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ABSTRACT. Supraglacial lakes can drain to the bed of ice sheets, affecting ice dynamics, or over their
surface, relocating surface water. Focusing on surface drainage, we first discuss observations of lake
drainage. In particular, for the first time, lakes are observed to drain >70 km across the Nivlisen ice
shelf, East Antarctica. Inspired by these observations, we develop a model of lake drainage through a
channel that incises into an ice-sheet surface by frictional heat dissipated in the flow. Modelled lake
drainage can be stable or unstable. During stable drainage, the rate of lake-level drawdown exceeds the
rate of channel incision, so discharge from the lake decreases with time; this can prevent the lake from
emptying completely. During unstable drainage, discharge grows unstably with time and always
empties the lake. Model lakes are more prone to drain unstably when the initial lake area, the lake input
and the channel slope are larger. These parameters will vary during atmospheric-warming-induced
ablation-area expansion, hence the mechanisms revealed by our analysis can influence the dynamic
response of ice sheets to warming through their impact on surface-water routing and storage.

KEYWORDS: Antarctic glaciology, glacier hydrology, glacier modelling, ice-sheet modelling, remote
sensing

1. INTRODUCTION
Supraglacial lakes form where meltwater collects in topo-
graphic depressions on the surface of glaciers, ice sheets and
ice shelves (Reynolds, 1981; Echelmeyer and others, 1991;
Lüthje and others, 2006; Sundal and others, 2009; Selmes
and others, 2011; Sergienko, 2013). These lakes are
important because they lower surface albedo, increasing
the absorption of incoming radiation (Lüthje and others,
2006; Tedesco and others, 2012); they can drain to the bed
of glaciers and ice sheets, influencing ice dynamics and
subglacial drainage system development (Van der Veen,
2007; Das and others, 2008; Cowton and others, 2013;
Joughin and others, 2013); and they play a role in ice-shelf
disintegration (Scambos and others, 2003, 2009; Banwell
and others, 2013; MacAyeal and Sergienko, 2013).

Here we focus on the drainage of supraglacial lakes
across the surface of ice masses, a process that changes the
size and spatial distribution of lakes. Because surface-to-bed
lake drainage is the only way of creating new pathways
through to the bed of cold, thick ice sheets, the size and
spatial distribution of lakes plays a crucial but poorly
understood role in determining which parts of an ice sheet
are exposed to enhanced basal sliding caused by injections
of surface water to the bed.

We model the drainage of a supraglacial lake via a
supraglacial channel that forms by melting due to the
turbulent dissipation of heat by the water flow in the
channel. Surface water can also flow through firn (Forster
and others, 2014), as a sheet or through systems of many
small channels. We focus on drainage through a single
channel because observations suggest that this is a common
mechanism by which lakes drain (see, e.g., Tedesco and
others, 2013) and because much of the theory needed to
model this phenomenon can be borrowed from the well-
developed field of open-channel hydrology (see, e.g.,
Henderson, 1966).

Previous work has taken a similar approach (Walder and
Costa, 1996; Raymond and Nolan, 2000; Mayer and
Schuler, 2005; Vincent and others, 2010). The novelty here
is our more generally applicable model of channel hydrol-
ogy and our detailed analysis of the physical controls on the
surface drainage of supraglacial lakes on ice sheets.

Walder and Costa (1996) modelled lake drainage through
an ice–rock breach, and Raymond and Nolan (2000)
adapted their model to describe surface lake drainage on
alpine, debris-covered glaciers and introduce the concept of
stable and unstable drainage. During stable drainage, the
discharge from the lake decreases with time; during unstable
drainage it increases with time. Raymond and Nolan (2000)
established the following criterion for unstable drainage: the
initial incision rate of the channel must exceed the initial
rate of lake-surface lowering. Using this criterion, they
showed that a critical lake area exists above which drainage,
initiated by a lake overtopping its bank, is unstable. This
critical lake area was shown to depend on the temperature
of the lake. Both Raymond and Nolan (2000) and Mayer and
Schuler (2005), who used Raymond and Nolan’s (2000)
model to reconstruct the drainage of an ice-marginal lake in
southern Greenland, assumed a constant channel width
much greater than the depth of the channel water flow.
Vincent and others (2010) followed Walder and Costa
(1996) in assuming that water flow is controlled by a
transition through critical flow. All four studies simplified
the calculation of flow depth, either by assuming that the
flow is wide and shallow or that it is controlled by a critical
flow transition.

We make neither assumption. Instead we determine the
flow depth by applying Bernoulli’s equation and a force
balance to water as it flows out of the lake into the channel.
This allows us to apply our model to scenarios where
simplifications made by previous authors are not valid, for
example where low channel slope makes critical flow
unlikely. However, when critical flow does occur, our
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model describes it with equations similar to Walder and
Costa’s (1996). Furthermore we extend Raymond and
Nolan’s (2000) analysis of stable and unstable drainage,
explaining the physical origin of these two styles of drainage
and how and why some parameters affect stability while
others do not.

Our study is motivated by several observations of surface
lake drainage presented in Section 2. In Section 3 we
present our model equations describing the hydraulics of
water flow through a channel and the time evolution of lake
depth and channel incision. In Section 4 we examine the
model analytically to investigate the controls on drainage
stability, and in Section 5 we present the results of numerical
simulations using the model to demonstrate its behaviour
and sensitivity to key parameters. In Section 6 we discuss the
implications of our findings in relation to hypothesized
future changes in the ablation area of the Greenland ice
sheet and our new observations from East Antarctica.

2. SURFACE DRAINAGE IN WEST GREENLAND
AND EAST ANTARCTICA
In this section we motivate our theoretical study with
observations of well-studied large-scale lake drainage in
West Greenland and similar but previously unreported
drainage in East Antarctica.

Figure 1 displays two Landsat 7 satellite images acquired
on 30 June 2001 and 7 July 2001 of a land-terminating
section of the Greenland ice sheet south of Jakobshavn
Isbræ. Figure 1c and d are enlarged images of the area
outlined by the boxes in Figure 1a and b. Several blue
supraglacial lakes are visible against the white ice-sheet
surface. During the 7 days that separate the images the up-
glacier limit of the region of the ice sheet populated by lakes
moved further up-glacier and some lakes grew while others
shrank or drained completely.

Water from a lake that drains completely (e.g. lake C,
Fig. 1) can reach the bed (Das and others, 2008; Tedesco
and others, 2013). Because the drainage of lakes along the
ice–bed interface can affect ice dynamics (e.g. Das and
others, 2008; Pimentel and Flowers, 2011; Bartholomew
and others, 2011; Kingslake and Ng, 2013), the location and
evolution of supraglacial lakes have implications for the
future dynamic response of the ice sheet to atmospheric
warming. Figure 1 shows that supraglacial lake water can
also flow supraglacially into other lake basins (e.g. from
lake B into lake A), thus redistributing potential points of
basal meltwater injection.

