scheme is stable for α ∈ [0, 0.5] and a reformulation 
allows to recover a well known formulation of the scheme, as given in [12].

4. New variational time integrators

A natural question is whether it is possible to find new time integrators following the variational approach described in 
the previous section. In this section we will construct a new time integration scheme with third order accuracy using the 
variational approach. We will investigate convergence, symplecticity, linear stability and dispersion properties.

4.1. Third order scheme

To obtain a third order scheme we choose in each time element In the following quadratic Lagrange basis functions
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Fig. 3. Piecewise quadratic approximation in time.

pτ = (tn + tn+1 − 2t)(tn+1 − t)

�t2
pn,+ + 4(t − tn)(tn+1 − t)

�t2
pn+1/2 − (tn + tn+1 − 2t)(t − tn)

�t2
pn+1,−, (17a)

qτ = (tn + tn+1 − 2t)(tn+1 − t)

�t2
qn,+ + 4(t − tn)(tn+1 − t)

�t2
qn+1/2 − (tn + tn+1 − 2t)(t − tn)

�t2
qn+1,−, (17b)

as can be seen in Fig. 3. There are three independent expansion coefficients present in the polynomial representation: pn,+
at the left boundary of the interval, pn+1/2 at the middle of the interval and pn+1,− at the right boundary of the interval 
and similarly for q. We approximate the integral over the Hamiltonian with Simpson’s third order quadrature rule as

tn+1∫
tn

H(pτ ,qτ )dt ∼= �t

6

(
H(pn,+,qn,+) + 4H(pn+1/2,qn+1/2) + H(pn+1,−,qn+1,−)

)
. (18)

The discrete functional (10) then becomes

Lτ (pτ ,qτ ) =
N−1∑
n=0

tn+1∫
tn

pτ dqτ

dt
dt − �t

6

(
H(pn,+,qn,+) + 4H(pn+1/2,qn+1/2) + H(pn+1,−,qn+1,−)

)

−
N−1∑

n=−1

(qn+1,− − qn+1,+)(αpn+1,− + βpn+1,+). (19)

This choice of quadrature rule and basis functions corresponds to the choices made in [22] for the scheme called 
“P 2N3Q 4Lob” in their paper (keeping this acronym). Nevertheless, the resulting scheme is different due to the choice 
of the numerical flux.

Applying the variational principle δLτ = 0, using the arbitrariness of the variations and end-point conditions δq0,− = 0, 
δp0,− = 0, δqN,+ = 0, δpN,+ = 0, we get a new third order scheme

qn+1/2 = (1 − 3

2
β)qn,+ + 3

2
βqn,− + �t

4

(∂ H(pn,+,qn,+)

∂ pn,+ + ∂ H(pn+1/2,qn+1/2)

∂ pn+1/2

)
, (20a)

pn+1/2 = (1 − 3

2
α)pn,+ + 3

2
αpn,− − �t

4

(∂ H(pn,+,qn,+)

∂qn,+ + ∂ H(pn+1/2,qn+1/2)

∂qn+1/2

)
, (20b)

qn+1,− = qn,+ + �t
∂ H(pn+1/2,qn+1/2)

∂ pn+1/2
, (20c)

pn+1,− = pn,+ − �t
∂ H(pn+1/2,qn+1/2)

∂qn+1/2
, (20d)

αqn+1,+ = −1

6
qn,+ + 2

3
qn+1/2 + (α − 1

2
)qn+1,− + �t

6

∂ H(pn+1,−,qn+1,−)

∂ pn+1,− , (20e)

βpn+1,+ = −1

6
pn,+ + 2

3
pn+1/2 + (β − 1

2
)pn+1,− − �t

6

∂ H(pn+1,−,qn+1,−)

∂qn+1,− . (20f)

Equations (20a) and (20b) have to be solved together as an implicit system. The other four equations are explicit.

4.1.1. Linear stability
To perform the linear stability analysis we introduce the Hamiltonian of the harmonic oscillator H(p, q) = 1

2 ω2q2 + 1
2 p2

into scheme (20). With the prescribed Hamiltonian we can formulate scheme (20) in a form

(pn+1,−,qn+1,−, pn+1,+,qn+1,+)T = A(pn,−,qn,−, pn,+,qn,+)T . (21)
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Fig. 4. Modulus of eigenvalues λi of system (20) for a linear harmonic oscillator. The shadowed area corresponds to the region where the modulus of all 
the eigenvalues is equal to one, i.e., where the scheme is stable.

Fig. 5. Modulus of the eigenvalues for the linear system (22) with α = 0.5 – solid line versus λ = 1 – dotted line.

To ensure that the numerical solution is bounded, it is required for the eigenvalues λi of the matrix A to be less than or 
equal to one in modulus [12]. The characteristic polynomial of the matrix A is a quartic function in λ. Since, the explicit 
form of the eigenvalues is complicated we therefore compute the stability criteria numerically in Matlab. We take a range 
of weights α, a range of frequencies multiplied by time step ω
t , substitute them into the expressions for the exact 
solutions of a quartic function, and show the domains where the maximum in modulus eigenvalue is smaller than one 
maxi=1,...,4|λi| ≤ 1. One can see in Fig. 4 that the only stability region located near ω
t = 0 is the one corresponding to 
α = 0.5.

