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Abstract 19 

The recent availability of high-throughput nucleic acid sequencing technologies has rapidly advanced 20 

approaches to analysing the role of the gut microbiome in governance of human health, including gut 21 

health, but also metabolic, cardiovascular, and mental health, inter alia.  Recent scientific studies suggest 22 

EI perturbations at population level cannot account for the current obesity epidemic, and significant work 23 

is investigating the potential role of the microbiome, and in particular its metabolic products, notably 24 

short-chain fatty acids, predominantly acetate, propionate and butyrate, the last of which is an energy 25 

source for the epithelium of the large intestine. The energy yield from dietary residues may be a significant 26 

factor influencing energy balance. This review posits that the contribution toward EI is governed by 27 

energy intake, diet composition (not just fibre), by the composition of the microbiome, and by levels of 28 

physical activity. Furthermore we hypothesize that these factors do not exist in a steady state, but rather 29 

are dynamic, with both short- and medium-term effects on appetite regulation. We suggest that existing 30 

modelling strategies for bacterial dynamics, specifically for growth in chemostat culture, are of utility in 31 

understanding the dynamic interplay of diet, activity and microbiomic oraganisation. Such approaches 32 

may be informative in optimising the application of dietary and microbial therapy to promote health. 33 

  34 



1. Overview 35 

The availability of high-throughput nucleic acid sequencing technologies has facilitated a range of new 36 

approaches to analysing the role of the gut microbiome in governance of human health (1). Modern 37 

techniques suggest a role for the microbiome maintenance of, not only gut health but, systemic 38 

conditions including cardiovascular health (2), mental health (3) and obesity (3). Despite wide media focus 39 

on excess energy intake (EI), recent scientific studies suggest EI perturbations at population level cannot 40 

account for the current obesity epidemic (4). The microbiome is responsible for production of a highly 41 

complex and highly dynamic metaexometabolome. Well known components of this include the short-42 

chain fatty acids acetate, propionate and butyrate, the last of which is an energy source for the epithelium 43 

of the large intestine (5), as well as an inhibitor of histone deacetylation (and thereby cell fate 44 

determination) (6). The energy yield from dietary residues entering the large intestine may account for as 45 

much as 10% of EI   (7) and is therefore a significant factor influencing energy balance. The guiding 46 

theme of this review is that this contribution toward EI is governed by energy intake, diet composition, 47 

the composition of the microbiome, and levels of physical activity. Furthermore we hypothesize that 48 

these factors do not exist in a steady state, but rather are dynamic, with both short- and medium-term 49 

effects on appetite regulation. There is therefore potential to modulate this component of EI through a 50 

range of modalities to promote health. 51 

 52 

2. Fibre /Dietary Residue 53 

2.1 Scope of definitions of dietary fibre 54 

Fibre is a component of diet which is highly complex and inconsistently defined. Approaches to the 55 

definition vary from the biochemical, to the physiological, to the functional. The Englyst definition, for 56 

example, is “non-starch polysaccharides” (8).  This is in line with other definitions within nutrition, 57 

although it is notable for the element of exclusion which places fibres in the general class of 58 

polysaccharides outwith the subclass of starches. Fig 1 provides top-level indication of the potential 59 

chemical complexity of this ontology (accessed from ChEBI 08.07.15). However, each endpoint within 60 

this ontology masks further factors, including the degree of polymerisation: the nature and extent of 61 

polymerisation of side-chains on any polysaccharide backbone.  Against this rigid definition is the 62 

Association of Official Agricultural Chemists (AOAC)-adopted version by Prosky (9), that fibres are 63 

“remnants of plant cells resistant to digestion by human digestive enzymes”. This definition introduces a 64 

physiological component, insofar as resistance to digestion implicates human physiology, but its relevance 65 

to non-humans and humans with abnormal digestive capacity is questionable.  For example, is “fibre” 66 

different for animals with different profiles of digestive enzymes? Furthermore, what is the relationship 67 

between fibre and personalised medicine? For example, in the case of an inborn error of metabolism 68 

which may impair intraluminal digestion or absorption – is this definition personal, with each of us 69 

potentially having a different profile of fibres?  Finally, it introduces a source component, in this case 70 

botanical, which raises the question of how fungi fit within this classification. The definition was further 71 

extended to include an aspect of functionality in the following Scientific Advisory Committee on 72 