Surface drainage is well studied in Greenland (e.g. Das
and others, 2008; Selmes and others, 2011; Tedesco and
others, 2013) and the Antarctic Peninsula (e.g. Sergienko
and MacAyeal, 2005; Van den Broeke, 2005) but has not

Fig. 1. Supraglacial lake drainage in Greenland. (a, b) Two Landsat 7 images acquired 7 days apart on 30 June and 7 July 2001. Inset in (a)
shows the location of this part of the ice sheet in Greenland. Boxes in (a) and (b) indicate the region shown in more detail in (c) and (d),
where the supraglacial drainage of water from one lake (B) to another (A) and the complete drainage of a third lake (C) are visible.
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been widely reported for Antarctica. Figure 2 displays
Moderate Resolution Imaging Spectroradiometer (MODIS)
and Landsat images of the Nivlisen ice shelf, Dronning
Maud Land, East Antarctica (70°68’ S, 12°09’ E) acquired in
December 2006 (Scambos and others, 1996). Lakes form on
the ice sheet’s flank near the grounding line (source lakes,

Fig. 2a) before rapidly draining, spreading meltwater across
the ice shelf.

Figure 2a was acquired on 5 January 2008 after several
weeks of melt and drainage. The preceding temporal
evolution of this drainage is shown in detail in Figure 2b–g,
with the time separation between images indicated. The

Fig. 2. Surface drainage in East Antarctica. (a) MODIS optical satellite image acquired on 5 January 2008 (Scambos and others, 1996)
showing source lakes, 100m surface contours (in white), the grounding line (in grey) and the Nivlisen ice shelf partially flooded with
meltwater. Inset plots peak monthly mean temperatures recorded at Novolazarevskaya station during nine austral summers. (b–g) Six
MODIS and Landsat images showing the time evolution of the 2007/08 flood. Red arrows indicate the flood wavefront, and the times
separating the image acquisitions are shown between panels (dates are day/month/year). In (g) floodwater completely covers the previous
year’s refrozen flood path. The bandings in (c), (d), (f) and (g) are artefacts introduced by a malfunction in the Landsat satellite.
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meltwater wavefront (red arrows) propagates across the shelf
at average velocities of 1.7–6.8mmin–1 along paths created
by the previous year’s refrozen floodwater. Water travels up
to 70 km and floods an area of �260 km2 (�3.3% of the ice
shelf’s area). More images (acquired between 2002 and
2009, not displayed) show that this phenomenon occurs
nearly every year. The images also reveal high interannual
variability in flood extent. In austral summers beginning in
2002, 2004, 2005, 2006 and 2007 significant flooding was
observed. In contrast, no flood was observed in imagery
obtained during austral summer 2008/09. Meteorological
observations from the Novolazarevskaya research station
(Fig. 2a) show that this summer was the coolest in the study
period, with monthly mean surface air temperature �–1°C.
Trusel and others’ (2012) study of Antarctic radar back-
scatter, which indicates surface melting, also indicates low
melt during austral summer 2008/09 in this region.

Surface drainage on Nivlisen is extensive and sensitive to
temperature. The importance of ice-shelf surface lakes has
been demonstrated by the disintegration of the Antarctic
Peninsula ice shelves (e.g. Scambos and others, 2003) and
these new observations from East Antarctica further motivate
our efforts to model and understand the surface drainage of
supraglacial lakes.

3. MODEL FORMULATION
Figure 3 shows the geometry of our surface drainage model.
A supraglacial lake drains through a channel incised into an
ice-sheet surface, the lateral position of which does not
change. We ignore the along-channel spatial dimension,
assuming that the water discharge out of the lake is
controlled by a single, stationary point in the channel near
the lake, labelled ‘lake outlet’ in Figure 3. The following
subsections derive model equations describing lake-level
evolution, energy and force balances in the turbulently
flowing water, critical flow and the incision of the channel.

3.1. Lake evolution
The lake has volume VL, surface area AL and depth hL. These
change with time and are related by the hypsometry
parameterization

hL
hLi

� �pL
¼
VL
VLi

, ð1Þ

where ALi, VLi and hLi are the lake’s reference area, volume
and depth, respectively, related by ALi =pLVLi/hLi (Clarke,

1982; Ng and Björnsson, 2003). Vertically walled lakes are
described by a lake-shape parameter pL = 1, bowl-shaped
lakes by 1<pL < 3, conical lakes by pL = 3 and lakes shaped
like a musical horn by pL > 3 (Clarke, 1982). For example,
Kingslake (2013, fig. 7.8) shows that the hypsometry of a
supraglacial lake surveyed in Greenland by Georgiou and
others (2009) can be parameterized by Eqn (1) using
pL� 1.5. Lake depth evolves with time t due to a meltwater
input Qin (assumed constant) and outflow through the
channel Q according to

dhL
dt
¼

1
ALi

hLi
hL

� �pL � 1

Qin � Qð Þ: ð2Þ

This lake-level evolution equation is derived by combined
water mass conservation in the lake, dVL/dt=Qin –Q, with
Eqn (1) (see Kingslake, 2013, ch. 2). We neglect melting of
ice within the lake and its impact on lake volume and shape
(Tedesco and others, 2012).

3.2. Bernoulli’s equation
The following derivation can be found in many open-
channel hydraulics textbooks (e.g. Henderson, 1966). We
include the details here for completeness. We assume that
all the water in the lake flows along open streamlines that
extend from within the body of the lake, where we assume
the water is stagnant, out along the channel. We apply
Bernoulli’s equation to the water as it flows along such a
streamline that lies on the water’s surface and the centre line
of the channel (Henderson, 1966):

zþ
u2

2g
¼ constant, ð3Þ

where g is the acceleration due to gravity (9.8m s–2), u is the
surface velocity of the flow and z is the height of the water
above an arbitrary datum, which we take as the lake bed
(Fig. 3). This can be thought of as a statement of the
conservation of energy in the flowing water that neglects the
energy used in enlarging the channel through melt. We
assume that there are no closed streamlines on the surface in
the lake. We denote the surface velocity of the water in the
channel at the lake outlet by v, the height of the channel
bottom above the lake bed by hC and the depth of flow in
the channel by D. Applying Eqn (3) at the lake end of the
streamline, where u=0 and z=hL, and in the channel at the
lake outlet, where u= v and z=hC +D, yields

hL ¼ hC þDð Þ þ
v2

2g
: ð4Þ

We assume uniform, pseudo-steady plug flow in the lake
outlet, i.e. that the flow changes relatively slowly in the
along-channel direction and over time and the flow velocity
is uniform across the cross section of the flow. We also
assume that the channel has a rectangular cross-section with
constant width w. Hence, the water discharge at the lake
outlet is

Q ¼ vwD ð5Þ

and Eqn (4) becomes

hL � hC ¼ Dþ
Q2

2gw2D2 : ð6Þ

The solid curve in Figure 4 plots the discharge Q as a
function of the depth of flow D as defined by Eqn (6).
This classic curve from open-channel flow theory (e.g.
Henderson, 1966) has two branches with dD/dQ<0 and