For α = 0.5 and the Hamiltonian of the harmonic oscillator the transformation matrix becomes equal to

A =

⎛
⎜⎜⎜⎝

− 3
5 g − 12g

5�t 1 − g −ω2�t 1−g
4

12g
5�tω2 − 3

5 g �t 1−g
4 1 − g

1 − g −ω2�t 1−g
4

1
15 g(�t2ω2 − 9)

4g
15�t (�t2ω2 − 9)

�t 1−g
4 1 − g − 4g

15�tω2 (�t2ω2 − 9) 1
15 g(�t2ω2 − 9)

⎞
⎟⎟⎟⎠ , (22)

where g = 5�t2ω2

�t2ω2+16
. The eigenvalues are computed numerically, see Fig. 5, which is a two-dimensional slice of the plot 

in Fig. 4 with a fixed weight α = 0.5. Within the (grey) stability domain, all the eigenvalues are equal to one in modulus, 
which leads to an absence of dissipation in the numerical scheme. The numerical calculation of the eigenvalues provides the 
linear stability condition |ω�t| ≤ 1.757, which is slightly more restrictive than the criteria for the Störmer–Verlet scheme. 
Compared with the scheme P 2N3Q 4Lob in [22], we see that bumps are present in the linear stability domain for both cases, 
but the stability restriction for P 2N3Q 4Lob is less restrictive and equals |ω�t| ≤ 2

√
2. As the authors mention in [22], the 

scheme P 2N3Q 4Lob is implicit and all the equations have to be solved simultaneously, which may pose a more difficult 
numerical challenge. The third order scheme proposed here does not possess this shortcoming, as will be demonstrated 
further.

Since the value α = 0.5 gives the best stability results, the time integration scheme (20) becomes

qn+1/2 = 3

4
qn,− + 1

4
qn,+ + �t

4

(∂ H(pn,+,qn,+)

∂ pn,+ + ∂ H(pn+1/2,qn+1/2)

∂ pn+1/2

)
, (23a)

pn+1/2 = 3
pn,− + 1

pn,+ − �t (∂ H(pn,+,qn,+)

n,+ + ∂ H(pn+1/2,qn+1/2)

n+1/2

)
, (23b)
4 4 4 ∂q ∂q
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Table 1
Convergence in L∞-, L2-norms of the error in q for a harmonic oscillator, and L∞-error in the energy of the system. 
Initial conditions are q0,− = q0,+ = −0.001, p0,− = p0,+ = 0, ω2 = 0.1, the biggest time step �t = 1, the final time 
T = 40. The precision set to solve the implicit system is ε = 10−12.

Step q q Energy

L∞-error order L2-error order �H-error order
�t 4.1204E−6 – 6.1191E−6 – 1.3489E−9 –
�t/2 5.1937E−7 2.9879 7.0457E−7 3.1185 1.6565E−10 3.0256
�t/4 6.5058E−8 2.9970 8.6159E−8 3.0317 2.0613E−11 3.0065
�t/8 8.1366E−9 2.9992 1.0710E−8 3.0081 2.5735E−12 3.0017
�t/16 1.0172E−9 2.9998 1.3369E−9 3.0020 3.2171E−13 2.9999
�t/32 1.2716E−10 3.0000 1.6705E−10 3.0005 4.0211E−14 3.0001
�t/64 1.5895E−11 3.0000 2.0879E−11 3.0001 5.0263E−15 3.0000

qn+1,− = qn,+ + �t
∂ H(pn+1/2,qn+1/2)

∂ pn+1/2
, (23c)

pn+1,− = pn,+ − �t
∂ H(pn+1/2,qn+1/2)

∂qn+1/2
, (23d)

qn+1,+ = 4

3
qn+1/2 − 1

3
qn,+ + �t

3

∂ H(pn+1,−,qn+1,−)

∂ pn+1,− , (23e)

pn+1,+ = 4

3
pn+1/2 − 1

3
pn,+ − �t

3

∂ H(pn+1,−,qn+1,−)

∂qn+1,− . (23f)

The accuracy of the scheme (23) is verified for a linear system with Hamiltonian H = 1
2 p2 + 1

2 ω2q2. The results in 

Table 1 show that the scheme (23) is third order accurate. We define the L2 error as L2
err =

√∑N
n=1

∫ tn

tn−1

(
qτ − qex(t)

)2
dt for 

the polynomial approximation qτ defined in (17b) and the exact solution qex of the autonomous system derived in (A.8). 
The final results of the scheme are the values qn+1,+ , pn+1,+; therefore the L∞–error and �H–error are defined as

L∞
err = max

1≤n≤N
|qn,+ − qex(t

n)|, (24a)

�Herr = max
1≤n≤N

(
H(pn,+,qn,+)

) − min
1≤n≤N

(
H(pn,+,qn,+)

)
. (24b)

4.1.2. Dispersion relation
The dispersion analysis is performed following [15]. In order to compute the dispersion properties of the new variational 

time integration scheme (23), we take the Fourier modes (i.e., we now take λ = e−iω̂�t such that |λ| = 1)⎛
⎜⎜⎝

pn,−
qn,−
pn,+
qn,+

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

ae−iω̂n�t

be−iω̂n�t

ce−iω̂n�t

de−iω̂n�t

⎞
⎟⎟⎠ (25)

and substitute these into the system (23), which gives a linear system

e−iω̂
t(a,b, c,d)T = A(a,b, c,d)T . (26)

In general, we are not interested in the results for the variables pn+1,− , qn+1,− , as those are intermediate data. What 
matters is a relation for the variables pn+1,+ , qn+1,+ . In the continuum case, as shown in Appendix A, the exact dispersion 
relation is c = ±idω, cf. (A.7). Nevertheless, as there are four equations, all of them have to be included in the analysis. We 
manipulate system of equations (26) symbolically with Matlab to find the relations between a, b, c and d; and, to obtain 
the numerical frequency ω̂.

For the dispersion analysis we introduce the variables

x =
√

1 − �t6ω6

36(4 − �t2ω2)2
, y = �t3ω3

6(4 − �t2ω2)
. (27)

Notice, that x → 1, y → 0, when �t → 0. The first family of solutions of (26) is

a = −ibω, c = −idω, b = −
(

x + iy
)

d, (28a)

ω̂ = 1

�t
arccos

−4(4 − �t2ω2)x + �t2ω2(�t2ω2

6 − 3)

�t2ω2 + 16
. (28b)
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Fig. 6. A difference between numerical and exact frequencies ω − ω̂. The red dash line presents the dispersion relation for the Störmer–Verlet scheme and 
the blue solid line the dispersion relation (29b) for the third order scheme (23).

We see, that the second relation in (28) is the exact one. The numerical frequency is, however, wrong as can be verified 
by taking the limit �t → 0 in (28b).