Nutrition (SACN) statement: 73 

SACN consider that a material can be considered as dietary fibre if it is resistant to digestion and absorption in the small 74 

intestine and has a demonstrable physiological effect potentially associated with health benefits in the body, such as increasing 75 

stool bulk, decreasing intestinal transit time or decreasing post prandial glycaemia. Evidence only of increased fermentation in 76 

the gut should not be included under this definition, since although this has a direct effect on the microflora, it must also be 77 

shown to have a demonstrable benefit to the host to be considered as dietary fibre. 78 



(SACN Statement August 2008) 79 

This extension to the Prosky definition includes and exemplifies health benefits of fibre, yet such 80 

advantages are notoriously difficult to demonstrate and attribute. Additionally, it recognises that 81 

functionalities may occur beyond the gut, implying indirect mechanisms, although other classes of 82 

compound potentially yielding the same intermediate effectors would be excluded from this definition. 83 

The SACN statement does not reflect the source (botanical or otherwise) of fibre, but does introduce 84 

difficulties of defining fibres in potentially personalised terms. 85 

This extended cynicism about mainstream definitions could be coupled to a simple, unifying observation: 86 

bacteria cannot read research papers or position statements. The extent of compounds which reach the 87 

colon has been demonstrated, inter alia, in studies of differentially diced almond skins, which were found 88 

to yield a range of macro- and micro-nutrients (10). It can therefore be argued that the colon environment 89 

is not solely nourished by fibres, but by the totality of the ileo-caecal efflueate (ICE) - the material that 90 

passes through the ileocaecal valve, whether intact or part-digested, whether of plant, animal or fungal 91 

origin, whether polysaccharide or not. For the purposes of a review of interactions between fibres and the 92 

microbiome, this definition facilitates the full scope of potential interaction between dietary factors and 93 

the microbiome in understanding the production of the exometabolome. Our concept of ICE resembles 94 

the definition of fibre proposed by Ha “Any dietary component that reaches the colon without being 95 

absorbed in a healthy human gut” (11). The authors critically assimilate the overarching effects of fibre, 96 

reproduced in Figure 2 – the division between fermentable and non-fermentable fibres. Fermentable 97 

fibres are generally progressively degraded to metabolic endproducts including short-chain fatty acids 98 

2,2 The nature of the exometabolome 99 

Major products ensuing from this fermentation are the short chain fatty acids (SCFAs) acetate, butyrate 100 

and propionate, which can be utilised for lipid or gluconeogenesis (12). SCFAs have been estimated to 101 

provide 10% of total dietary energy in humans, and host epithelial cells derive 60–70% of their energy 102 

supply from SCFA, particularly butyrate (13). Acetate and propionate are transported across the mucosa 103 

and into the hepatic portal and may be detected in the systemic circulation (14) although circulating 104 

concentrations of butyrate are disproportionately depleted in the circulation due to mucosal metabolism. 105 

Other key exometabolites include glucose, vitamins and precursors to neuropeptides. The GI tract has a 106 

panel of cell types sensing and responding to these molecules, this interaction is linked to the nervous 107 

system, and thereby the gut-brain axis (15). 108 

3. Microbiome 109 

The human GI tract houses a very complex microbial ecosystem of more than 100 trillion 110 

microorganisms, ten times greater than the total number of the human  cells in the  body. Human-111 

associated bacteria are dominated by two phyla; Firmicutes and Bacteroidetes, with Proteobacteria, 112 

Actinobacteria and Verrucomicrobia present in minor proportions (16, 17), and each phyla containing 113 

many different bacterial species (18).The gut microbiota plays an important role in metabolism, immune 114 

function, protection of the host from pathogens and bidirectional communication between the GI tract 115 

and the central nervous system (19). Dysbiosis, an aberrant state of imbalance of the gut microbiota, has 116 

been associated with a diversity of diseases and syndromes such as inflammatory bowel disease, irritable 117 

bowel syndrome, colorectal cancer, atopy, anxiety, depression, Type II diabetes and metabolic syndrome. 118 

The role of the gut microbiota in obesity has been of particular interest, especially given that the global 119 

prevalence of obesity in both children and adults is rapidly increasing (20), and is a leading cause of 120 

preventable disability and death. Obesity results from a sustained net positive energetic balance whereby 121 

energy intake exceeds energy output. In addition, host differences in the ability to store and expend 122 



energy contribute to obesity (21). A new but growing body of evidence suggests the gut microbiota, 123 

through its role as an interface between nutrients and the host, may assist body weight regulation. The gut 124 

microbiota can affect nutrient acquisition and energy harvest, as well as producing exometabolites that in 125 

turn may regulate host metabolic pathways (6, 22).  126 

Early indications that the gut microbiota was involved in obesity came when metabolically obese mice, 127 

with a mutation in the leptin gene, were shown to have a significantly different microbiota compared to 128 

mice without the mutation (23). Further investigation indicated that the ratio of Firmicutes to 129 