Fig. 3. Schematic of the surface lake drainage model geometry
(a) before drainage (initial conditions) and (b) during drainage.
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dD/dQ>0, corresponding to subcritical and supercritical
flow, respectively (corresponding to Fr<1 and Fr>1, where
the Froude number Fr is given by Fr= v(gD)–0.5). They meet
at a critical point (C) where D=DC and discharge is at a
maximum, QC. Maximizing Q with respect to D by
differentiating Eqn (6) reveals how DC is related to hL, hC
and QC:

DC ¼
2
3
ðhL � hCÞ and QC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gw2D3
C

q

: ð7Þ

3.3. Force balance
To complete the model’s description of water flow at the
lake outlet, we balance the forces acting on a slab of water
of unit along-channel length, unit width and height D. We
parameterize the shear stress �F exerted on the water by the
ice with the Darcy–Weisbach equation,

�F ¼
1
8
fR�wv2, ð8Þ

where fR is the channel’s hydraulic roughness and �w is the
density of water. The along-channel gravitational driving
stress is

�G ¼ �wgD�b, ð9Þ

where �b is the along-channel slope, which we assume
constant and uniform. Again assuming steady flow, we
equate �F and �G. Eliminating v between the result and
Eqn (5) and rearranging for Q yields an expression for the
discharge in terms of the channel slope, the channel width,
the depth of flow and the channel roughness:

Q ¼

ffiffiffiffiffiffiffiffiffiffiffi

8g�b
fR

s

wD
3
2: ð10Þ

The dashed and dotted curves in Figure 4 plot this
discharge–flow-depth relationship using two alternative
pairs of values for the slope and hydraulic roughness of
the channel. The channel corresponding to the dotted curve
is steeper and smoother than that corresponding to the
dashed curve. Points A and B, where these curves intercept
the solid ‘Bernoulli curve’, indicate the discharge Q and
depth of flow D, which obey the force-balance equation
(Eqn (9)) and Bernoulli’s equation (Eqn (6)) in each channel.

3.4. Subcritical and supercritical flow
Points A and B lie on the subcritical and supercritical
branches of the Bernoulli curve respectively; depending on
the characteristics of the channel, flow can be subcritical or
supercritical. When flow is supercritical at some position
along a flow path, hydrologists usually assume that dis-
charge is controlled by a transition from subcritical to
supercritical flow somewhere upstream. At such a transition,
flow is critical, and discharge and flow depth can be easily
calculated by maximizing discharge with respect to flow
depth (e.g. Eqn (7)).

We adopt a similar approach here to deal with super-
critical flow conditions. When the solution to the Bernoulli
and force-balance equations indicates supercritical flow we
assume that the flow is controlled by a transition to critical
flow at the lake outlet and calculate discharge with Eqn (7).

3.5. Channel incision
Heat transferred from the turbulently flowing water to the
ice melts and enlarges the channel. We assume the lake
temperature is 0°C, so that the only source of heat is

frictional dissipation in the flowing water. The ice mass
melted per unit length of the channel per unit time, m, is

m ¼
�Fvw
L

ð11Þ

(e.g. Walder and Costa, 1996), where L is the specific latent
heat of fusion of ice (334 kJ kg–1). For simplicity we assume
that melting occurs in the channel bottom but not at the
sides. This is motivated by other studies that make the same
simplification (e.g. Mayer and Schuler, 2005; Vincent and
others, 2010) and the fact that at present it is unclear how
best to apportion frictional melting between the channel’s
bottom and sides. Accordingly, the rate of change of the
height of the channel bottom above the lake bed is given by

dhC
dt
¼ �

fR�w
8L�i

v3: ð12Þ

Equations (2), (5), (6), (7), (10) and (12) complete the model.
They describe respectively the time evolution of lake level,
the relationship between discharge and flow velocity,
Bernoulli’s equation in the water flowing from the lake into
the channel, the characteristics of critical flow, the balance
of the frictional and gravitational forces in the flowing water,
and the rate of channel incision.

The model assumes that (1) drainage is controlled entirely
by the flow through one point in the channel near the lake,
labelled ‘lake outlet’ in Figure 3; (2) flow at the lake outlet
can be assumed to be steady and uniform, i.e. the flow
changes relatively slowly in time and along the channel;
(3) we can ignore the energy used in melting when
considering the balance of potential and kinetic energy in
the water as it flows out of the lake into the lake outlet;
(4) melt is restricted to and distributed evenly across the
floor of the channel such that the channel’s width and slope
are constant; and (5) energy dissipated as heat by the water
flowing through the lake outlet is used locally for melting.

These assumptions are restrictive but analysis of the
model still yields useful mechanistic insights into drainage.

4. DRAINAGE STABILITY
We will demonstrate how supraglacial drainage of a lake
can be either stable or unstable. As shown by Raymond and
Nolan (2000), the origin of the two styles of drainage is the

Fig. 4. Depth of flow D as a function of discharge Q according to
Bernoulli’s equation (Eqn (6); solid curve) and the force-balance
equation (Eqn (9); dashed and dotted curves). The two force-
balance curves correspond to two alternative pairs of values for the
slope and hydraulic roughness of the channel.
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competition between the channel incision rate and the lake
lowering rate. We take the analysis further and show how
stable drainage remains bounded and may stop before the
lake has emptied completely, while unstable drainage grows
unboundedly with time, completely emptying the lake. We
also explain why some model parameters affect drainage
stability while others do not, and analyse the drainage of
three idealized lakes: (1) a vertically sided lake that receives
no input of water (pL = 1, Qin = 0), (2) a non-vertically sided
lake that also receives no input (pL > 1, Qin = 0), and (3) a
vertically sided lake that receives a constant water input
(pL = 1, Qin > 0). We restrict this section’s analyses to
considering subcritical flow conditions and show later in a
numerical sensitivity analysis that this is appropriate for a
wide range of realistic parameter values.

We define � as the height difference between the lake’s
surface and the bottom of the channel (� =hL –hC) (Fig. 3)
and begin by deriving an expression for the time evolution
of �. Recasting the Bernoulli and force–balance equations
(Eqns (6) and (10)) in terms of the flow velocity v (using
Eqn (5)) and rearranging both for the flow depth D yields

D ¼ � �
v2

2g
ð13Þ

and

D ¼
v2fR
8g�b

: ð14Þ

Eliminating D between the two equations above and
rearranging yields the following expression relating the flow
velocity and the height difference �:

v2 ¼ �
2g

1þ fR
4�b

: ð15Þ

Eliminating v between this and the channel-incision equa-
tion (Eqn (12)) yields

dhC
dt
¼ � ��

3
2, ð16Þ

where

� ¼
fR�w
8L�i

2g

1þ fR
4�b

0

B
@

1

C
A

3
2

: ð17Þ

Using Q= vwD, Eqn (14) is expressed as

Q ¼
v3wfR
8g�b

: ð18Þ

Then eliminating v between this expression and Eqn (15)
reveals how discharge Q depends on �:

Q ¼ ��
3
2, ð19Þ

where

� ¼
2g

1þ fR
4�b

0

B
@

1

C
A

3
2

wfR
8g�b

: ð20Þ

Substituting this into Eqn (2) yields

dhL
dt
¼

1
ALi

hLi
hL

� �pL � 1

Qin � ��
3
2

h i
: ð21Þ

The model has been reduced to a pair of ordinary
differential equations for hL and hC (Eqns (16) and (21)).