The second family of solutions is

a = −ibω, c = −idω, b =
(

x − iy
)

d, (29a)

ω̂ = 1

�t
arccos

4(4 − �t2ω2)x + �t2ω2(�t2ω2

6 − 3)

�t2ω2 + 16
. (29b)

The relation c = −idω is the exact dispersion relation, and the numerical frequency converges to the exact one ω̂ → ω if 
�t → 0 in (29b), see Fig. 6.

The third family of solutions is

a = ibω, c = idω, b =
(

x + iy
)

d, (30a)

ω̂ = − 1

�t
arccos

4(4 − �t2ω2)x + �t2ω2(�t2ω2

6 − 3)

�t2ω2 + 16
. (30b)

In this case the numerical frequency converges to the negative value, ω̂ → −ω when �t → 0.
The fourth family of solutions is

a = ibω, c = idω, b =
(

− x + iy
)

d, (31a)

ω̂ = − 1

�t
arccos

−4(4 − �t2ω2)x + �t2ω2(�t2ω2

6 − 3)

�t2ω2 + 16
. (31b)

Here the numerical frequency does not converge to the correct value when �t → 0.
Since there are two parasitic modes we need to be careful that they do not pollute the solution. For the parasitic modes 

the relation b → −d holds. One important step is to choose a = c and b = d, i.e. take p0,− = p0,+ and q0,− = q0,+ as initial 
conditions. In this case the parasitic modes are eliminated. For the nonlinear water wave case we verified the consequence 
of this initial filtering numerically in §6, which appears to be sufficient to ensure stability in the nonlinear case. This absence 
of an initial jump leads to satisfactory results.

4.1.3. Symplecticity
If a one-degree-of-freedom Hamiltonian system is approximated with two variables pn and qn , the symplecticity condi-

tion is formulated as

MT J−1M = J−1, (32)

where the Jacobian of the transformation is defined as

M = ∂(qn+1, pn+1)

∂(qn, pn)
. (33)

The structure matrix J , equal to

J =
(

0 I
−I 0

)
, (34)
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Fig. 7. Evolution of variables (pn,+, qn,+) in phase space over one time period. System (23) with ω = 0.3162, �t = 0.2484 is solved for four initial conditions. 
The error in solving the linear system in the implicit step of (23) is set to ε = 10−15.

where I is the identity matrix with the dimension equal to the degrees of freedom of the Hamiltonian system, relates to 
the Hamiltonian system as(

q
p

)
t
= J∇H =

(
0 1

−1 0

)(
Hq

H p

)
. (35)

Here the subscript (·)t refers to taking a time derivative and Hq ≡ ∂ H/∂q, etc. For details we refer to [12]. Since we are 
working with an extended system, i.e. a one-degree-of-freedom Hamiltonian system is approximated with four variables 
pn,−, pn,+ and qn,−, qn,+, the matrices in the symplecticity condition (32) are also extended. We take

M = ∂(qn+1,−,qn+1,+, pn+1,−, pn+1,+)

∂(qn,−,qn,+, pn,−, pn,+)
, (36)

and the structure matrix J , defined as in (34) for a two-dimensional system. The Hamiltonian system can then be written 
as ⎛

⎜⎜⎝
q−
q+
p−
p+

⎞
⎟⎟⎠

t

= ( J )∇H =

⎛
⎜⎜⎝

0 0 0 1
0 0 1 0
0 −1 0 0

−1 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

Hq−
Hq+
H p−
H p+

⎞
⎟⎟⎠ . (37)

We verified in Matlab using symbolic manipulation that the condition (32) is valid for the new system (23). The details of 
the matrix M are not given explicitly here since the expressions are too large to present.

For a Hamiltonian system with one degree of freedom the symplecticity condition means preservation of an area in 
phase space [12]. A phase–space plane is shown in Fig. 7. A point on the plane is given as (pn,+, qn,+), as our prime interest 
lies in these variables. We define four initial conditions in the plane, that constitute a quadrilateral shape. The numerical 
approximation of a harmonic oscillator system develops according to the scheme (23). The system cycles over time through 
the same states, which are defined by the initial conditions. The area of the rectangular shape oscillates around the initial 
state, see Fig. 8.

From a geometrical point of view, the symplecticity condition (32) means in the general case with d > 1 degrees of 
freedom that the sum of the oriented areas of the projections of a shape in 2d space onto the planes (pi, qi) is conserved 
[12]. Therefore Figs. 7 and 8 do not prove symplecticity, but illustrate the property of the plus-variables pn,+, qn,+ to cycle 
through the same states.

The conclusions on the novel third order scheme (23) are as follows. The scheme is symplectic, but the linear stability 
condition is more restrictive than the condition for the Störmer–Verlet scheme. The scheme is third order accurate, which 
is verified both for linear and nonlinear problems (see §6 and also Bokhove and Kalogirou [3]).

5. Applications to non-autonomous systems

In the following section, we develop time integration of non-autonomous Hamiltonian systems.

5.1. Damped oscillator

Consider a damped one-degree-of-freedom Hamiltonian system with the following non-autonomous variational principle, 
(see [23] and [27] for related examples):
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Fig. 8. Oscillation in the area of a quadrilateral shape in phase–space shown in Fig. 7 for the harmonic oscillator computed with the third order accurate 
symplectic time integrator (23). System (23) is solved over 10 time periods with ω = 0.3162, �t = 0.2484. The precision in solving the implicit step in (23)
is set to ε = 10−15.