Bacteroidetes in the gut microbiota of obese mice was shifted in favour of Firmicutes, whilst lean mice 130 

were dominated by Bacteroidetes (24). In humans, the gut microbiota composition  can respond to 131 

changes in body weight and is altered in obese compared to non-obese individuals (18). Bacteroidetes 132 

may be responsive to calorie intake because their  levels  increase when body weight is reduced following 133 

a reduced calorie diet (25), although numerous human studies have failed to demonstrate a consistent 134 

relationship between obesity and the ratio of Firmicutes to Bacteroidetes at both the phylum- and 135 

species-level (26). 136 

Hydrogen-producing Prevotellaceae and hydrogen-utilizing methanogenic Archaea were more abundant 137 

in obese individuals suggesting a higher energy harvest in large intestine to hydrogen transfer between 138 

bacterial and archaeal species (27). Changes in the composition of the gut microbiota have been linked 139 

with (i) suppression of intestinal fasting-induced adipocyte factor (Fiaf), which is a contributing factor to 140 

enhanced fat deposition (28), (ii) increased capacity to harvest energy from food and (iii) low-grade 141 

inflammation due to activation of toll-like receptors (TLR4), endotoxin and proinflammatory cytokine 142 

production (29, 30). Approximately 5% of ingested calories are lost in the stool and urine (31). Altered 143 

nutrient load over a three-day period induced changes in the gut microbiota in both obese and non-obese 144 

individuals, despite statistically significant differences  in the composition of the lean and obese 145 

microbiome at baseline under a weight maintaining diet (32). In the case of lean subjects, a 20% increase 146 

in Firmicutes (and a corresponding decrease in Bacteroidetes) was observed over the three-day period and 147 

was associated with a ≈150 kcal increase in energy absorption. 148 

SCFAs have been implicated in metabolic diseases, including obesity (33).  Higher levels of faecal SCFAs, 149 

mainly butyrate and propionate, have been reported in obese adults (34) and children (35), compared to 150 

lean individuals. Changes in the concentration and proportion of individual SCFA may be in line with 151 

changes in the bacterial groups present (12, 35).  152 

 153 

3. Appetite control  154 

There are two general definitions of appetite (36).  The first relates to food preference, selection and 155 

intake, and the motivation to eat, whilst the second refers to qualitative and sensory aspects of food, 156 

including the impact of environmental stimulation.  These eclipse homeostatic theories which suggested 157 

feeding corresponds to energy/nutrient deficit or excess (37), yet it is likely that a suite of homeostatic 158 

and complex non-homeostatic factors determine the overall expression of appetite.  Appetite is normally 159 

described in terms of hunger, satiation and satiety.  Hunger is associated with emptiness of the stomach, 160 

irritability and light-headedness (36).  Humans can and do, however, display hunger for other reasons: the 161 

smell, sight or even thought of food can initiate feeding (38).  Eating triggers a cascade of metabolic 162 

signals that can suppress hunger and inhibit further consumption (39).  Satiation is the point of 163 

satisfaction that results in meal termination (38, 40, 41).  Satiety is the (modifiable) post-ingestion period 164 

of repletion which influences the time of the next eating occasion (42).   165 



Appetite is controlled by multiple integrated physiological signals (See Figure 3).  Short-term signals help 166 

regulate meal initiation and termination whereas long-term, humoral signals play a central role in body 167 

weight regulation (43).  This conceptual framework for examining the impact of feeding is continually 168 

updated to represent an increasing number of factors encompassing peripheral physiological and 169 

metabolic events, and brain responses that play important roles in appetite control (44).  The GI tract 170 

responds to feeding in three integrated phases: cephalic, post-ingestive and post-absorptive, all of which 171 

depend on parasympathetic nerve transmission. The cephalic phase occurs at the point of food selection 172 

and early ingestion, and is thus stimulated by conditioned processes and organoleptic factors (45, 46).  It 173 

is held that post-ingestive satiation signals arise largely from mechanical distention, while signals from the 174 