An expression for the time evolution of � is obtained by
differencing dhL=dt and dhC=dt to give

d�
dt
¼

1
ALi

hLi
hL

� �pL � 1

Qin � ��
3
2

� �
þ ��

3
2: ð22Þ

This equation incorporates the two competing mechanisms
that control lake drainage: changes in the lake level due to
an imbalance between the meltwater input Qin and the
discharge through the channel (the first term on the right)
and downward incision of the channel into the ice surface
through frictional melting (the second term on the right).
Armed with this equation, the equation for the time
evolution of hC,

dhC
dt
¼ � ��

3
2, ð23Þ

and the definitions of � and �,

� ¼
2g

1þ fR
4�b

0

B
@

1

C
A

3
2

fR�w
8L�i

, � ¼
2g

1þ fR
4�b

0

B
@

1

C
A

3
2

wfR
8g�b

, ð24Þ

we consider three idealized lakes, chosen to simplify the
analysis and allow us to demonstrate the physics of
channelized supraglacial drainage as described by our
model.

The first idealized lake receives no water input from its
surroundings and is vertically sided (Section 4.1). We will
show that such a lake can drain stably, with discharge
decreasing with time, or unstably, with discharge increasing
with time. Applying the model to such a simplified lake
allows the physical controls on its behaviour to be analysed,
but it is probably not representative of real supraglacial
lakes. The second idealized scenario we analyse is drainage
from a lake with hypsometry such that its surface area
decreases during drainage. We show that when such
drainage is initially unstable it stabilizes after the surface
area has decreased sufficiently. Finally, a vertically sided
lake is supplied with an input of water, which we show
always causes the lake to empty completely.

4.1. A vertically sided lake with no input
For a vertically sided lake (pL = 1) that receives no water
input (Qin = 0), Eqn (22) reduces to

d�
dt
¼ �

3
2 � �

�

ALi

� �

: ð25Þ

4.1.1. The drainage stability parameter
Consider the initiation of lake drainage shown in Figure 3. A
snow dam in the channel fails when the lake is a height �0
above the channel bottom (� = �0) and lake drainage begins;
this initiation mechanism has been observed in Greenland
(Tedesco and others, 2013). Equation (25) determines how �

changes with time as drainage progresses. Of particular
significance is the quantity in parentheses in Eqn (25), the sign
of which determines whether � increases or decreases with
time. We call this quantity the ‘drainage stability parameter’,

� ¼ � �
�

ALi
: ð26Þ

If � is positive, d�=dt is also positive and � increases
unstably with time. Physically, the channel incises the ice
surface more rapidly than the lake’s surface is drawn down
by the water flowing out through the channel. A positive
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feedback operates between � and @�=@t because discharge
Q increases with � (Eqn (19)). Discharge grows unboundedly
with time, so we call this drainage unstable. Vertically sided
lakes that drain unstably will always empty completely. In
contrast, if � is negative, � andQ always decrease with time.
Physically, the lake’s surface, which is initially higher than
the channel (by a distance �0), is drawn down more rapidly
than the channel is incised, which causes the depth of flow
to decrease over time. Note that, if � is negative but
sufficiently close to zero, the lake can still empty before the
decreasing Q has had time to reach zero (this will be shown
in Section 4.1.3). This style of drainage, which does not
grow unboundedly with time, we call stable.

The importance of the stability parameter � can be seen
more directly after integrating Eqn (25) to yield expressions
for the time evolution of the height difference � and, using
Eqn (19), the discharge Q:

� ¼
1

1ffiffiffiffiffi
�0

p � � t2

 !2 , ð27Þ

Q ¼
�

1ffiffiffiffiffi
�0

p � � t2

 !3 : ð28Þ

When � > 0, the terms in the denominators on the right of
Eqns (27) and (28) decrease with time, causing � and Q to
‘blow up’ in finite time tb ¼ 2=ð�

ffiffiffiffiffi
�0
p
Þ; of course, the lake

runs out of water before this. Conversely, when � < 0, � and
Q decrease with time, and drainage can halt before all the
water has been evacuated from the lake. Figure 5 depicts
these two drainage styles and shows the time evolution of
discharge as defined by Eqn (28) for several different values
of �.

4.1.2. Physical controls on stability
Clearly, how much and how rapidly water escapes from the
lake during drainage depends strongly on the stability of
drainage. We now examine what controls stability, with the
aim of understanding how the physical conditions on an ice
sheet’s surface could affect water transfer between supra-
glacial lakes.

From Eqn (26), the stability parameter � depends on the
reference surface area ALi. In fact, in plotting Figure 5 we
used ALi to vary �. (Note that, because we are considering a
vertically sided lake, lake area AL equals its reference value
ALi always, but more generally ALi is the initial lake area.)
Equation (26) shows that increasing ALi encourages unstable
drainage. Physically, this is because, for a given outflow, the
channel incision rate is independent of the lake’s surface
area (Eqn (23)), whereas, the larger the lake’s area is, the
slower its level drops. Because the rates of lake-surface
drawdown and channel incision compete to control the
outlet flow depth and hence how discharge evolves, a larger
lake area encourages unstable drainage.

To understand the other physical controls on drainage
stability, we use the definitions of � and � (Eqn (24)) to
expand � (Eqn (26)):

� ¼
fR�w
8L�i

2g

1þ fR
4�b

0

B
@

1

C
A

3
2

1 �
ð�iL=�wgÞw
ALi�b

� �

: ð29Þ

Increasing the channel slope �b increases the water flow
velocity, which increases channel-incision and lake-draw-
down rates. This manifests as an increase in the quantity
outside the square brackets in Eqn (29) and increases the
rate at which discharge Q changes with time (Q increases or
decreases with time, depending on drainage stability).
However, for the lake-drawdown rate this increase is
slightly compensated for by a decrease in flow depth caused
by the increase in �b and the hydraulics of open-channel
flow (as described here by the Darcy–Weisbach equation).
This effect manifests as a decrease in the second term in the
square brackets. Hence the net effect of increasing �b is to
promote unstable drainage.

In contrast, increasing the channel width w promotes
stable drainage. The channel-incision rate is independent of
w, but increasing w accelerates lake drawdown by in-
creasing the discharge through the channel for a given flow
velocity (Eqn (5)), stabilizing drainage.

Interestingly, the hydraulic roughness fR is absent from
the square brackets in Eqn (33) and hence does not affect
drainage stability. Decreasing fR increases the flow velocity,
which affects both channel incision and lake drawdown.
Decreasing fR decreases flow depth, compensating for the
increase in discharge from the faster-flowing water. How-
ever, this is balanced by a corresponding decrease in
channel-incision rate due to a decrease in the shear stress �b
(Eqn (8)) and hence a drop in the heat dissipation that incises
the channel.

Note that the height of the snow dam when it fails, �0 (the
initial value of �) does not appear in the definition of � (Eqn
(29)) and so it has no effect on drainage stability. It does,
however, affect the initial discharge and hence how fast the
lake empties and, during stable drainage, whether it empties
at all.