0 = δL̃(p,q) = δ

T∫
0

(
p

dq

dt
− H(p,q)

)
eγ tdt

=
T∫

0

(dq

dt
− ∂ H

∂ p

)
δ(peγ t) −

(d(peγ t)

dt
+ ∂ H

∂q
eγ t

)
δqdt + peγ tδq|T

0 , (38)

with γ > 0 the coefficient of the linear momentum damping and end-point conditions δq(0) = δq(T ) = 0. Variation of 
(38) with respect to the variables p and q yields Hamilton’s equations for the damped oscillator when the Hamiltonian is 
H(p, q) = 1

2 p2 + 1
2 q2 (and unit frequency). We find

δ(peγ t) : dq

dt
= ∂ H

∂ p
= p, (39a)

δq : dp

dt
+ γ p = − ∂ H

∂q
= −q. (39b)

With the coordinate transformation q = Q exp (−γ t/2) and p = P exp (−γ t/2), the variational principle then becomes

0 = δ

T∫
0

(
P

dQ

dt
− H̃(P , Q )

)
dt, (40)

with modified Hamiltonian

H̃(P , Q ) = 1

2
P 2 + 1

2
Q 2 + 1

2
γ P Q . (41)

Hence, the system (40) is reformulated as an autonomous system, viz. the modified Hamiltonian (41) is time independent 
in the new variables P and Q . We can now monitor this modified Hamiltonian at the discrete level.

5.1.1. Discretization
We start with a first order approximation of the functional (38) in time. We consider the discrete variational principle

L̃τ (pτ ,qτ ) :=
N−1∑
n=0

tn+1∫
tn

(
pτ dqτ

dt
− H(pτ ,qτ )

)
eγ tdt −

N−1∑
n=−1

[[qτ ]]{{pτ eγ t}}βα
∣∣∣
tn+1

, (42)

where the variables (p, q) are approximated as piecewise-constant per time interval (tn, tn+1). As in [8], to obtain the 
well-known formulation of the symplectic Euler scheme, we rename the approximations as qτ = qn,+, pτ = pn+1,− and take 
α = 1, β = 0. The exponential time-dependent term responsible for the damping is new and will be approximated using the 
value at the right boundary of the time element eγ tn+1

.
Substituting these approximations into (42), we obtain

L̃τ (pτ ,qτ ) :=
N−1∑
n=0

−�t H(pn+1,−,qn,+)eγ tn+1 −
N−1∑

n=−1

(qn,+ − qn+1,+)(pn+1,−eγ tn+1
). (43)
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Fig. 9. Modified total energy Hex for a damped oscillator versus time. The discrete modified energy for approximation (44a) is plotted as a solid line, the 
discrete modified energy for approximation (48) is plotted with crosses and the discrete modified energy for approximation (47) is plotted versus time 
with circles.

We take variations δL̃τ = 0 of (43) with respect to the variables pn+1,−, qn,+ , use the arbitrariness of variations and 
end-point conditions δq0,− = 0, δp0,− = 0, δqN,+ = 0, to obtain

pn+1,− = pn,− − �t
∂ H(pn+1,−,qn,+)

∂qn,+ − (
1 − eγ (tn−tn+1)

)
pn,−, (44a)

qn+1,+ = qn,+ + �t
∂ H(pn+1,−,qn,+)

∂ pn+1,− , (44b)

after division by the exponential term eγ tn+1
. We see that the first step is implicit and the second step is explicit.

The exponential term in (44a) needs some clarification. Using

1 − eγ (tn−tn+1) = 1 − e−γ �t ≈ γ �t, (45)

shows that the discrete equation (44a) is an approximation to the damped equation

ṗ + ∂ H

∂q
+ γ p = 0. (46)

This ensures that the modified total energy (41) will be preserved as will be demonstrated next.

5.1.2. Numerical results
Consider the Hamiltonian H(p, q) = 1

2 p2 + 1
2 q2. We compare three cases for the damped variational principle, viz. ap-

proximation (44a) and the more straightforward (forward and backward Euler) approximations for the damping term:

pn+1 = pn − �t
∂ H(pn+1,qn)

∂qn
− �tγ pn, (47)

or

pn+1 = pn − �t
∂ H(pn+1,qn)

∂qn
− �tγ pn+1, (48)

while the second equation (44b) in the system remains unchanged. We verify the absence of drift in a discrete version of 
the modified energy (41) at each time level tn , n = 0, . . . , N ,

Hex(pn,−,qn,+, tn) = 1

2

(
(pn,−)2 + (qn,+)2 + γ pn,−qn,+)

eγ tn
(49)

for the different approximations. The results of the discrete modified energy are presented in Fig. 9 for the different approx-
imations versus time. We see, that the modified energy for approximation (44a) oscillates around the initial state, while 
the other two approximations reveal a drift in energy. The latter was expected for the forward Euler approximation of 
the forcing term in (47). Nevertheless, the result is unexpected for the implicit scheme (48), where the approximation of 
the damping term is done analogously to the symplectic Euler scheme. Therefore our variational approach allows also the 
derivation of time integrators that result in a bounded fluctuation of special integrals.
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5.2. Forced oscillator

A Hamiltonian system is studied that has a Lagrangian (1) with a forcing f (p, q, t) added

L(p,q) :=
T∫

0

(
p

dq

dt
− H(p,q) − f (p,q, t)

)
dt. (50)

We consider the simple case of a forced oscillator. The Hamiltonian is H(p, q) = 1
2 p2 + 1

2 q2 with forcing function f (p, q, t) =
−aγ tq, where aγ is the amplitude. The corresponding system reads

dq

dt
= p and

dp

dt
= −q + aγ t. (51)

This system is non-autonomous, but we can introduce a coordinate transformation to make it autonomous, as follows

q = Q + aγ t, p = P . (52)

The Lagrangian (50) for a forced harmonic oscillator is then reformulated as

L(p,q) =
T∫

0

(
P

dQ

dt
− (1

2
P 2 + 1

2
Q 2 − aγ P

))
dt + 1

6
a2γ 2T 3. (53)

An important quantity to monitor is the Hamiltonian in the new coordinates

Ĥ = 1

2
P 2 + 1

2
Q 2 − aγ P , (54)

which will be used to compute the order of accuracy of the forced scheme. The exact solution to the problem (51) is

qex = q(0) cos(t) + (
p(0) − aγ

)
sin(t) + aγ t. (55)

Next, we will consider the symplectic Störmer–Verlet scheme to compute the evolution of this forced system.

