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Abstract—Video analytics requires operating with large
amounts of data. Compressive sensing allows to reduce the
number of measurements required to represent the video using
the prior knowledge of sparsity of the original signal, but it
imposes certain conditions on the design matrix. The Bayesian
compressive sensing approach relaxes the limitations of the
conventional approach using the probabilistic reasoning and
allows to include different prior knowledge about the signal
structure. This paper presents two Bayesian compressive sensing
methods for autonomous object detection in a video sequence
from a static camera. Their performance is compared on real
datasets with the non-Bayesian greedy algorithm. It is shown that
the Bayesian methods can provide more effective results than the
greedy algorithm in terms of both accuracy and computational
time.

I. INTRODUCTION

The significant developments in the field of sparse meth-

ods during the last decades lead to the new research and

application fields. One of the first applications of sparse

modelling is the linear regression problem where l0 and l1-

norm regularisation is considered. The latter has the advantage

that a norm term is convex, while it has not so obvious sparse

interpretation [1].

Sparse modelling is further developed in the field of signal

processing in compressive sensing [2], where the main idea

is to extract only the meaningful information from the mea-

surements. Two main problems are considered in compressive

sensing: selecting the optimal design matrix and solving ill-

posed regression, that arises in the original signal decoding

from the measurements [3].

In Bayesian modelling sparseness of the data can be

achieved by imposing special sparse prior distributions [4].

For example, in [5] the authors propose the Laplace prior on

the data. The full inference to this model is provided in [6],

using the Expectation Propagation (EP) technique. Another

work is [7], where the prior is modified to the hierarchical

Gaussian-Gamma distribution. These models are used as a

basis for Bayesian compressive sensing in [8] and [9].

The overview of recently developed sparse algorithms

and models for image and video processing is presented

in [10]. One of the essential problems in video process-

ing is autonomous object detection which is mostly solved

by background subtraction. Background subtraction aims to

distinguish the foreground (moving objects) from the back-

ground (static ones). Sparseness is natural for the background

subtraction problem as the foreground objects occupy the small

regions on a frame. Background subtraction hence represents

a natural application area for sparse modelling.

The idea to apply compressive sensing for background

subtraction is proposed, for example, in [11] and developed

in [12]. In contrast to these works in this paper we focus

on the sparse Bayesian methods for background subtraction

and the comprehensive comparison of these methods with the

conventional compressive sensing one.

The contribution of this paper is the development of a

Bayesian compressive sensing algorithm for the background

subtraction problem. In Bayesian compressive sensing the

estimated sparse coefficients are random variables with some

prior distribution. Also this paper presents the comparison of

several algorithms to evaluate their applicability in different

situations.

This paper is organised as follows. In Section II the pro-

posed approach is described. The experimental results are

presented in Section III. Section IV concludes the paper and

discusses the future work.

II. FRAMEWORK

Assume that we have a static camera. The frame B ∈
R

n1×n2 at a time instant 0 is considered as a background

frame. The video from the camera consists of the sequential

frames Vk ∈ R
n1×n2 , k ∈ {1, . . . ,K}. The aim is to detect

the moving objects in these frames.

A. Video preprocessing

The camera provides video frames in the Red-Green-Blue

(RGB) format and they are next converted to the greyscale

format. For the purposes of the compressive sensing approach

the frames are converted to vectors. Thus, the background

frame B is converted to a vector b ∈ R
n, the video frames

Vk are converted to vectors vk ∈ R
n, where n = n1n2.

B. Compressive sensing

The non-zero elements of the difference fk = vk − b

are supposed to correspond to the moving objects. As the

foreground objects take only a part of the image the vector

fk has many values that are close to zero:

‖fk‖l0 ≤ s ≪ n, (1)



l0-pseudonorm is the number of non-zero elements of a vector.