Table 1 summarizes the effects that increases in the initial
lake area ALi, the channel slope �b, the channel width w,
the channel roughness fR and the intial flow depth in the
channel �0 have on the lake-level drawdown rate, the
channel-incision rate and drainage stability.

4.1.3. Stable but complete drainage
During stable drainage (�<0) the discharge decreases to
zero asymptotically with time. Drainage may end (�! 0)

Fig. 5. Time evolution of channel discharge corresponding to six
values of the drainage stability parameter � calculated using
Eqn (32). The six stability parameters have been calculated using
the initial lake areas, ALi, shown and the following typical values for
other parameters: fR = 0.25, wC =2m, �b = 0.01 and pL = 1.

Kingslake and others: Channelized surface drainage of supraglacial lakes 191



before the lake is empty; alternatively, the lake may empty
completely before � reaches zero. To understand these
alternatives, we use the expressions for dhC=dt and d�=dt in
Eqns (23) and (25) to examine how model solutions move
through hC–� phase space.

Figure 6 plots several solution trajectories in the hC–�
phase space, each corresponding to a different value of �.
Examples of both stable (�< 0) and unstable (�> 0)
trajectories are plotted. Their gradients are determined by
dividing Eqn (23) by Eqn (25) to give

dhC
d�
¼
dhC
dt

dt
d�
¼

� ��
3
2

�
3
2 � �

�
ALi

� � ¼ �
�

�
: ð30Þ

This equation and Figure 6 show that, during stable
drainage, dhC/d� >0, and whether or not the lake empties
completely is determined by the magnitude of this gradient.
When dhC/d� is sufficiently small, the solution trajectory in
Figure 6 meets the vertical axis (where � =0) and drainage
halts while there is still water in the lake. When dhC/d� is
large, the trajectory meets the horizontal axis (where hC = 0)
and the lake empties.

As the channel bottom height is initially hLi – �0 (Fig. 3),
Eqn (30) and Figure 6 show that its final height, hfinal, is
given by

hfinal ¼ hLi � �0ð Þ þ �0
�

�
: ð31Þ

The lake will empty completely if hfinal = 0. The critical
value of � just sufficient to empty the lake as both discharge
and � reach zero, �C, is given by

�C ¼ �
�

hLi
�0
� 1

� � : ð32Þ

A stability parameter � which obeys �C��� 0 will result in
stable but complete drainage.

4.2. A non-vertically sided lake with no water input
Real supraglacial lakes are not vertically sided. Usually, the
fuller a lake is, the larger its area is (Fig. 3), with a
hypsometry parameter pL > 1. We examine the drainage of
such lakes here. Still ignoring water input to the lake
(Qin = 0), with pL 6¼ 1, Eqn (22) becomes

d�
dt
¼ �

3
2 � �

�

ALi
hLi
hL

� �pL� 1
 !

ð33Þ

or

d�
dt
¼ �

3
2 ~�, ð34Þ

where

~� ¼ � �
�

ALi
hLi
hL

� �pL � 1

ð35Þ

is a generalized stability parameter (it reduces to � when
pL = 1). This parameter accounts for the effect of the lake’s
decreasing area as it drains, given instantaneously by
ALi hL=hLið Þ

pL� 1. How does the new hypsometry affect lake
stability? Initially the lake depth is equal to its reference
value hLi, so ~�=�; whether a lake is initially stable or
unstable does not depend on its shape. However, as the lake
drains, hL decreases, so the lake area decreases, reducing ~�.
Before the lake empties, ~� will always drop below zero
because hL appears in the denominator of the second term
on the right of Eqn (35). When this happens drainage will
stabilize. This stabilization can halt drainage altogether or, if
it occurs when hC is already close to zero, merely slow the
final stages of drainage. These two possibilities are illus-
trated in Figure 7, which sketches how model trajectories in
hC–� phase space depend on the lake-shape parameter pL.
Trajectories were calculated by forward Euler time stepping
of Eqns (23) and (33) using values of model parameters that
lead to initially unstable drainage and – except the shape

Table 1. Summary of the impact of varying key model parameters on lake-surface drawdown rate, channel incision rate and drainage
stability

The impact of increasing each parameter on:

Model parameter Lake-surface drawdown rate Channel incision rate Drainage stability

Initial lake area, ALi Decrease None Decrease
Channel width, w Increase None Increase
Channel slope, �b Increase (but partially compensated for

by decrease in D)
Increase Decrease

Channel hydraulic roughness, fR Increase (but partially compensated for
by decrease in D)

Increase (but partially compensated for
by decrease in �b)

None

Initial flow depth in the channel, �0 Increase Increase None

Fig. 6.Model trajectories in hC–� phase space corresponding to five
different values for the drainage stability parameter �. The critical
stability parameter �C is defined in Eqn (36). The lake is vertically
sided (pL = 1).
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parameter pL – do not change between calculations. Note
that because we use the same ALi and hLi for each
calculation but vary pL, we are implicitly adjusting VLi
between calculations in order to compare lakes with the
same initial area but different shapes.

When pL > 1, trajectories are deflected from the straight
trajectory corresponding to pL = 1. This deflection increases
with time during each simulation and with pL when
comparing between simulations. If pL is sufficiently high,
drainage is halted before the channel bottom is incised to
the lake bed.

Physically, the lake area decreases as the lake depth
decreases, so the lake-drawdown rate for a given discharge
is increased without any corresponding change in the
channel incision rate. This stabilizes drainage by allowing
the lake drawdown to ‘catch up’ with channel incision. This
effect is enhanced for more ‘horn-shaped’ lakes with higher
pL values.

4.3. A vertically sided lake with a water input
We now return to the vertically sided lake (pL = 1) and
consider what happens if it receives water from its
surroundings (Qin > 0). In this scenario, Eqn (22) becomes

d�
dt
¼
Qin

ALi
þ ��

3
2: ð36Þ

We now demonstrate how this equation shows that, unlike
in the case Qin = 0, drainage cannot cease before the lake
empties. Suppose that �>0. In this case the right-hand side
of Eqn (36) is always positive, so drainage is unstable,
discharge increases unboundedly with time and the lake
empties completely. Suppose now that �< 0. If
j��3=2j > jQin=ALij, � decreases because d�=dt< 0 (Eqn
(36)). Alternatively, if |��3=2j < jQin=ALij, � increases be-
cause d�=dt>0 (Eqn (36)). Hence when �<0, � relaxes
towards a positive value (–Qin/ALi�)2/3. The input to the lake
maintains the lake’s surface height above the channel
bottom’s height, so stable drainage and channel incision
continues until the lake empties completely.