GI tract derive predominantly from the chemical effects of food (47).  In contrast, post-absorptive effects 175 

are the result of interplay between hormones and the hypothalamic region of the brain that respond to 176 

fluctuating concentrations of nutrients in the portal vein, plasma and brain. 177 

3,1 Impact of the exometabolome on post-ingestive appetite regulation 178 

Landmark human studies have shown intestinal nutrient infusions can reduce food intake with rapid 179 

effects (48-50), indicating that satiation signals must originate from the gut as well as post-absorptively.  180 

Numerous hormones, neurotransmitters and peptides stimulate orexigenic or anorexigenic responses.  181 

Many peptide hormones are produced in the gastrointestinal tract and released in response to nutritional 182 

stimuli. Anorexigenic hormones include CCK, glucagon-like peptide-1 and -2 (GLP-1 and GLP-2), 183 

glucose-dependent insulinotropic polypeptide (GIP), oxyntomodulin, PP, peptide histidine isoleucine, 184 

peptide histidine valine, peptide YY and somatostatin)(51, 52) . Enteroendocrine (EE) cells represent less 185 

than one percent of the mucosal cell population, yet form the largest endocrine system in the human (53), 186 

and is populated by singly distributed enteroendocrine cells which release a very significant portion of 187 

appetite regulating hormones (54). (TABLE 1).  EE cells have a characteristic flask-shaped morphology 188 

and have been divided into at least sixteen cellular subtypes based on the major products they produce 189 

and secrete (55), although this model is contested and a continuum of cell types has also been proposed 190 

(56).  191 

The primary EE cell types in the colon are D cells, L cells and EnteroChromaffin (EC) cells (57). Whilst 192 

all cell types may be found along the colon, EC are the most abundant, and D cells the least, with a 193 

progressive increase in the proportion of L-cells along the caeco-rectal axis. As summarised in our review, 194 

these cells harbour peptide/hormones involved in appetitive regulation including PYY, GLP-1, GLP-2 195 

and oxyntomodulin. Intriguingly the EC subclass also contain 5HT (serotonin) and reports suggest that as 196 

much as 95% of the body’s 5HT may exist in the gut (58)  Serotonin has been implicated in appetitive 197 

regulation, mood control and regulation of gut transit. This underwrites plausible links between luminal 198 

content, motivation to eat and wider aspects of regulation of colorectal content through modulation of 199 

transit time. These factors are explored in greater detail below.  200 

SCFAs are important signalling components within the gut-brain axis, the system of communication 201 

between the gut and the brain (19, 59) which interacts directly with gut endocrine cells, and stimulates 202 

secretion of peptide YY (PYY) by activating two G-protein-coupled receptors (GPR41 and GPR43).  EE 203 

carry free fatty acid receptors (FFARs) on their surface which have differential affinity for SCFAs and 204 

which signal the release of appetitive hormones from EEC (60). As components of the exometabolome, 205 

SCFAs therefore act as key molecules governing the sensing-signalling pathway linking luminal 206 

metabolism to appetite regulation. 207 

Our group have recently identified a further plausible mechanism of action. A significant body of 208 

literature suggests butyrate is a potent regulator of numbers of proliferating cells in the colon crypt. We 209 

recently demonstrated an inverse association between SCFA and the numbers of EEC cells in the crypt 210 



(61). Mathematical modelling suggests SCFA may modulate differentiation pathways on exit from the 211 

stem cell compartment (62). Taken together these data suggest two possible tiers of regulation of post-212 

ingestive appetite by the exometabolome: (1) an acute response in terms of regulating release of anorectic 213 

hormones; and (2) an adaptive modulation of numbers of EEC and thereby available pools of appetite-214 

regulatory hormones. 215 

3,2 Impact of the exometabolome on post-absorbtive appetite regulation 216 

Post-absorptive signals are stimulated by the entry of nutrients into the portal vein of the liver, or by 217 

fluctuating nutrient concentrations in the plasma and brain (63).  These signals act (via the hypothalamic 218 

region of the brain and vagus nerve) on the periphery and central nervous system and also interact with 219 

long-acting adiposity hormones (such as leptin) that help regulate body weight ibid. Two key areas are 220 

impacted by the exometabolome: via intestinal gluconeogenesis and through pan-systemic propionate 221 

sensing. 222 

Gluconeogenesis has until relatively recently been viewed as a primarily hepatic and renal phenomenon, 223 

and is not positively associated with health, reflecting excess energy intake. Relatively recently the 224 

intestine has been identified as a site gluconeogenesis (distinguished as Intestinal GlucoNeogenesis – 225 