Within the compressive sensing approach the number of

measurements that are need to be taken can be reduced [2]

and the image quality may be improved [10]. The values of

the vector fk are calculated based on the set of the compressed

measurements gk ∈ R
s:

gk = Φfk, (2)

where the design matrixΦ ∈ R
s×n consists of i.i.d Gaussian

variables. It is selected according to the method proposed

in [13].

Since fk = vk − b, the computation of the coefficients gk

can be done on the acquisition step as

gk = Φfk = Φvk −Φb. (3)

The vectors Φb and Φvk are linear combinations of the

pixels of the video frames. Therefore, a single pixel camera

may be used. It means that the acquisition and background

subtraction steps use the signal with the length s rather than n.

The reconstruction step is used to restore the signal with the

length n.

The linear system (3) is underdetermined when n > s and

therefore an infinite number of solutions exists. The problem

can be determined by introducing a sparse structure in the

fk signal. This can be done by lp norm minimisation, where

p < 2 typically.

The sparse methods for this kind of problems are [14,

Chapter 13]:

• l0 - minimisation. The greedy algorithms based on least

squares estimates, stochastic search, variational inference;

• l1 - minimisation. The coordinate descent, LARS, the

proximal and gradient projection methods;

• Non-convex minimisation. The bridge regression, the hi-

erarchical adaptive lasso.

In this paper we focus on the Bayesian compressive sensing

methods [8], [15] and compare them with orthogonal match-

ing pursuit (OMP) [16], that is a greedy algorithm for l0-

minimisation.

1) Bayesian compressive sensing (BCS): The system (3) is

reformulated as a linear regression model in [8]:

gk = Φfk + ξ, (4)

where ξ is a vector which elements are the independent noise

from the Gaussian distribution: ξi ∼ N (ξi; 0, β
−1). Therefore,

the likelihood can be expressed as

p(gk|fk, β) =
n
∏

i=1

N (gi,k;Φifk, β
−1), (5)

where gi,k is the i-th element of the vector gk, Φi – the i-th

row of the matrix Φ.

To implement the full Bayesian approach, the prior distri-

butions are imposed on all the parameters:

p(fk|α) =

n
∏

i=1

N (fi,k; 0, α
−1

i ), (6)

where fi,k is the i-th element of the vector fk, α is a prior

parameter vector, αi is the i-th element of the vector α;

p(α) =

n
∏

i=1

Γ(αi; a, b), (7)

p(β) = Γ(β; c, d), (8)

where Γ(·) denotes the Gamma distribution. The values of the

hyperparameters a, b, c, d are set uniform and close to zero.

According to the Bayes rule the posterior distribution can

be written as follows:

p(fk,α, β|gk) =
p(gk|fk,α, β)p(fk,α, β)

p(gk)
, (9)

where p(gk|fk,α, β) is the likelihood term, p(fk,α, β) is the

prior term, p(gk) is the evidence term. The latter can be

expressed as:

p(gk) =

∫

fk,α,β

p(gk|fk,α, β) p(fk,α, β) dfk dα dβ. (10)

This integral is intractable, therefore some kind of approxima-

tion should be used.

In Bayesian compressive sensing [8] the decomposition of

the posterior probability into the product of the tractable and

intractable probabilities is used and the intractable one is

approximated with the delta-function in its mode:

p(fk,α, β|gk) = p(fk|gk,α, β)p(α, β|gk). (11)

The Bayes rule for the first term of (11) is as follows:

p(fk|gk,α, β) =
p(gk|fk, β)p(fk|α)

p(gk|α, β)
. (12)

These are all the Gaussians, so the probability p(fk|α, β,gk)
can be calculated straightforwardly. It is the Gaussian distri-

bution with the parameters

Σ = (βΦ⊤Φ+A)−1, (13)

µ = βΣΦ⊤gk, (14)

where A = diag(α1, . . . , αn).
The second term of the posterior probability (11) can be

expressed as:

p(α, β|gk) =
p(gk|α, β)p(α)p(β)

p(gk)
. (15)