To understand this stable but complete drainage we
compare the discharge corresponding to a depth of flow
� = (–Qin/ALi�)2/3 with the input to the lake Qin. From
Eqn (19),

Q ¼ ��
3
2 ð37Þ

so the discharge after � has reached (–Qin/ALi�)2/3 is

Q ¼ � �
Qin

ALi�
: ð38Þ

From the definition of � (Eqn (26)), this becomes

Q ¼
Qin

1 � �ALi
�

: ð39Þ

When �<0, �ALi/� <1, and hence 0< (1 –�ALi/�) < 1. So,
from Eqn (39), Q>Qin and the lake drains. Furthermore, the
rate of lake-surface drawdown is dhL=dt ¼ Qin � Qð Þ=ALi,
or, using Eqn (39),

dhL
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¼
Qin
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The higher the input to the lake, the faster it drains because a
higher input maintains a deeper flow in the channel that
causes more rapid incision. This analytical result only holds

for stable drainage, when the discharge has relaxed to
(–Qin/ALi�)2/3. Numerical sensitivity analysis of the model
(Kingslake, 2013), more extensive than that reported in the
next section, suggests that this result also applies during
unstable drainage.

4.4. Summary
In our model, supraglacial drainage from a vertically sided
surface lake that receives no water input (pL = 1, Qin = 0)
evolves in one of three ways depending on the stability
parameter �. When �< –�/(hLi/�0 – 1), lake drainage is
stable (i.e. lake level is drawn down faster than the channel
is incised) and halts when water remains in the lake. When
–�/(hLi/�0 – 1)���0, drainage is still stable but results in
the complete emptying of the lake. And when �>0,
drainage is unstable and discharge increases unstably with
time because the channel is incised faster than lake level is
drawn down. Increasing lake area, increasing channel slope
and decreasing channel width all promote unstable drain-
age. The hydraulic roughness of the channel does not affect
drainage stability, but it does affect the magnitude of � and
hence the rate at which discharge changes with time.

The drainage of more realistically shaped lakes with
pL > 1 is governed by the same physics except that, as
drainage progresses, a modified stability parameter, which
takes account of the lake’s shape, decreases and stabilizes
drainage. This can halt drainage before the lake empties.

When a lake is supplied with water by its surroundings, it
may drain stably or unstably but it always drains completely.
The larger the water supply the faster the lake empties.

5. NUMERICAL SIMULATIONS
We now solve the full model numerically, taking into
account the possibility of critical flow at the lake outlet, first
to demonstrate the drainage scenarios examined in the
previous section and second to perform a numerical
sensitivity analysis. Characteristics of the model revealed
by the numerical analysis that could not be examined
analytically in the previous section include the areas of

Fig. 7. Model trajectories in hC–� phase space corresponding to 11
different equally spaced values of the lake-shape parameters pL
between 1 and 3. In all cases initially the lake-stability parameter
~� >0. The rightmost curve corresponds to pL = 1 and the other
curves correspond to progressively larger values of pL. The
trajectories corresponding to the three highest pL values intercept
the hC axis, so drainage is halted before the lake empties.
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parameter space that cause critical flow, the unstable but
incomplete drainage caused by very slow increases in
discharge and how areas of model parameter space corres-
ponding to unstable and stable drainage compare with
observations of lakes in Greenland.

We numerically step the lake depth and the channel-
bottom height forward in time by solving Eqns (12) and (16)
with the Euler method. At each time step, we determine if
flow is subcritical or supercritical by evaluating whether the
force-balance curve (dashed and dotted curves, Fig. 4)
intercepts the line D=DC (the horizontal solid line, Fig. 4) to
the left or right of point C. If flow is supercritical we
calculate the depth of flow and discharge in the lake outlet
using Eqn (7). Alternatively, if flow is subcritical we
determine these quantities by solving the Bernoulli and
force-balance equations (Eqns (6) and (10)) simultaneously
using the Newton–Raphson method.

Simulations start with a full lake (hL =hLi) and terminate
when the lake has emptied (hL� 0) or discharge becomes
very low (Q�0.002m3 s–1). Again we assume that drainage
begins by the mechanical failure of a dam of water-saturated
snow in the channel. This initial condition is implemented
by starting the simulation with the level of the bottom of the
channel a distance �0 below the lake surface elevation
(Fig. 3a).

5.1. Simulating stable and unstable drainage
We present the results of four simulations numbered 1–4.
Simulations 1 and 2 use vertically sided lakes with no input
and demonstrate stable and unstable drainage, respectively.
Simulation 3 shows how a vertically sided lake drains stably
and empties completely when it is supplied with an input of

water, and simulation 4 shows how initially unstable
drainage can stabilize and halt before the lake empties
when the lake is not vertically sided.

We use a typical value for the reference lake depth
hLi = 10m (Georgiou and others, 2009) and estimate an
appropriate hydraulic roughness coefficient from published
data. Mernild and others (2006) calculated Manning rough-
ness coefficients, n0, between 0.036 and 0.058m–1/3 s in
supraglacial streams, with an average value of 0.050m–1/3 s.
The roughness coefficient fR is related to n0 by fR = 8gn02/RH1/3

(Clarke, 2003, his eqn 24), where the hydraulic radius RH is
the ratio of the flow’s cross-sectional area and wetted
perimeter. Hence, we use fR = 0.25 in our simulations.

Figure 8 shows lake discharge hydrographs and time
series of lake level and channel-bottom height from
simulations 1 and 2. Both simulations assume a vertically
sided lake (pL = 1) that receives no water input (Qin = 0) and
drains through a 2m wide channel (wC= 2). Drainage
initiates when a 1m high snow dam fails (�0 = 1m). The left-
hand panels (Fig. 8a and c) display results from simulation 1,
which uses a lake area of 1 km2 and a channel slope of 0.01,
and the right-hand panels (Fig. 8b and d) plot results from
simulation 2, which uses a larger lake area of 3 km2 and a
larger channel slope of 0.03.

The smaller lake drains stably and the larger lake drains
unstably. The discharge from the smaller lake (simulation 1)
is initially 2.8m3 s–1 and decreases with time throughout the
simulation (Fig. 8a). As �<�C (from Eqns (26) and (32)),
�= –2.4�10–6m–1/2 s–1 and �C= –5.1� 10–8 m–1/2 s–1), the
lake level drops faster than the channel incises (Fig. 8c) and
after 100 days the lake level has dropped <1m and the
simulation stops when Q=0.002m3 s–1. Discharge from the

Fig. 8. Numerical model simulations demonstrating stable and unstable drainage. The top panels (a, b) plot hydrographs and the bottom
panels (c, d) plot lake-level and channel-height time series, from simulations using two vertically sided lakes with different surface areas and
channel slopes. The left-hand plots (a, c; simulation 1) show results for a small lake (ALi = 1 km2) with a gently sloping channel (�b = 0.01).
The right-hand plots (b, d; simulation 2) show results for a larger lake (ALi = 3 km2) with a steeper channel (�b = 0.03). The small lake drains
stably and the large lake drains unstably. Both simulations use Qin = 0m3 s–1, wC= 2m, �0 = 1m and fR = 0.25.

Kingslake and others: Channelized surface drainage of supraglacial lakes194



larger lake (simulation 2) is initially 3.4m3 s–1 and increases
throughout the simulation (Fig. 8b). As �= 5.3�
10–7m–1/2 s–1, the channel incises faster than the lake level
drops (Fig. 8d). After 22 days the channel has reached the
lake bed and the lake will soon empty completely.