5.2.1. Forced symplectic Störmer–Verlet scheme
We consider the second order approximation with added forcing, and investigate the accuracy for different discretizations 

of the forcing term. We construct a Störmer–Verlet time stepping method adjoint to the one discussed in detail in §3.2. We 
take appropriate polynomial approximations (15), the mixed quadrature rule (16) and α = 0. Then we obtain a discrete 
approximation of the Lagrangian (50) formulated as follows

Lτ (pτ ,qτ ) =
N−1∑
n=0

(
pn+1/2(qn+1,− − qn,+)

− �t

2

(
H(pn+1/2,qn,+) + H(pn+1/2,qn+1,−)

))

− �t

2

(
f (pn+1/2,qn,+, t∗) + f (pn+1/2,qn+1,−, t∗∗)

))

−
N−1∑

n=−1

(qn+1,− − qn+1,+)pn+1,+. (56)

Computing the variations, we obtain the following system of equations

δpn,+ : qn+1,+ = qn+1,−, (57a)

δqn,+ : pn+1/2 = pn,+ − �t

2

∂ H(pn+1/2,qn,+)

∂qn,+ − �t

2

∂ f (pn+1/2,qn,+, t∗)
∂qn,+ , (57b)

δpn+1/2 : qn+1,− = qn,+ + �t

2

(∂ H(pn+1/2,qn,+)

∂ pn+1/2
+ ∂ H(pn+1/2,qn+1,−)

∂ pn+1/2

)
,

+ �t

2

(∂ f (pn+1/2,qn,+, t∗)
∂ pn+1/2

+ ∂ f (pn+1/2,qn+1,−, t∗∗)
∂ pn+1/2

)
(57c)

δqn+1,− : pn+1,+ = pn+1/2 − �t

2

∂ H(pn+1/2,qn+1,−)

∂qn+1,− − �t

2

∂ f (pn+1/2,qn+1,−, t∗∗)
∂qn+1,− , (57d)
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Table 2
Convergence in the L∞-norm of the error in q for a forced harmonic oscil-
lator. We denote (57) with the forcing term integral approximated as (58)
by SV1, and (57) with the forcing term integral as (59) by SV2.

Step SV1 SV2

L∞
err order L∞

err order
�t 2.2291E−1 – 2.2041E−1 –
�t/2 6.2108E−2 1.8436 6.1503E−2 1.8414
�t/4 1.5590E−2 1.9942 1.5466E−2 1.9915
�t/8 3.8804E−3 2.0063 3.8516E−3 2.0056
�t/16 9.6874E−4 2.0020 9.6168E−4 2.0018
�t/32 2.4210E−4 2.0005 2.4034E−4 2.0005
�t/64 6.0518E−5 2.0001 6.0080E−5 2.0001

Table 3
Convergence in the L2-norm of the error in q for a forced harmonic oscilla-
tor. For details, see the caption of Table 2.

Step SV1 SV2

L2
err order L2

err order
�t 6.8361E−1 – 6.7380E−1 –
�t/2 1.7151E−1 1.9949 1.6961E−1 1.9901
�t/4 4.2441E−2 2.0147 4.2012E−2 2.0134
�t/8 1.0576E−2 2.0047 1.0471E−2 2.0043
�t/16 2.6417E−3 2.0012 2.6158E−3 2.0011
�t/32 6.6029E−4 2.0003 6.5381E−3 2.0003
�t/64 1.6506E−4 2.0001 1.6344E−3 2.0001

Table 4
Convergence of the extended energy error (60c) for a forced harmonic os-
cillator. For details, see the caption of Table 2.

Step SV1 SV2

�Ĥerr order �Ĥerr order
�t 2.7500E−3 – 3.0625E−3 –
�t/2 7.1553E−4 1.9423 8.0497E−4 1.9277
�t/4 1.7416E−4 2.0386 1.9731E−4 2.0285
�t/8 4.3256E−5 2.0094 4.9234E−5 2.0027
�t/16 1.0797E−5 2.0023 1.2296E−5 2.0015
�t/32 2.6981E−6 2.0006 3.0731E−6 2.0004
�t/64 6.7446E−7 2.0001 7.6824E−7 2.0001

where we decide on the choice of the time levels t∗ and t∗∗ later. Convergence tests will be performed to compare different 
forcing term approximations. We use the following approximations of the integral on the forcing term in (57)

tn+1∫
tn

f (pτ ,qτ , t)dt = �t

2

(
f (pn+1/2,qn,+, tn) + f (pn+1/2,qn+1,−, tn+1)

)
or (58)

= �t

2

(
f (pn+1/2,qn,+, tn+1/2) + f (pn+1/2,qn+1,−, tn+1/2)

)
. (59)

The convergence tests are based on the L∞-norm, see Table 2, and the L2-norm, see Table 3. Estimates of the extended 
energy error (54) is given in Table 4. The exact solution qex in (55) is used.

The set up of the numerical test is as follows. We start with �t = 1, the number of time steps is N = 40. The final 
time, where we compare the results, is T = 40. The amplitude of the forcing is a = 0.1 with γ = 0.1. The initial coordinate 
q0 = 0.1 and the initial momentum p0 = −0.1. The errors are defined as

L∞
err = max

1≤n≤N
|qn − qex(t

n)|, (60a)

L2
err =

√√√√√ N∑
n=1

tn∫
tn−1

(
qτ − qex(t)

)2
dt, and (60b)

�Ĥerr = max
1≤n≤N

(
Ĥ(pn,qn, tn)

) − min
1≤n≤N

(
Ĥ(pn,qn, tn)

)
, (60c)

where qτ is an approximation of q in the time interval (tn−1, tn). For the second order approximation considered here, we 
have qτ defined in (15).
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These schemes are all second order accurate and the extended energy Ĥ is bounded and reveals no drift in time. One of 
these approaches was successfully used for the variational water wave problem with a wave maker in [9].