The denominator in (15) is not tractable. The values of α, β

which maximise (15) are used. The hyperpriors are uniform,

therefore only the term p(gk|α, β) needs to be maximised:

p(gk|α, β) =

∫

p(gk|fk, β)p(fk|α)dfk. (16)

Maximisation of (16) w.r.t. α, β gives the following iterative

process:

αnew
i =

γi

µ2
i

, (17)

(β−1)new =
‖gk −Φµ‖2l2
s− Σiiγi

, (18)
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Figure 1. Comparison of the foreground restoration based on 2000 measurements by the algorithms. The three rows correspond to the three sample frames. From
left to right columns: the input uncompressed frame, uncompressed background subtraction, compressed background subtraction with Bayesian compressive
sensing, compressed background subtraction with multi-task Bayesian compressive sensing and compressed background subtraction with orthogonal matching
pursuit

where γi = 1− αiΣii.

This process together with (13) – (14) converges to the

optimal estimates.

Note that

p(fi,k) =
baΓ

(

a+ 1

2

)

(2π)
1

2Γ(a)

(

b+
f2
i,k

2

)−(a+ 1

2 )

. (19)

This is the Student-t distribution that has the most probable

area concentrated around zero. Thereby it leads to the sparse

vector fk.

2) Multitask Bayesian compressive sensing (Multitask

BCS): In [15] the Bayesian method to process several signals

that have a similar sparse structure is proposed. The multitask

setting reduces the number of measurements that should be

taken compared to processing all the signals independently.

The hyperparameter α is considered to be shared by all the

tasks.

3) Matching Pursuit: The greedy algorithms are proposed

for the l0 minimisation in [16]. These methods start with a

null vector and iteratively add non-zeros values to it until a

convergence to a threshold.

III. EXPERIMENTS

We use the Convoy dataset [12], which consists of 260
greyscale frames and the background frame. The frames are

scaled to the less resolution of 128 × 128 to avoid memory

problems. For the multitask algorithm the batches of 40

frames are run together, while for the Bayesian compressive

sensing and OMP algorithms all the frames are processed

independently. There are two sets of the experiments: one

with s = 2000 measurements and the other with s = 5000
measurements. For both sets of the experiments all three meth-

ods are run for 10 times with 10 different design matrices Φ

shared among the methods. For the quantitative comparison

the median values of quality measures among these runs are

presented.

The qualitative comparison of the methods with the same

design matrix Φ is displayed in Figures 1 – 2. The three
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Figure 2. Comparison of the foreground restoration based on 5000 measurements by the algorithms. The three rows correspond to the three sample frames. From
left to right columns: the input uncompressed frame, uncompressed background subtraction, compressed background subtraction with Bayesian compressive
sensing, compressed background subtraction with multi-task Bayesian compressive sensing and compressed background subtraction with orthogonal matching
pursuit

demonstrative frames are presented. One can notice that with

the same design matrix the models demonstrate similar results.

The figures show that 2000 measurements can be used for

object region detection, while 5000 measurements which is

only about 30% of the input resolution are enough even to

distinguish parts of the objects like doors and windows of the

cars.

For the quantitative comparison of the results the following

measures are used:

• Reconstruction error:
‖f − f̂‖l2
‖f‖l2

, where f is the signal

ground truth, f̂ is the signal, reconstructed by the algo-

rithm;

• Background subtraction quality measure (BS quality):

|S(f) ∩ S(f̂)|

|S(f) ∪ S(f̂)|
, where S(f) is the ground truth foreground

area, S(f̂) is the algorithm detected foreground area, | · |
is the cardinality of the set;

• Peak signal-to-noise ratio (PSNR):

10 log10

(

peakval2

MSE

)

, where peakval is the maximum

possible pixel value, that is 255 in our case. MSE is the

mean square error between f and f̂ ;

• Structural similarity index (SSIM) [17]:
(2µ

f
µ
f̂
+ C1)(2σf f̂

+ C2)

(µ2

f
+ µ2

f̂
+ C1)(σ2

f
+ σ2

f̂
+ C2)

, where µ
f
, µ

f̂
, σ

f
,

σ
f̂
, σ

f f̂
are the local means, standard deviations, and

cross-covariance for the images f , f̂ respectively, and

C1, C2 are the regularisation constants.