Figure 9 shows lake-level and channel-height time series
and discharge hydrographs from simulations 3 and 4, which
use the same initial lake area and channel slope as
simulations 1 and 2, respectively.

In simulation 3 the smaller lake is supplied with a water
input Qin = 5m3 s–1. This causes the channel discharge Q to
approach a value greater than Qin (�5.97m3 s–1, Eqn (38))
and the lake drains stably and completely.

In simulation 4 the shape of the larger lake is altered so that
its surface area decreases as it drains (pL = 3). Figure 9b and d
show the results. For the first 11 days, discharge increases. It
then peaks and begins to fall. This stabilization occurs at the
moment the modified stability parameter ~� drops below
zero. The decreasing lake surface area accelerates lake
drawdown, allowing the lake level to catch up with channel
incision. Drainage ends after �40 days (Fig. 9d).

5.2. Numerical stability sensitivity analysis
To complete the numerical investigation of the model, we
explore its sensitivity to three physical parameters: the initial
lake area ALi, the channel slope �b and the height, �0, at
which the snow dam in the channel fails. These were
chosen as interesting parameters to consider because ALi
and �b may vary systematically across ice sheets and we are
interested in emphasizing, as predicted by the analysis in

Section 4, that drainage stability is independent of �0. We
refer the reader to Kingslake (2013) for a more extensive
exploration of these and other parameter sensitivities using
the same model.

We conduct multiple year-long model simulations while
varying ALi, �b and �0 systematically between simulations,
and after each simulation we record the final depth of the
lake, hfinal, and, if the lake empties completely, the time
taken for this to occur, TE.

Between 2005 and 2009, Selmes and others (2011)
observed mean and maximum Greenland lake areas of 0.8
and 17 km2, so to bracket these observations we vary ALi
between 0.05 and 30 km2. Similarly we vary �b between
0.005 and 0.1 and �0 between 0.1 and 3m to encompass
realistic ranges for these parameters. Note that one might
expect lower channel slopes on ice shelves. All simulations
use Qin = 0m3 s–1, wC = 2m and pL = 1.

Figure 10 shows how hfinal and TE vary with ALi, �b and
�0. Each row of plots corresponds to a set of simulations
where two of the parameters are varied and the third is kept
constant. Two regions of parameter space are evident, one
where hfinal > 0m and TE is not defined, corresponding to
incomplete drainage, and another where hfinal = 0m and
13� TE� 365 days, corresponding to complete drainage.

The results show, as predicted in Section 4, that
increasing ALi and �b decreases the stability of drainage.
Also, �0 does not affect drainage stability, but it does
increase the rate at which a lake drains, and decreases the
amount of water left in the lake after stable drainage has
halted before the lake is completely empty.

Fig. 9. Numerical model simulations demonstrating how drainage evolution is affected by meltwater input to the lake (Qin > 0) and a lake
whose surface area decreases as it drains (pL > 1). The left-hand plots (a, c; simulation 3) show results for a small lake (ALi = 1 km2) with a
gently sloping channel (�b = 0.01) that receives a water inputQin = 5m3 s–1. The right-hand plots (b, d; simulation 4) show results for a larger
lake (ALi = 3 km2) with a steeper channel (�b = 0.03) whose surface area decreases with depth, pL = 3. Both simulations use w=2m, �0 = 1m
and fR = 0.25.
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Also plotted in each panel in Figure 10 are solid green
curves evaluated using Eqn (29) with �=0, which separate
regions of stable and unstable drainage. These critical-
parameter curves and the boundaries between incomplete
and complete drainage (visible as the edges of the regions
where TE is not defined in Fig. 10b, d and f) are approxi-
mately aligned; stable drainage often leads to incomplete
drainage. However, in one small region of parameter space
adjacent to the critical-parameter curves (e.g. Fig. 10f),
drainage is stable but complete. This style of drainage was
discussed in Section 4.1. It occurs when the stability
parameter � is negative but close to zero (more precisely
when –�/(hLi /�0 – 1)���0).

Conversely, in another region adjacent to the critical
parameter curves (e.g. Fig. 10d), drainage is unstable but
results in incomplete drainage. This was not discussed

above. It is an artefact of the finite length of simulations
(1 year). In these simulations discharge increases very slowly
with time because � is small and positive. Hence, after one
model year the lake is not completely empty.

The lake areas observed by Selmes and others (2011)
bracket our modelled boundaries between stable and
unstable drainage (Fig. 10). For example, according to our
model with this choice of parameters, a lake whose area is
ALi = 0.8 km2, the mean area observed by Selmes and others
(2011), will drain stably regardless of �b, whereas a lake
whose area is their largest observed (ALi = 17 km2) would
drain unstably through a channel with �b > 0.003.

The boundary of the region in parameter space corres-
ponding to simulations that involve critical flow is visible in
Figure 10a, b and f as a kink in the otherwise smooth
contours at �b� 0.032. For a wide range of channel slopes

Fig. 10. The results of exploring the model’s sensitivity to the initial lake area ALi, the channel slope �b and the height at which the snow dam
in the channel fails, �0. Filled contour maps show how final lake depth (a, c, e; left column) and the time taken to empty the lake (b, d, f; right
column) vary with these parameters. In all simulations Qin = 0m3 s–1, wC= 2m and pL = 1. Solid green lines separate regions corresponding
to stable and unstable drainage (plotted using Eqn (29) with �=0). Green dotted and dashed lines in (a–d) indicate the mean and maximum
areas of lakes reported by Selmes and others (2011). Crosses indicate locations in each parameter space of simulations 1 and 2 (Fig. 8).
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our model simulates subcritical flow. When �b > 0.032, flow
is critical and drainage does not depend on �b. This is
expected, as the equations that describe critical flow
(Eqn (7)) do not involve �b.

6. DISCUSSION
Using a simple model we have examined how the surface
drainage of a supraglacial lake evolves after it initiates in a
pre-existing channel. This evolution can be stable or
unstable and depends on a competition between drawdown
of the lake’s surface and channel incision. Drainage
instability increases with the lake’s area and the channel’s
slope, and decreases with the channel’s width. Lake
hypsometry also affects stability, with lakes whose surface
area decreases during drainage promoting stability. Drain-
age stability is not affected by the channel’s hydraulic
roughness, the lake’s initial depth or the height of the snow
dam in the channel, the failure of which initiates drainage.
Irrespective of whether a lake that receives a water input
from its surroundings drains stably or unstably, it will
always empty completely. We have shown analytically that,
in the stable case, a higher input causes a higher lake
discharge. Kingslake’s (2013) numerical sensitivity analysis
suggests that this increase in discharge with lake input also
occurs in the unstable case.

Previous authors (Walder and Costa, 1996; Vincent and
others, 2010) have simplified the determination of flow
depth in channels draining lakes by assuming critical flow
at the lake outlet. In contrast, our numerical sensitivity
analysis suggests that subcritical conditions dominate for a
wide range of parameter values and our analytical examin-
ation of the model considered only subcritical flow. This
examination could be repeated for the critical flow regime,
which may be dominant in some situations. As critical flow
is independent of the channel slope and the hydraulic
roughness, some aspects of our analysis related to these
parameters will be irrelevant. However, key processes, such
as the competition between lake level and channel incision,
and the influence of parameters such as lake area, lake
input and channel width, will be qualitatively similar.