6. Nonlinear potential flow water waves

We investigate the performance of the third order symplectic time integrator (23) to compute nonlinear potential flow 
water waves in a water basin. The dynamics of the water waves can be embedded in Miles’ variational principle [21]. For a 
wave basin with solid boundaries this variational principle is

0 = δL(φ,η,φs)

:= δ

T∫
0

( L∫
0

(
φs

∂η

∂t
− 1

2
g(η2 − b2)

)
dx −

L∫
0

η(x,t)∫
−b(x)

1

2
|∇φ|2dzdx

)
dt. (61)

The domain � = {0 < x < L, −b(x) < z < η(x, t)} ⊂R
2 is time dependent due to the movement of the free surface boundary 

S F : z = η(x, t). The bottom is fixed S B : z = −b(x), and also the solid walls to the left and right of the basin: SL : x = 0, x = L
are fixed. The velocity potential is denoted by φ(x, z, t), and φs(x, t) = φ(x, z = η, t) is the velocity potential at the free 
surface; ∇ is the gradient operator. The total energy or Hamiltonian of the system is the sum of potential plus kinetic 
energies

H(φ,η,φs) :=
L∫

0

1

2
g(η2 − b2)dx +

L∫
0

η(x,t)∫
−b(x)

1

2
|∇φ|2dzdx. (62)

By taking the variational derivatives with respect to φ, η, φs and the velocity potential at the fixed boundaries φ(0, z, t), 
φ(L, z, t), φ(x, −b, t), in (61) we obtain the potential flow equation with nonlinear boundary conditions [18,21,9].

When we substitute finite element approximations at the free surface η ≈ ηh(x, t) = ηl(t)ϕl(x), φs ≈ φsh(x, t) = φk(t)ϕk(x)
and φ ≈ φh(x, z, t) = φi(t)ϕ̃i(x, z) into (61) the space discrete variational principle takes the form

0 = δ

T∫
0

L(φi′ , φk, ηl)dt = δ

T∫
0

(
Mklφk

dηl

dt
− 1

2
gMklηkηl − 1

2
Aijφiφ j

)
dt, (63)

with Mkl the symmetric mass matrix and Aij the symmetric matrix associated with the kinetic energy and Laplace operator, 
given standard Lagrange basis functions ϕl(x) and ϕ̃i(x, z). Summation over repeated indices is used. Indices k and l concern 
free surface nodes and degrees of freedom, indices i and j concern all nodes and degrees of freedom, while indices i′ and 
j′ concern the interior nodes and degrees of freedom (so excluding the free surface ones). For detailed definitions we refer 
the reader to [8,9].

The basis functions in the interior remain time dependent as they follow the free surface movement. The Hamiltonian 
(62) is approximated as

H(φ,η) = 1

2
gMklηkηl + 1

2
Aij(η)φiφ j, (64)

where the boldface variables denote the vectors of unknown coefficients.
Further, as in [9], we need to approximate the variables in time. We choose within each time interval t ∈ (tn, tn+1), with 

tn+1 = tn + 
t , a quadratic expansion in time analogous to the expansion (17). Then the free surface η and potential φ are 
approximated as:

ηl = (tn + tn+1 − 2t)(tn+1 − t)

�t2
ηn,+

l + 4(t − tn)(tn+1 − t)

�t2
ηl

n+1/2 − (tn + tn+1 − 2t)(t − tn)

�t2
ηn+1,−

l (65a)

φi = (tn + tn+1 − 2t)(tn+1 − t)

�t2
φi

n,+ + 4(t − tn)(tn+1 − t)

�t2
φi

n+1/2 − (tn + tn+1 − 2t)(t − tn)

�t2
φi

n+1,−. (65b)

Using approximations (65) we obtain an approximation of the continuous variational principle (61) similar to (19), re-
sulting in the discrete minimization problem

0 = δ

N−1∑
n=0

L(φi
n,+, ηl

n,+, φi
n+1/2, ηl

n+1/2, φi
n+1,−, ηl

n+1,−)

= δ

N−1∑
Mkl

(1

6
φk

n,+(−3ηl
n,+ + 4ηl

n+1/2 − ηl
n+1,−)
n=0
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Fig. 10. Error in the energy for standing waves in a basin after one hundred time periods. A triangular tessellation is used with Nx = 81, Nz = 5 and time 
step �t = 0.00625. The precision to solve the implicit subsystem is ε = 10−12.

+ 2

3
φk

n+1/2(−ηl
n,+ + ηl

n+1,−) + 1

6
φk

n+1,−(ηl
n,+ − 4ηl

n+1/2 + 3ηl
n+1,−)

)
− �t

6

(
H(φi

n,+, ηl
n,+) + 4H(φi

n+1/2, ηl
n+1/2) + H(φi

n+1,−, ηl
n+1,−)

)

− δ

N−1∑
n=−1

1

2
Mkl(ηl

n+1,− − ηl
n+1,+)(φk

n+1,− + φk
n+1,+). (66)

Variation of (66) with respect to the independent variables φn,+
k , ηn,+

l , φn+1/2
k , φn+1/2

j′ , ηl
n+1/2, φn+1,−

k , φn+1,−
j′ , ηl

n+1,− gives 
the following variational discretization⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Mklη
n+1/2
l = 3

4 Mklη
n,−
l + 1

4 Mklη
n,+
l + �t

4

(
∂ H(φi

n,+,ηl
n,+)

∂φ
n,+
k

+ ∂ H(φi
n+1/2,ηl

n+1/2)

∂φ
n+1/2
k

)
,

Mklφ
n+1/2
k = 3

4 Mklφ
n,−
k + 1

4 Mklφ
n,+
k − �t

4

(
∂ H(φi

n,+,ηl
n,+)

∂ηn,+
l

+ ∂ H(φi
n+1/2,ηl

n+1/2)

∂η
n+1/2
l

)
,

Ai′ j′(ηn+1/2)φ
n+1/2
i′ = −Akj′(ηn+1/2)φ

n+1/2
k ,

Mklη
n+1,−
l = Mklη

n,+
l + �t

∂ H(φi
n+1/2, ηl

n+1/2)

∂φ
n+1/2
k

,

Mklφ
n+1,−
k = Mklφ

n,+
k − �t

∂ H(φi
n+1/2, ηl

n+1/2)