The difference between the uncompressed current frame vk

and the uncompressed background frame b is used as the

ground truth signal f for every frame (the second columns

in Figures 1 – 2), since this is the signal which is compressed

by (3).

The results are presented in Figure 3. All the quality

measures – reconstruction error, BS quality, PSNR and SSIM

– are calculated for every frame. The mean values among the

frames for each measure can be found in Tables I – II.
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Figure 3. Quantitative method comparison on the frame level. The left column corresponds to the set of the experiments with 2000 measurements, the right
column corresponds to the set of the experiments with 5000 measurements. From top to bottom rows: the reconstruction error measure (values close to 1
refer to the frames without any foreground objects), the background subtraction quality measure, the PSNR measure and the SSIM measure.

Table I
METHOD COMPARISON BASED ON 2000 MEASUREMENTS.

Algorithm Mean
frame
recon-
struction
error

Mean
frame
BS
quality

Mean
frame
PSNR

Mean
frame
SSIM

Mean
compu-
tational
time
(hours)1

BCS 0.8037 0.3518 34.2007 0.7198 0.23

Multitask
BCS

0.7608 0.4820 37.542 0.8384 0.67

OMP 0.8028 0.3510 34.1705 0.7204 0.51

1The computational time is provided for a batch of 40 frames (BCS and
OMP process each frame independently with 4 parallel workers, multitask
BCS processes all 40 frames together). Implementation is made on the laptop
with i7-4702HQ CPU with 2.20GHz, 16 GB RAM using MATLAB 2015a.

Table II
METHOD COMPARISON BASED ON 5000 MEASUREMENTS.

Algorithm Mean
frame
recon-
struction
error

Mean
frame
BS
quality

Mean
frame
PSNR

Mean
frame
SSIM

Mean
compu-
tational
time
(hours)1

BCS 0.4713 0.8119 43.8251 0.9186 0.9

Multitask
BCS

0.4702 0.8421 45.0028 0.9212 8.5

OMP 0.4578 0.8109 43.2720 0.9266 4.8

The multitask Bayesian compressive sensing algorithm

demonstrates the best results according to almost each mea-



sure. The Bayesian compressive sensing and OMP algorithms

show the competitive results but the Bayesian compressive

sensing algorithm works faster. It is worth while to note that

the multitask Bayesian compressive sensing algorithm has the

biggest variance amongst the runs with the different design

matrices, while the variances of the Bayesian compressive

sensing and OMP runs for the same matrices are quite small.

IV. CONCLUSIONS AND FUTURE WORK

This work presents two Bayesian compressive sensing al-

gorithms for autonomous object detection in video sequences.

These are the conventional Bayesian compressive sensing and

the multitask Bayesian compressive sensing algorithms. The

results presented in Figures 1 – 2 demonstrate the appropriate

reconstruction quality of the original image based on only

5000 measurements (that is ≈ 30% of the original image size).

The conventional Bayesian compressive sensing method

demonstrates similar results to the greedy OMP algorithm but

the former is more effective in terms of the computational

time. If the computational time is not critical the extension

of the Bayesian method designed for a multitask problem can

improve the performance in terms of the different measures.

Therefore, other extensions of the Bayesian method to include

the prior information need further research.

Future work will be focused on different sparse Bayesian

methods, such as the EP-based framework with the Laplace

prior proposed in [6] and the Markov Chain Monte Carlo

(MCMC) framework proposed in [18]. Future work will also

consider a correlated sparse structure of the data.
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