Field observations (e.g. Mayer and Schuler, 2005;
Tedesco and others, 2013) and remote-sensing surveys
(e.g. Selmes and others, 2011; Johansson and others, 2013)
of lakes and lake-drainage events could be used to test our
model and constrain its parameters (e.g. channel hydraulic
roughness fR). However, several model limitations need to
be considered.

The model ignores along-channel spatial variations and
the lake water’s sensible heat. Developing the model to
include along-channel variation could reveal dynamics
associated with a melt–slope–discharge feedback that could
operate along channels. The lake’s sensible heat will affect
the lake’s shape and contribute to channel incision; its
inclusion in the model may be necessary to simulate
drainage realistically (Tedesco and others, 2012).

We have assumed a constant channel width. Although
previous work (e.g. Mayer and Schuler, 2005; Vincent and
others, 2010) justified this assumption with observations of
deep, vertical-walled supraglacial channels, it may be
invalid when this width is less than the flow depth and a
physical explanation for these observations is presently
lacking. A potentially related consideration is the mech-
anism by which drainage initiates. In our model we initiate

drainage by snow-dam failure. An alternative mechanism is
the overtopping of the lake’s basin in the absence of a pre-
existing channel. After initial sheet flow, a feedback
between melt and flow depth would form a channel.
Two-dimensional modelling of this process may help us
understand how it influences channel width and how
drainage evolves after it is initiated in this way.

We have also assumed that the lake drains through a
single channel. Our approach could be applied to drainage
through two or more channels. In such an extension the
discharge through N identical channels would be N times
the drainage through an isolated channel. However,
because channels are unlikely to be identical, some will
grow more rapidly than others. The discharge through these
channels may increase at the expense of the discharge
through the more slowly growing channels, until all the lake
outflow is concentrated in one channel. This feedback
mechanism may explain why lakes are often observed to
drain through one large channel (e.g. Figs 1 and 2).

The model assumes that the only mechanism affecting
the elevation of the channel bottom is frictional melting by
the flowing water. In reality, ice flow – both the large-scale
flow of the ice sheet through the lake basin and small-scale
flow induced by the presence of the channel – may also
contribute. Upward flow of the ice sheet as it leaves the lake
basin will tend to raise the bottom of the channel (Darnell
and others, 2013), and small-scale flow around the channel
will raise the channel bottom and decrease channel width
(Jarosch and Gudmundsson, 2012). We ignored these
potentially complex dynamics, but they may be crucial for
multi-year channel evolution (Darnell and others, 2013)
and the formation of englacial drainage systems from
surface channels (Jarosch and Gudmundsson, 2012).

Despite limitations of our model, our results have
implications for our understanding of the Greenland ice
sheet. A concern among glaciologists is that atmospheric
warming could increase the area of the ice sheet populated
by supraglacial lakes, resulting in a corresponding increase
in the area of the bed that receives injections of meltwater
from the surface. This would affect ice dynamics (Lüthje and
others, 2006; Bartholomew and others, 2011). It is this
coupling between surface melt and ice dynamics that the
mechanisms highlighted by our analysis may influence.

Lüthje and others (2006) suggested that lakes will tend to
be larger as the area of the ice sheet populated by lakes
expands inland because of lower mean ice-surface slopes
higher on the ice sheet. In terms of the surface drainage
simulated by our model, such a shift in elevation corres-
ponds to movement through the model’s parameter space.
Specifically, an increase in mean lake area increases the
propensity of lakes to drain unstably, enhancing the
relocation of surface water to lower elevations and limiting
the availability of meltwater for injection to the bed.
However, lower average surface gradients higher on the
ice sheet imply lower channel slopes, which have the
opposite effect according to our theory. Alternatively, lake
area and channel slope may both be controlled by large-
scale surface roughness, itself dependent on basal topog-
raphy, local surface processes and ice-flow dynamics. How
other factors such as lake shape, channel width and lake
input may change under atmospheric warming scenarios is
also currently unclear.

Surface drainage not only relocates water, but also
directly throttles the drainage of lake water to the bed of
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ice sheets and reduces an ice sheet’s dynamic response to
lake drainage. Tedesco and others (2013) report field
observations of a supraglacial lake draining relatively slowly
to the bed of the Greenland ice sheet by delivering water
over the ice sheet’s surface via a surface channel to a nearby
moulin. They measured the ice sheet’s dynamic response to
this event and to another, more rapid drainage event, which
included no surface drainage. During the more rapid event,
water was delivered directly from the lake bottom to the bed
of the ice sheet via hydrofracture and the creation of new
moulins. The ice sheet’s dynamic response to the slower
event that included surface drainage was less than half of its
response to the more rapid event. Our model could be used
in future work to examine the coupling between lake
drainage and ice dynamics in scenarios such as this where
surface drainage plays a crucial role.

Our new observations of extensive surface drainage in
East Antarctica (Fig. 2) allow speculation on mechanisms
affecting drainage stability in this system. The most rapid
drainage appears to originate from several of the largest
lakes positioned near the grounding line on the ice-sheet
flank, where the surface slope is greatest. This is consistent
with our theory.

How other important factors such as lake shape, channel
slope and lake input evolve over time in this system may
depend on whether lakes are advected with ice flow or
form in topographic depressions created by ice dynamics
and remain geographically stationary, as they do in
Greenland. For example, if lake-bed ablation decreases
with increasing water depth, an advected lake’s walls will
steepen as shallower areas preferentially ablate. This
corresponds to a decrease in the lake-shape parameter pL
and the stability of drainage. Furthermore, as a lake is
advected with ice flow, local ice surface slope and the
lake’s catchment may increase over time. This would also
decrease the stability of drainage.

Lakes may be formed in the blue-ice area (to the lower
right of Fig. 2a) and advected towards the grounding line
over many years, becoming increasingly unstable until input
is sufficient to cause the rapid drainage we observe.

Regardless of whether lakes are advected with ice flow,
variation in lake input will affect the timing and rate of lake
drainage through the mechanisms highlighted by our
modelling. This may help to explain the interannual
variability seen in drainage extent and will be investigated
in future work.

7. CONCLUSIONS
We have developed a model of the surface drainage of
supraglacial lakes. The model yields qualitative results that
highlight and physically explain important and previously
unrecognized controls on ice-sheet surface hydrology. Lakes
are more prone to drain unstably, which often empties them
completely, when initial lake area, lake input and channel
slope are larger. Also, when lakes are supplied with an input
of water they always drain completely and do so faster when
supplied with a larger input. We have discussed these
findings in relation to the well-studied supraglacial drainage
system in the ablation area of the Greenland ice sheet and
previously unreported surface lake-drainage phenomena in
East Antarctica. Future work will focus on improving the
model and applying it quantitatively to these systems to
understand their variability and predict their future.
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