∂η
n+1/2
l

,

Ai′ j′(η
n+1,−)φ

n+1,−
i′ = −Akj′(η

n+1,−)φ
n+1,−
k ,

Mklη
n+1,+
l = 4

3
Mklη

n+1/2
l − 1

3
Mklη

n,+
l + �t

3

∂ H(φi
n+1,−, ηl

n+1,−)

∂φ
n+1,−
k

,

Mklφ
n+1,+
k = 4

3
Mklφ

n+1/2
k − 1

3
Mklφ

n,+
k − �t

3

∂ H(φi
n+1,−, ηl

n+1,−)

∂ηn+1,−
l

,

Ai′ j′(η
n+1,+)φ

n+1,+
i′ = −Akj′(η

n+1,+)φ
n+1,+
k . (67)

As verification test, we consider standing waves in a rectangular basin with a unit depth H = 1 and the basin length 
L = 10. A linear solution is used to set the initial condition at t = 0

η(x, t) = Aω

g
cos (kx) sin (ωt) cosh (kH); φ(x, z, t) = A cos (kx) cos (ωt) cosh (kz), (68)

with amplitude A = 0.075, wave number k = 2π Nw/L, with integer Nw = 3, and the dispersion relation ω2 = gk tanh(kH). 
The waves computed with the variational discretization (67) show no decay in discrete energy over one hundred periods of 
time, as can be seen in Fig. 10. The error in the discrete energy is used to compute the order of accuracy. As we can see in 
Table 5, the scheme is third order accurate in time.

The time integration method (67) poses a conceptual advantage compared to the second order Störmer–Verlet scheme, 
presented in this section, see also [9]. The Störmer–Verlet scheme requires a trapezoidal-midpoint quadrature rule, which 
makes it more difficult to determine the times at which the interior potential has to be evaluated, because the discrete 
Neumann operator (the inverse of Ai′, j′ ) has to be applied first. The interior velocity potential depends on the free surface 
elevation and the free surface velocity potential. It results in an unsymmetrical approximation of the variables, which is 
not optimal. The surface elevation is approximated in time via ηn,+

s and ηn+1,−
s , while the free surface potential is approx-

imated via φn,+
s and φn+1/2

s . The resulting numerical discretization, which is discussed in [9], provided excellent results, 
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Table 5
Convergence of the energy error for standing waves in 
a square basin using the third order symplectic time in-
tegrator (67). See Fig. 10 for the parameter values used. 
The results are compared after ten time periods.

Step �H-error order
�t 2.9372E−4 –
�t/2 3.66132E−5 3.0040
�t/4 4.5574E−6 3.0060
�t/8 5.6923E−7 3.0011
�t/16 7.1200E−8 2.9991
�t/32 8.8996E−9 3.0001
�t/64 1.1124E−9 3.0000

but it also required a lot of additional analysis. In contrast, the method (67) is symmetrical and therefore there is no ques-
tion of how to compute the velocity potential in the interior. Moreover, method (67) solves one implicit system with three 
equations, then six explicit steps and gives third order accuracy, while the Störmer–Verlet scheme solves an implicit sys-
tem for φi′ , φs first, then an implicit system for ηs, φi′ and one explicit step for φs . Therefore the second order scheme 
requires the solution of two uncoupled implicit systems of equations versus one coupled set of equations for the third order 
scheme.

7. Conclusions

We have constructed novel symplectic time integrators using a variational approach. The time integration method is 
based on a discontinuous Galerkin discretization in time, using a novel numerical flux, which connects the adjacent time 
slabs. We first demonstrated how several well-known time integrators, such as the symplectic Euler and Störmer–Verlet 
time integrators, can be derived using this variational approach. Subsequently, a new symplectic time integrator was derived 
third order accurate in time. The third order time integrator was shown to have excellent dispersion properties and was also 
successfully applied to compute nonlinear water waves in a basin. Finally, the variational approach to derive time stepping 
schemes was also developed and tested for non-autonomous Hamiltonian systems, such as forced and damped oscillators 
as well as driven water wave problems (see also [3]).
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Appendix A. Continuum harmonic oscillator

In this section we will show the essential steps in the analysis of the harmonic oscillator following work in [2]. The 
dynamics of a harmonic oscillator is embedded in the functional

L(p,q) :=
T∫

0

(
p

dq

dt
− H(p,q)

)
dt, (A.1)

with p(t) the momentum, q(t) the coordinate and H(p, q) the energy (or Hamiltonian) of the oscillator, which is defined as

H(p,q) := 1

2
p2 + 1

2
ω2q2, (A.2)

with the frequency ω. The variational derivative of this Hamiltonian is

δH(p,q) := ∂ H

∂ p
δp + ∂ H

∂q
δq = pδp + ω2qδq. (A.3)

From the variational principle δL(p, q) = 0 with end-point conditions δq(0) = 0, δq(T ) = 0, the dynamics of the harmonic 
oscillator emerges:(

p
q

)
t
=

(
0 −ω2

1 0

)(
p
q

)
= A

(
p
q

)
, (A.4)
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with initial conditions p(t = 0) = p0 and q(t = 0) = q0. Subscript t refers to differentiation in time. The characteristic 
polynomial for system matrix A is

λ2 + ω2 = 0 (A.5)

with eigenvalues λ = ±iω.
Following, e.g. [15], we can find the dispersion relation by taking a Fourier mode(

p
q

)
=

(
ae−iω̂t

be−iω̂t

)
. (A.6)

Solving it, we arrive at

ω̂ = ω, a = −iωb or ω̂ = −ω, a = iωb. (A.7)

Finally, the exact solution of this system used in convergence tests is(
p
q

)
=

(
cos(ωt) −ω sin(ωt)

1
ω sin(ωt) cos(ωt)

)(
p0
q0

)
. (A.8)

Appendix B. Störmer–Verlet scheme

In this section we provide the details of the analysis of the scheme given by (14) and introduced in Section 3.2. We 
demonstrate that the scheme coincides with the Störmer–Verlet time stepping scheme.