IGN) (64). IGN is regulated by both butyrate and propionate. Butyrate acts to govern the levels of IGN 226 

enzymes in the mucosa. In contrast propionate is both a substrate for IGN and is a regulator of IGN 227 

enzyme activity mediated via FFAR3 signalling (Fig 4) (65). This paper therefore also suggests emergent 228 

distinctions between the fates and activities of SCFA. Intestinally-produced glucose is transported to the 229 

HPV where it is directly sensed by sodium-coupled glucose co-transporter (66). Critically, in contrast to 230 

hepatic and renal gluconeogenesis, IGN associated with positive health outcomes (65) . 231 

Post-ingestive appetite regulation may also occur at the level of FFAR3 signalling. There is growing 232 

recognition that FFAR family receptors, including FFAR3 are expressed on a wide range of tissues 233 

including adipose, liver. The role of FFAR3 in non-gut tissue is reviewed elsewhere in this issue (67). 234 

3.3 Impact of the exometabolome on cephalic phase of appetite regulation 235 

The impact of exometabolites upon cephalic phase of appetite has not been well explored however it is 236 

reasonable to hypothesize that it does contribute to the wider mechanisms of appetite control as 237 

precedents have been shown in microbiome-mood interactions. For example: perturbations of the gut 238 

flora have been associated with schizophrenia and depression (68, 69); probiotic interventions in mouse 239 

models have demonstrated anxiolytic potential of microbial intervention (70); probiotic interventions 240 

have also shown impact upon brain activity (71) and on cognitive outcome (72). Recent reviews have 241 

suggested potential mechanisms of action, including modulation of afferent signalling by SCFA, cytokine-242 

mediated responses triggered through TLRs in the mucosa responding to the microbiome, and 243 

modulation of GABA-mediated signalling (15). As a strong evidence-base is emerging for a role of the 244 

microbiome and exometabolome in governance of mood and cognition, it seems likely that this will in 245 

time extend through to cephalic phase appetite control.  246 

 247 

4.  Modification of the microbiome by alteration of transit (the chemostat analogy) 248 

Although obesity and obesity-related disorders have been linked with alterations in the gut microbiota, 249 

less attention has been directed towards investigating lifestyle aspects of obesity, such as exercise and diet, 250 

and their effect on the microbial and physical environment of the gastrointestinal tract (73). In a recent 251 

study, elite athletes had a significantly more diverse gut microbiota compared to non-athletic size matched 252 



(high body mass index (BMI) ≈30) and age/gender matched (BMI <25) control groups (74). As the elite 253 

athlete group also consumed a significantly different diet, which provided more calories per day from 254 

carbohydrates, proteins and fat compared to the control groups, this study suggested that both diet and 255 

exercise were driving factors in changing gut microbial diversity. Exercise has also been shown to 256 

decrease transit time, particularly through the descending colon (74, 75). Previous reports have suggested 257 

however, that physical activity does not necessarily improve overall gastrointestinal transit (76).  258 

It may be convenient therefore to view the colon as a chemostat, a commonly used form of bioreactor 259 

which has been applied in microbiological settings for the determination of growth parameters. (Fig 5). In 260 

this simple model the ecosystem is fed at a specific rate (the dilution rate) which is also reflected in the 261 

rate of effluent production. The population within this system will have a growth rate (µ) proportional to 262 

the dilution rate (D). At a certain dilution rate µmax is reached – the maximal growth rate for a particular 263 

species (in the context of an ecosystem this will be for a specific species as each will have a unique µmax ), 264 

at this point the species will start to dilute from the system. The dilution rate therefore represents an 265 

extremely strong selective pressure upon the microbiome.  As discussed in sections above, fibre intake as 266 

well as physical activity levels will influence transit time, which is analogous to the dilution rate in a 267 

chemostat. Data suggest that individuals on high-fibre diets lose more energy in faecal material than those 268 

on lower-fibre diets with an equivalent energy content (77), supporting a model whereby reduced energy 269 

harvest associates with a factor affecting transit.  270 

We therefore argue that a contributing longtundinal effect of high fibre intakes, or high physical activity, 271 

or the combination thereof is the modification of the microbiome by exerting a specific selective 272 

pressure. Contrastingly, excessive slow values for dilution rate, D, will provide opportunities for these 273 

microbial products to interact with the host epithelium, potentially increasing host energy harvest in the 274 

case of SCFAs, and elevating exposure to pro-inflammatory signalling and cytotoxic molecules. 275 