In the system of equations (14) we have three variables from the time slab (tn−1, tn): qn−1,+ , qn−1/2, pn,−; four variables 
from the time slab (tn, tn+1): pn,+ , qn,+, qn+1/2, pn+1,− , and two variables from the time slab (tn+1, tn+2): pn+1,+ , qn+1,+. 
One can notice that variables qn−1/2, qn−1,+ appear only in combination. To make the system solvable, we reformulate (14)

with the variables [[q]]
∣∣∣
tn+1

, qn+1/2 and [[p]]
∣∣∣
tn+1

and pn+1,− as unknowns:

δqn,+ : β[[p]]
∣∣∣
tn+1

= α[[p]]
∣∣∣
tn

, (B.1a)

δpn,+ : qn+1/2 = qn,+ + β[[q]]
∣∣∣
tn

+ �t

2

∂ H(pn,+,qn+1/2)

∂ pn,+ , (B.1b)

δqn+1/2 : pn+1,− = pn,+ + 2β[[p]]
∣∣∣
tn+1

− �t

2

(∂ H(pn,+,qn+1/2)

∂qn+1/2
+ ∂ H(pn+1,−,qn+1/2)

∂qn+1/2

)
, (B.1c)

δpn+1,− : α[[q]]
∣∣∣
tn+1

= qn+1/2 − qn,+ − �t

2

∂ H(pn+1,−,qn+1/2)

∂ pn+1,− . (B.1d)

In addition, we have the relations: qn+1,+ = qn+1,− − [[q]]
∣∣∣
tn+1

= 2qn+1/2 − qn,+ − [[q]]
∣∣∣
tn+1

, and pn+1,+ = pn+1,− − [[p]]
∣∣∣
tn+1

. 

Hence, there are enough equations to close the system.

B.1. Linear stability

To study the linear stability of the system (B.1), we take H = 1
2 p2 + 1

2 ω2q2. For this Hamiltonian, system (B.1) is rewritten 
in matrix form as⎛

⎜⎜⎜⎜⎜⎜⎜⎝

[[p]]
∣∣∣
tn+1

pn+1,+

[[q]]
∣∣∣
tn+1

qn+1,+

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

≡ An

⎛
⎜⎜⎜⎜⎜⎜⎝

[[p]]
∣∣∣
tn

pn,+

[[q]]
∣∣∣
tn

qn,+

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

α
β

0 0 0

2α − α
β

1 − �t2ω2

2 −�tω2β −�tω2

−�t �t3ω2

4α
β
α

(
1 + �t2ω2

2

)
�t2ω2

2α

�t �t − �t3ω2

4α 2β − β
α − �t2ω2β

2α 1 − �t2ω2

2α

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

[[p]]
∣∣∣
tn

pn,+

[[q]]
∣∣∣
tn

qn,+

⎞
⎟⎟⎟⎟⎟⎟⎠

. (B.2)

The characteristic polynomial of matrix An has the form

(
α

β
− λ)(

β

α
− λ)(λ2 + (ω2(�t)2 − 2)λ + 1) = 0, (B.3)

from which we can see that the necessary condition to satisfy the linear stability requirement |λ| ≤ 1 is to take α = β = 0.5. 
Nevertheless, this restriction can be alleviated by taking [[p]]

∣∣∣
tn

≡ 0. In this case the first row of the transformation matrix 

An in (B.2), will be removed and the characteristic polynomial (B.3) reduces to
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(
β

α
− λ)(λ2 + (ω2(�t)2 − 2)λ + 1) = 0, (B.4)

which gives two linear stability requirements:

α ≥ 0.5 and |ω�t| ≤ 2. (B.5)

Therefore, if [[p]]
∣∣∣
tn

≡ 0, a range of weights α ∈ [0.5, 1] leads to a stable system under the usual Störmer–Verlet stability 

condition.

B.2. Derivation of classical Störmer–Verlet scheme

Considering the above mentioned requirement α ∈ [0.5, 1], [[p]]
∣∣∣
tn

≡ 0, we can recover the well-known form of the 

unforced symplectic Störmer–Verlet scheme. First, we rewrite (B.1) as

δqn,+ : pn,+ = pn,−, (B.6a)

δpn,+ : qn+1/2 = βqn,− + αqn,+ + �t

2

∂ H(pn,+,qn+1/2)

∂ pn,+ , (B.6b)

δqn+1/2 : pn+1,− = pn,+ − �t

2

(∂ H(pn,+,qn+1/2)

∂qn+1/2
+ ∂ H(pn+1,−,qn+1/2)

∂qn+1/2

)
, (B.6c)

δpn+1,− : βqn+1,− + αqn+1,+ = qn+1/2 + �t

2

∂ H(pn+1,−,qn+1/2)

∂ pn+1,− . (B.6d)

We see from (B.6a), that we can denote pn := pn,+ = pn,− . Also, one can introduce a variable qn := βqn,− + αqn,+, and 
recover the known form of the system, where the first and second steps are implicit and the third step is explicit

qn+1/2 = qn + �t

2

∂ H(pn,qn+1/2)

∂ pn
, (B.7a)

pn+1 = pn − �t

2

(∂ H(pn,qn+1/2)

∂qn+1/2
+ ∂ H(pn+1,qn+1/2)

∂qn+1/2

)
, (B.7b)

qn+1 = qn+1/2 + �t

2

∂ H(pn+1,qn+1/2)

∂ pn+1
. (B.7c)

The resulting scheme is the symplectic Störmer–Verlet integrator [12]. The characteristic polynomial for the transformation 
matrix of this scheme has the form

λ2 + (ω2(�t)2 − 2)λ + 1 = 0. (B.8)

The eigenvalues λ therefore satisfy the condition |λ| ≤ 1 if |�tω| ≤ 2, which is the well-known stability condition for the 
Störmer–Verlet scheme. The dispersion relation, as discussed, for example, in [2], has the form

a = −iωb

√
1 − ω2�t2

4
, ω̂ = arccos(1 − ω2(�t)2

2 )

�t
. (B.9)
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