 276 

6. Summary and future directions 277 

The question of whether alterations in gut microbiota are a cause or a consequence of obesity still 278 

remains unclear, although evidence from observational and intervention studies in humans appears to 279 

suggest that both the microbiota and diet play a significant role in body weight regulation, beginning at 280 

birth. Although the utility of animal models for conducting more controlled experiments investigating the 281 

differences between the obese and lean microbiota has been established, translation to research in 282 

humans has proved less fruitful in providing a clear consensus concerning the role played by the balance 283 

between the most abundant bacterial phyla in the human gut. Indeed, the emerging evidence indicates 284 

that even the effect of individual bacterial species cannot be disregarded from study. This means that 285 

moving towards the use of high-resolution, standardised analytical techniques for surveying the gut 286 

microbiota, combined with well-designed human studies taking all of the confounding variables (e.g. age, 287 

sex, ethnicity, diet and genetic factors) into account, may allow us to identify a specific consortium of 288 

microbes that contribute to obesity, elucidate their modes of action via host and diet interactions, and 289 

evaluate novel strategies to regulate energy balance in obese individuals. Such strategies may for example 290 

include approaches to modify (or restore “normality” to) the mircobiota in order to restore energy 291 

balance. Changes in gut microbiota composition have been observed after consumption of a calorie 292 

restricted diet in overweight and obese subjects (26). Inconclusive evidence exists on the effect of 293 

supplementation with lactobacilli and bifidobacteria, alone or in combination with prebiotics, on weight 294 

management in humans (78-80). As such, intervention strategies are an attractive approach to appetite 295 

management through restoration of ecological balance in the gut. 296 



7. Key conclusions and areas for future research 297 

 Fibres are inconsistently defined and an oversight of the totality of nutrients entering the large 298 

bowel may be more informative 299 

 Perturbations in the microbiome associate with obesity and increased energy harvest. The 300 

relationship between the diet and microbiome and host health is mediated considerably by the 301 

exometabolome. 302 

 Most studies to date are associative and greater emphasis needs to be placed on longitudinal or 303 

prospective trials 304 

 The relationship between the exometabolome and the host is dynamic and multifactorial, 305 

reductionist approaches are unlikely to yield an insight into health benefits. 306 

 307 

  308 



Tables and Figure Legends 309 

Table 1: The secretory products of enteroendocrine cells of the colon and rectum and their 310 

actions 311 

Peptide Actions 

5-HT Intestinal motility; intestinal secretion; visceral sensation; appetite reduction 

Glicentin Stimulates mucosal enterocyte proliferation; inhibits gastric emptying 

GLP-1 
Incretin effect; delays gastric emptying; postprandial satiety, inhibits energy 

intake 

GLP-2 
Stimulates mucosal enterocyte proliferation, enhances digestive and absorptive 

capacities of intestine, inhibits gastric secretion 

Oxyntomodulin Inhibits gastric emptying, reduces gastric motility, inhibits food intake 

PYY 

Inhibits gastric emptying and intestinal motility; inhibits gastric acid secretion 

and pancreatic exocrine function; suppresses appetite; stimulates mucosal 

enterocyte proliferation 

Somatostatin 
Major inhibitory hormone for digestive endocrine and exocrine function; 

stimulates colonic peristalsis; potential for reducing food intake 

PYY, peptide YY; GLP-1, glucagon-like peptide 1; GLP-2, glucagon-like peptide 2.  312 

 313 

Table taken from Gunarwardene Corfe & Staton CA (2011) with additional information from (81-83) 314 

 315 

 316 

 317 

  318 



Figure 1 A chemical Ontology for “Fibre” 319 

Accessed from ChEBI (www.chebi.ebi.ac.uk), 08.07.14 320 

 321 

Figure 2 An alternative definition of “fibre” 322 

Based on Ha et al (2000) this definition encompasses all material able to enter the colon (ICE – Ileo 323 

Caecal Effulent), as available for microbial metabolism. Some components are readily metabolised, some 324 

highly resistant to metabolism. 325 

 326 

Fig 3 Tiers of appetite regulation by short-chain fatty acids 327 

 328 

Figure 4 Intestinal Gluconeogenesis Pathway 329 

 330 

Figure 5 Analogy between the Chemostat and the Colon 331 

Chemostat image: chemistry.about.com, colon image www.clker.com 332 

  333 
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